Office of Science Update

Advanced Scientific Computing Advisory Committee Meeting

Harriet Kung

Deputy Director for Science Programs January 16, 2025

Energy.gov/science

Outline

- SC Leadership & Organization Update
- 2024 Accomplishments A Year in Review
- Distinguished Honors and Awards
- DOE Research Security Framework

2024: Major Scientific Discoveries and Breakthroughs

The Future of Telecom Is Atomically Thin

Using a small number of photons to process information, two-dimensional quantum materials can lead to secure, energy-efficient communications

Image: University of Maryland

Dark Energy Spectroscopic Instrument Releases **First Results**

AI Tackles Disruptive Tearing Instability in **Fusion Plasma**

Innovative Quantum Gate for Advanced **Quantum Networking**

AI algorithm was used to integrate inputs from hundreds of sensors on a tokamak to provide adaptive control that maintained plasma stability near operational limits, eliminating the need for manual tuning of plasma controls

Image: Adam Healey and John Lovell/HudsonAlpha

4

Input Output Output Input

Opens up new possibilities for designing quantum networks. A quantum "controlled not" gate, operates between two photonic degrees of freedom polarization and frequency – and this new approach might enhance error resilience in future quantum communications

Image: ORNL

Office of

Science

DESI has made the largest 3D map of our universe to date.

Earth is at the center of this thin slice of the full map.

In the magnified section, it is easy to see the underlying structure of matter in our

universe

Image: Claire Lamman/DESI collaboration; custom colormap package by cmastro

2024: Enabling Future Research and Technologies

A new way to produce superheavy elements

Scientist at the Berkeley Gas-filled Separator used to separate atoms of element 116, livermorium

Credit: Marilyn Sargent/LBNL

New technique to transfer beneficial genes

A plant that has been modified using the CRISPR gene editing system glows bright green under a lightbased biosensor developed at ORNL

Credit: Genevieve Martin/ORNL

Using lidar to improve wind turbine estimates

Instruments deployed by the WFIP-3 team on the Massachusetts island of Nantucket, one of six landbased instrument sites in Massachusetts and Rhode Island

Credit: Raghavendra Krishnamurthy/PNNL

The 2024 Nobel Prize winner in Chemistry

David Baker used X-ray light and neutron sources, supercomputers, and Environmental Molecular Sciences Laboratory in his research on protein design and computational analysis

Credit: University of Washington

Energy.gov/science

2024: Building Essential New Tools for Discovery

- Completed the LSST Camera, the world's largest digital camera for astrophysics
- Delivered Aurora, a new exascale supercomputer
- Upgraded the Advanced Photon
 Source with new capabilities

2024: Fostering Partnerships and the Scientific Workforce

Established new partnerships in fusion

- Eight teams selected for Milestone-Based Fusion Development Program
- Announced Funding for Fusion Innovation Research Engine Collaboratives

DEPARTMENT O

Office of

Science

Launched apprenticeship programs and continued internships

Program will support the development of a new generation of technicians with unique and sought-after skills

Coming Soon: Basic2Breakthrough

Basic2Breakthough (B2B) shares stories about the value of research funded by DOE and conducted by scientists at the national labs

Aims to cover the complete range of DOE Office of Science research.

Consists of approximately 700-word stories and 2 to 3minute videos.

Targets a range of audiences, including:

- The general public
- Legislators
- Partners interested in DOE programs, objectives, and funding directions

Basic2Breakthrough Stories

Journey to Sav...

Fewer trips to the dentist.

anyone? Researchers...

Learn More

A Dentist's

Lithium-ion batteries in

electric vehicles and...

Learn More

Better

The Science Behind the Shot

The COVID-19 response drew on decades of...

Learn More

2024 Fermi Awards

Héctor D. Abruña

Emile M. Chamot Professor in the Department of Chemistry and Chemical Biology at Cornell University

For revolutionizing the fundamental understanding of electroanalytical chemistry and innovating characterization for development of batteries, fuel cells, and energy materials that have led to advancements for the electrical power grid and energy transformation and creation.

