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Developing a single new drug takes 10–15 years, costs up to $2.6 billion, 
and passes clinical trials only 12% of the time.

80% of disease-driving proteins are “undruggable” with non-covalent therapeutics,  leaving 
diseases like Alzheimer’s, cancers, and multidrug-resistant infections largely incurable.

These diseases affect 75 million people globally, causing over 13.5 million deaths annually. 

This is equivalent to 90+ Hiroshima, every year.

Covalent inhibitors, which form irreversible bonds with proteins, can target “undruggable” proteins.

This work paves the way for the first accurate in silico software to design and model covalent binders.



SOME OUTSTANDING SCIENCE & TECHNOLOGY CHALLENGES

Biology, medicine, biochemistry 

☞ Drug design and drug binding, 

biological interfaces, enzymatic 

catalysis

Heterogenous catalysis

☞ Second generation biofuels (biomass 

conversion), liquid phase catalysis, green 

catalysis, production of high-added-value 
(fine) chemicals.

Nanomaterial engineering 

☞ energy generation (batteries, hydrogen 

storage), drug delivery systems, purification 

membranes, biosensors, opto- and nano-
electronics, exfoliation, and many others.

Computer Simulations 
☞ Fast and inaccurate
☞ Accurate but too slow

Physical Experiments
☞ Expensive and slow
☞ Not available, unreliable



MOLECULAR DYNAMICS WITH CLASSICAL POTENTIALS

Classical Potentials

Atoms are treated as classical particles (no 
electrons). Use empirical, parameterized models 
(e.g., ball and spring) for molecular interactions. 

☞ Fast and Scalable: Suitable for very large systems (e.g., proteins, 
membranes) and long-time-scale simulations.

☞ Wide Range of Tools: Mature field with extensive libraries.

A D V A N T A G E S

D I S A D VA N T A G E S

☞ Lack of Physics Details: Cannot describe electronic effects, such 
as charge transfer or bond breaking/forming (no reactions). 

☞ Limited Accuracy: Cannot accurately model H-bonds, dispersion 
forces, and other non-covalent interactions that play a key role in 
biomolecular systems’ energetics.

☞ Limited Transferability: Parameters typically do not transfer well 
between different molecular environments.

Protein

Ligand (Drug)

Maier, R., et al., Phys. Chem. Chem. Phys., 2022, 24, 14525 

☞ Correlation with experiments can be quite poor

☞ Not sufficiently accurate and reliable for drug discovery



ℋ Ψ = E Ψ

“The underlying physical laws necessary for 
the mathematical theory of a large part of 
physics and the whole of chemistry are 
thus completely known,
and the difficulty is only that the exact 
application of these laws leads to 
equations much too complicated to be 
soluble.” 
P. A. M. Dirac, 1929.

 
Ab initio quantum chemistry methods 
solve the Schrödinger equation from first 
principles (e.g. MP2), without relying on 
empirical parameters (no DFT). 

Can provide an accuracy that rivals physical 
experiments, though at a high 
computational cost.



ACCURACY OF QUANTUM VERSUS CLASSICAL POTENTIALS

Classical Potentials

Maier, R., et al., Phys. Chem. Chem. Phys., 2022, 24, 14525 

Quantum Potentials

☞ Poor correlation with experiment is the result of inaccurate 
physics models

☞ Longer simulations do not improve correlation in this case

☞ Using quantum mechanical potentials results in much better 
alignment with experiments

☞ Some improvements are not only quantitative but also qualitative, 
representing fundamentally different and enhanced outcomes 
(e.g., as shown in the yellow data points)

☞ Can model bond breaking and formation
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Scalability

The amount of computation required to solve (accurately 
enough) the Schrodinger equation scales as a high power 
of the number of atoms, N, within a molecular system.

CHALLENGES

Method Scaling 
(time complexity)

Accuracy

Hartree-Fock,
Local DFT

𝒪(𝑁3)
Qualitative

Hybrid DFT GGA, 
Meta-GGA

𝒪(𝑁3)
Not always accurate,

can be predictive

PT2-based 
(Scaled MP2, 

Double-Hybrids) 
𝒪(𝑁5)

Accurate, predictive with 
some flaws 

CCSD(T) 𝒪(𝑁7) Very accurate, predictive

Accuracy

Accurate modelling of biomolecular system behavior 
requires quantum mechanical accuracy beyond hybrid DFT.

☞ Hybrid DFT struggles with the accurate modelling of non-
covalent interactions which play a critical role in 
biomolecular systems.

AIMD accuracy vs achieved size 

140 H2O, 420 atoms, 1400 e-



Time Evolution

Static energy calculations have limited predictive power. 
Dynamic simulations (time-dependent) are typically 
required to obtain statistically meaningful predictions of 
macroscopic properties.

CHALLENGES

Computational Efficiency

Inability of many quantum chemistry methods and 
algorithms to use efficiently novel massively parallel 
processors and computer architectures. 
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☞ Requires complex quantum mechanical gradients

☞ Can require many timesteps

☞ Most quantum chemistry codes run at 0.1-10% of R-Peak

☞ Most quantum chemistry codes are not ported to GPU

▻ 14k cores/GPU, 4 GPUs/node, 9408 nodes



p

To devise quantum chemistry methods, algorithms and implementations that

1.  Have a reduced computational complexity, while retaining the required accuracy. 

2.  Are designed to efficiently exploit the computational capabilities of throughput-oriented 

massively parallel hardware.

THE PATH TO 

EXTREME-SCALE QUANTUM CHEMISTRY

The Extreme-scale Electronic Structure System

EXESS

Towards and Extreme-Scale Electronic Structure System, J. Chem. Phys. 28 July 2023; 159 (4): 044112
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 𝐼

𝐸𝐼 + 

𝐼<𝐽

(𝐸𝐼𝐽−𝐸𝐼 − 𝐸𝐽) + 

𝐼<𝐽<𝐾

(𝐸𝐼𝐽𝐾− ⋯ ) + ⋯
M ANY - B ODY  
EX PANS IO N

𝑛𝑚 monomers

𝑛𝑑  dimers

𝑂 𝑛𝑚  
scaling

𝐸1

𝐸𝐼𝐽

𝐸𝑁

MPI Group #1

MPI Group #N
Many-GPU MPI-Group 

calculation on dimer “IJ”

MPI Group #IJ 

⋮

Fragment queue

G
P

U
 #

1

G
P

U
 #

n

�

… …

… ⋮

LOWER SCALING & MASSIVE PARALLELISM:

 FRAGMENTATION METHODS

Monomers Dimers Trimers 

Molecular
Fragmentation
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𝐸 ≅ 

 𝐼

𝐸𝐼 + 
 𝐼<𝐽 

𝑅𝐼𝐽<𝑅𝑐𝑢𝑡

Δ𝐸𝐼𝐽 + 
 𝐼<𝐽<𝐾 

𝑅𝐼𝐽,𝑅𝐽𝐾,𝑅𝐼𝐾<𝑅𝑐𝑢𝑡

Δ𝐸𝐼𝐽𝐾M ANY - B ODY  
EX PANS IO N

𝑛𝑚 =  #monomers

⦿ Each monomer “I” is coupled only with 
𝑂(1) monomers “J” within 𝑹𝒄𝒖𝒕

⦿ In total only 𝑂 𝑛𝑚  dimers are computed 
➛ linear computational complexity 

⦿ For sufficiently large 𝑹𝒄𝒖𝒕, no accuracy is 
lost!

]ACHIEVING LINEAR SCALING

𝑹𝒄𝒖𝒕



𝐸 ≅ 

 𝐼

𝐸𝐼 + 
 𝐼<𝐽 

Δ𝐸𝐼𝐽 + 

𝐼<𝐽<𝐾

Δ𝐸𝐼𝐽𝐾
M ANY - B ODY  
EX PANS IO N

𝐸𝐼 = 𝐸𝐼
𝐻𝐹 + 𝐸𝐼

𝑀𝑃2

 

Δ𝐸𝐼𝐽 = 𝐸𝐼𝐽
𝐻𝐹 + 𝐸𝐼𝐽

𝑀𝑃2 − 𝐸𝐼 − 𝐸𝐽

 

H F

R I- MP 2
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]
MOLECULAR FRAGMENTATION METHODS:

COMPONENTS OF THE ENERGY

𝑓 = {𝐼, 𝐼𝐽, 𝐼𝐽𝐾}

Δ𝐸𝐼𝐽𝐾 = 𝐸𝐼𝐽𝐾
𝐻𝐹 + 𝐸𝐼𝐽𝐾

𝑀𝑃2 − Δ𝐸𝐼𝐽 − Δ𝐸𝐼𝐾 − Δ𝐸𝐽𝐾

−𝐸𝐼 − 𝐸𝐽 − 𝐸𝐾

 

𝐺𝑖𝑎
𝑗𝑏

= (𝑖𝑎|𝑗𝑏)



Δ𝐸𝐼𝐽𝐾 = 𝐸𝐼𝐽𝐾
𝐻𝐹 + 𝐸𝐼𝐽𝐾

𝑀𝑃2 − Δ𝐸𝐼𝐽 − Δ𝐸𝐼𝐾 − Δ𝐸𝐽𝐾

−𝐸𝐼 − 𝐸𝐽 − 𝐸𝐾

 

∇𝐸 ≅ 

 𝐼

∇𝐸𝐼 + 
 𝐼<𝐽 

∇Δ𝐸𝐼𝐽 + 

𝐼<𝐽<𝐾

∇Δ𝐸𝐼𝐽𝑘
M ANY - B ODY  
EX PANS IO N

𝐸𝐼 = 𝐸𝐼
𝐻𝐹 + 𝐸𝐼

𝑀𝑃2

 

Δ𝐸𝐼𝐽 = 𝐸𝐼𝐽
𝐻𝐹 + 𝐸𝐼𝐽

𝑀𝑃2 − 𝐸𝐼 − 𝐸𝐽

 

R I- H F

R I- MP 2
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]
MOLECULAR FRAGMENTATION METHODS:

COMPONENTS OF THE ENERGY GRADIENT
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]RESOLUTION OF THE IDENTITY (RI) HF AND MP2

𝜇𝜈 𝜆𝜎 = 
𝜙𝜇 𝒓1 𝜙𝜈 𝒓1 𝜙𝜆 𝒓2 𝜙𝜎 𝒓2

|𝒓1 −𝒓2|
𝑑𝒓1𝑑𝒓2 

4 C  E R I

☞ The calculation of 4-centre (4C) electron 
repulsion integrals (ERI) can be the source 
of major computational inefficiencies  

H F  B U I L D

𝐹𝜇𝜈 = 

𝜆𝜎

𝐷𝜆𝜎  [ 𝜇𝜈 𝜆𝜎 −
1

2
𝜇𝜆 𝜈𝜎)

☞ 𝑶(𝑵𝒇
𝟒) ERIs, too many to be stored

☞ Computed each iteration and combined 
on-the-fly with 𝑫𝜸𝜹  to obtain Fock matrix 

elements

☞ Permutational symmetry used to save 
integrals

𝜇𝜈 𝜆𝜎 = 𝜈𝜇 𝜆𝜎 = 𝜈𝜇 𝜎𝜆 = 𝜎𝜆 𝜈𝜇
☞ Computed using recursion in batches with 

different workloads depending on the 
nature of the 𝜙𝜇 , 𝜙𝜈 , 𝜙𝜆 , 𝜙𝜎  functions

☞ Can be memory-bound with low FLOP 
rates

 

𝜇𝜈 𝜆𝜎 ≈ 𝜇𝜈 𝜆𝜎 𝑅𝐼 = 

𝑃

𝐵𝜇𝜈
𝑃 𝐵𝜆𝜎 

𝑃

𝐵𝜆𝜎 
𝑃 = σ𝑄 𝜇𝜈 𝑃 𝑃 𝑄 −1/2

R I - H F  &  R I - M P 2

☞ Compute (on GPU) only 𝑶(𝑵𝒇
𝟑) 3C integrals 

𝜇𝜈 𝑃  and 𝑶(𝑵𝒇
𝟐) 2C integrals 𝑃 𝑄   

☞ Computed once and stored on host/device

☞ Leads to scattered memory access and 
potential race conditions in parallel Fock 
matrix updates.

𝐹𝜇𝜈 = 

𝑃



𝜆𝜎

𝐷𝜆𝜎 𝐵𝜇𝜈
𝑃 𝐵𝜆𝜎 

𝑃 −
1

2
𝐵𝜇𝜆

𝑃 𝐵𝜈𝜎 
𝑃

☞ Fock build is implemented using DGEMM!