Paul Alivisatos

President of the University of Chicago and John D. MacArthur Distinguished Service Professor in the Department of Chemistry and the Pritzker School of Molecular Engineering

For developing the foundational materials and physical chemistry to produce beneficial nanocrystals and polymers with controlled size, shape, connectivity, and topology that underpin energy-efficient technology, optical devices, and medical diagnostic technology.

John H. Nuckolls

Physicist who spent his career at the Lawrence Livermore National Laboratory, serving as the lab's director from 1988 until 1994.

For seminal leadership in inertial confinement fusion and high energy density physics, outstanding contributions to national security, and visionary leadership of Lawrence Livermore National Laboratory at the end of the Cold War.

2024 DOE Office of Science Distinguished Scientist Fellows

Mary Raafat Mikhail Bishai, Ph.D. Brookhaven National Laboratory

Honored for enduring contributions at the intensity frontier of high energy physics in unraveling fundamental properties of neutrinos, extraordinary leadership and service to the particle physics community, and deep commitment to broadening participation through mentoring next generation scientists

Lois Curfman McInnes, Ph.D. Argonne National Laboratory

Honored for exceptional accomplishments in innovative algorithms and software, leadership in major projects, including SciDAC and ECP, and in promotion of scientific productivity and software sustainability, and for outstanding efforts to broaden participation in high-performance computing and related science and engineering

Kristin Persson, Ph.D. Lawrence Berkeley National Laboratory

Honored for pioneering advancements in data-driven materials design and discovery through first-principles based computations and analysis algorithms that yield materials with optimal properties for engineers and scientists worldwide to accelerate innovation, and for her management and outreach skills that promote DOE's missions

Gerald A. Tuskan, Ph.D. Oak Ridge National Laboratory

Honored for foundational scientific advances in the development of resilient bioenergy feedstock crops, for excellence in leading large, multi-institutional science teams toward a robust, sustainable bioeconomy, and for supporting the next generation of diverse scientists

https://science.osti.gov/fellows/Ceremony-Lecture-Series

Recent PECASE Awardees

SC ASCR	Peter	Bosler	Sandia National Laboratories
SC ASCR	Katherine	Isaacs	University of Utah
SC ASCR	Joseph	Lukens	Oak Ridge National Laboratory
SC ASCR	Bei	Wang Phillips	University of Utah
SC ASCR	Stefan	Wild	Lawrence Berkeley National Laboratory
SC BER	Melissa	Cregger	Oak Ridge National Laboratory
SC BER	Emily	Graham	Pacific Northwest National Laboratory
SC BER	Ruben	Rellan-Alvarez	North Carolina State University
SC BER	James	Stegen	Pacific Northwest National Laboratory
SC BER	Daniel	Amador-Noguez	University of Wisconsin-Madison
SC BER	Susannah	Burrows	Pacific Northwest National Laboratory
SC BER	Joanne	Emerson	University of California at Davis
SC BES	Rajamani	Gounder	Purdue University
SC BES	Vedika	Khemani	Stanford University
SC BES	Cara	Lubner	National Renewable Energy Laboratory
SC BES	Gary	Moore	Arizona State University
SC BES	James	Letts	University of California, Davis
SC BES	Aeriel	Leonard	Ohio State University
SC BES	Diana	Qiu	Yale University
SC FES	Nathaniel	Ferraro	Princeton Plasma Physics Laboratory
SC FES	Kevin	Field	University of Michigan
SC FES	Arianna	Gleason	SLAC National Accelerator Laboratory
SC FES	Lorenzo	Sironi	Columbia University
SC FES	Petros	Tzeferacos	University of Rochester
SC HEP	Kavin	Ammigan	Fermi National Accelerator Laboratory
SC HEP	Netta	Engelhardt	Massachusetts Institute of Technology
SC HEP	Laura	Fields	University of Notre Dame
SC HEP	Xiao	Luo	University of California, Santa Barbara
SC HEP	Douglas	Stanford	Stanford University
SC HEP	Nhan	Tran	Fermi National Accelerator Laboratory