☞ The 𝑶(𝑵𝒇
𝟓) bottleneck of MP2 also becomes 

a sequence of DGEMMs! 

𝑖𝑎 𝑗𝑏 ≈ 𝑖𝑎 𝑗𝑏 𝑅𝐼 = 

𝑃

𝐵𝑖𝑎
𝑃 𝐵𝑗𝑏 

𝑃

☞ Can synergistically re-use tensors between 
RI-HF and RI-MP2, further reducing 
inefficiency overheads!



RI-MP2→ Stocks, R., Palethorpe, E. and Barca, G.M.J, 2024. JCTC, 20(6), 2505
RI-HF→ Stocks, R., Palethorpe, E. and Barca, G.M.J, 2024. JCTC, 20 (17), 7503
HF→ Palethorpe, E., Stocks, R., and Barca, G.M.J, 2024. JCTC, in press

H A R T R E E - F O C K

A I M D / R I - H F

R I - M P 2  G R A D I E N T S

]COMPOUNDING PERFORMANCE
R I - H F  +  R I - M P 2  

E N E R G Y  &  G R A D I E N T S

F R A G M E N TA T I O N  E R R O R

95×
31×

42×

2×

5×

☞ EXESS HF 31-45× faster, 12-18× more energy efficient  
than CPU SOTA 

☞ EXESS AIMD/RI-HF 2× faster than EXESS (traditional) 
HF

☞ EXESS RI-MP2 energy and gradients 95× faster, 19× 
more energy efficient than CPU SOTA

☞ EXESS MBE3/RI-HF+RI-MP2 energy and gradients 5× 
faster than unfragmented for Gly45 

☞ RSMD of MBE/RI-HF+RI-MP2 gradients O(10-6) – 
below geometry optimization convergence   
threshold for gradients in SOTA is 10-4 

Glyn = polyglycines, SR=Sapph. Rapids, CL=Casc. Lake 



◎ 2020, using the entire Summit supercomputer for the largest MBE2/HF 
calculation [1], on over 60,000 atoms – previous record 10,000 atoms

◎ 2021, the largest MBE2/HF+RI-MP2 calculation [2], on over 45,000 
atoms – previous record 2,440 atoms

◎ 2022, the largest FMO2/HF+RI-MP2 calculation, on over 145,000 
atoms [3]

◎ 2023 – rewrote the whole codebase!

A T O M M O L E C U L E D N A V I R U S B A C T E R I A

# atoms

100 102 105 107 1010 1027
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( < 1 0 4 )

E X A S C A L E

( 1 0 5 )
[1] Barca et al., Scaling the Hartree-Fock matrix build on Summit, SC20.
[2] Barca et al., Enabling large-scale correlated electronic structure calculations: scaling the RI-MP2 method on Summit, SC21
[3] Barca et al., Scaling correlated Fragment Molecular Orbital Calculations on Summit, SC22

]SOME ACHIEVEMENTS

▻ 1.7 EFLOPS
▻ 9408 nodes
▻ 75,776 MI250x GCDs
▻ #1 in Top500

▻ 150 PFLOPS
▻ 4698 nodes
▻ 27,648 V100 GPUs



]
LARGE SCALE QUANTUM MOLECULAR DYNAMICS

Can we simulate the ab initio molecular dynamics of biosystems at 
the MP2 level?

𝒎 ሷ𝒓𝒊 = −𝛁𝒊 𝚿 𝑯 𝚿 = −𝛁𝒊 𝑬𝑹𝑰𝑯𝑭 + 𝑬𝑹𝑰𝑴𝑷𝟐

Forces are obtained from quantum mechanics 
on-the-fly as the MD simulation evolves

Stocks et al., Breaking the Million-Electron and 1 EFLOP/s Barriers: Biomolecular-Scale AIMD Using MP2 Potentials, SC24

USING MP2 POTENTIALS

▻ 1.7 EFLOPS
▻ 9408 nodes
▻ 75,776 MI250x GCDs

▻ 113 PFLOPS
▻ 1,536 nodes
▻ 6,144 A100

▻ 270 PFLOPS
▻ 2,668 nodes
▻ 10,752 GH200 

☞ Largest AIMD/MP2 done on a 140-water cluster, 1400 electrons A I M D / R I - H F + R I - M P 2 / c c - p V D Z T I M E S T E P  L AT E N C Y  ( s )  