U.S. DEPARTMENT OF

Office of Science

SC NP	Raul	Briceno	Old Dominion University
SC NP	Katerina	Chatziioannou	California Institute of Technology
SC NP	Zohreh	Davoudi	University of Maryland
SC NP	Christine	Duval	Case Western Reserve University
SC NP	Andrew	Jayich	University of California, Santa Barbara

Other DOE Programs

EERE	Ahmet	Kusoglu	Lawrence Berkeley National Laboratory
EERE	Juan-Pablo	Correa-Baena	Georgia Institute of Technology
FE	Jennifer	Bauer	National Energy Technology Laboratory
FECM	Christina	Wildfire	National Energy Technology Laboratory
NE	Ahmad	Al Rashdan	Idaho National Laboratory
NE	Katya	Le Blanc	Idaho National Laboratory
NE	Alexander	Lindsay	Idaho National Laboratory
NE	Cheng	Sun	Clemson University
NE	Bjorn	Vaagensmith	Idaho National Laboratory
NE	Andrea	Jokisaari	Idaho National Laboratory
NNSA	Holly	Carlton	Lawrence Livermore National Laboratory
NNSA	Amber	Guckes	Nevada National Security Site
NNSA	Kelli	Humbird	Lawrence Livermore National Laboratory
NNSA	Daniel	Ruiz	Sandia National Laboratories
NNSA	Gwendolyn	Voskuilen	Sandia National Laboratories
NNSA	Ryan	Wollaeger	Los Alamos National Laboratory
NNSA	Amy	Lovell	Los Alamos National Laboratory
NNSA	Oluwatomi	Akindele	Lawrence Livermore National Laboratory
NNSA	Caroline	Winters	Sandia National Laboratories
OE	William	Balliet	Idaho National Laboratory

Energy.gov/science

How does DOE approach RTES today?

 In November 2024, the Deputy Secretary for Energy issued a memo outlining DOE's RTES Framework, describing how the Department approaches risks in financial assistance and loan activities. The memo details:

 <u>Memo</u>: Department of Energy Research, Technology, and Economic Security <u>Framework for Financial Assistance and Loan Activities</u>

Research Security Policy and the Office of Science

RTES Policy RTES Policy Working Secretary of Working **Group**: Responsible for RTES Energy Group policy development for financial assistance and Under Secretary Other DOE National Laboratories **RTES** for Science and Program Office Innovation Offices RTES Office: Conducts due diligence risk reviews for **Office of Science** financial assistance (SC) Program Offices (e.g., SC): Procurement and decision-**Financial Assistance** Natl. Labs making authority for laboratory - S&T Risk Matrix - DOE/SC Financial and financial assistance - DOE Orders Assistance Program - M&O Contracts **RTES Due Diligence** awards

SC-Funded R&D: Engagement with RTES Due Diligence

SC Proposal Review and Mitigation

- SC participation in the RTES due diligence process is driven by key principles:
 - Reviews and mitigations must be informed by the science, risk-based, and performed on a case-by-case basis.
 - Focus on behaviors and their timeliness.
 - Characterized by fairness, transparency, and nondiscrimination.

Phases of RTES Due Diligence Review

Phase 1: Review of solicitations prior to publication

Phase 2: Pre-selection, projects undergo RTES due diligence review; mitigation is possible

Phase 3: Additional RTES review may be triggered when there are changes to the project, personnel, or ownership/control throughout the life of a project

Update: Financial Assistance

• Office of Science (SC) recommends:

- Universal disclosure (sources of support, positions and appointments)
- Use of SciENcv to reduce administrative burden by allowing the use of digital persistent identifiers

• SC will continue to:

- Leverage interagency common formats for current and pending support and bio-sketches
- Designate covered individuals as senior/key personnel (excludes postdocs and graduate students)
- Require applicants to certify the completion of research security training
- Not impose any citizenship or residency requirement on personnel working under its awards (though anyone working must have the legal right to do so!)
- SC does not require university PIs to seek prior approval for foreign travel
 - However, this may be incorporated into a mitigation plan as appropriate

THANK YOU!