]BIOMOLECULAR-SCALE AIMD with MP2 POTENTIALS

Synchronous Timesteps Asynchronous Timesteps 

W
or

ke
rs

Time Time

1. Molecular Fragmentation (MBE3)

⁍ Reduce scaling from O(N5) to O(N) 

⁍ Enable globally sparse, locally 
dense large-scale parallelism

Molecular
Fragmentation

Monomers Dimers Trimers

Polymers

O(N5)

O(N)

1
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Energy & Gradient
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Dynamic 
Workload

Distribution
(Send/Receive)

Overarching Workflow
2

3. Asynchronous AIMD Time Steps

⁍ Eliminate workers synch barrier at each timestep

⁍ Increase parallel efficiency

4

3
2. Multi-Layer Distributed GPU Memory & Workload 

Manager

⁍ Allocate (CPU, GPU) and pin memory across whole 
distributed system only once 

⁍ Efficient and fast re-use of pinned and GPU memory

⁍ Efficient, lightweight workload (fragment) distribution 
across nodes and within nodes across GPUs

5. Runtime DGEMM Autotuning 

⁍ Determines and implements the highest-performance 
DGEMM configurations at runtime.

5
4. Fragment-Level Synergistic RI-HF plus RI-MP2 Algorithm 

⁍ Recasts memory- and FLOP-inefficient bottlenecks of 
traditional HF/MP2 into sequences of matrix 
multiplications 

⁍ Reuses synergistically intermediates between RI-HF and 
RI-MP2 energy and gradients

Super Coordinator



]ASYNCHRONOUS TIMESTEPS 

☞ Forces on different fragments are 
calculated by different GPUs, creating 
a global synchronization point at the 
end of each timestep. 

☞ However, all polymers are formed starting from the monomers

☞ Forces on a given monomer depend on the quantum gradient 
of all polymers including that monomer

Synchronous Timesteps Asynchronous Timesteps 

W
or

ke
rs

Time Time

☞ Thus, updates of positions for the whole molecule, require 
updating only monomers positions through forces

1

2

3

4

𝑹𝒄𝒖𝒕
21

22

1 3

313

1

Dependencies for 
monomer ‘1’

☞ 1,024 nodes

☞ 4,098 A100 GPUs

Synchronous Timesteps Asynchronous Timesteps 

W
or

ke
rs

Time Time

☞ Monomers with resolved 
dependencies are updated and 
moved to the next timestep pool

☞ New polymers form from monomers 
at each timestep and are distributed 
across system GPUs

☞ Allows to exploit parallelism across timesteps

☞ 2BEG protein with >5.5k electrons, on 4,098 A100 GPUs, yields 
40% speedup from asynchronous timesteps 

☞ Global synchronization is eliminated at each timestep



]RUN TIME AUTOTUNING (RTAT) 

☞ RTAT is a wrapper around BLAS that automatically experiments to 
find the best execution strategy for each LA problem.

☞ Experiments are at runtime and in situ; no redundant BLAS calls are 
performed.

☞ It is not straightforward to run DGEMMs at peak on AMD

☞ Linear Algebra (LA) calculations can be performed through 
several different sequences of library calls

☞ Performance can vary drastically with execution strategy

☞ Performance can be improved by finding the correct strategy

1. C := ATB

2. X := AT, C := XB

3. Y := BT, C := ATYT

4. X := AT, Y := BT,  
C := XYT

5. Z := BTA, C := ZT

6. X := AT, Z := BTXT, 
C := ZT

7. Y := BT, Z := YA,   
C := ZT

8. X := AT, Y := BT,   
Z := YXT, C := ZT

GEMM strategies



]PARALLEL SCALABILITY

▻ 1,536 nodes
▻ 6,184 GPUs

▻ 9,408 nodes
▻ 75,776 GCDs

☞ Molecular Systems: paracetamol, ibuprofen, and urea 
crystal structures 

☞ Weak Scaling 
☞ Percentages are with respect to FP64 R-Peak
☞ With a suitable balance of workload, timestep 

latency and resources, we can run at 60% of peak!

W E A K  S C A L I N G S T R O N G  S C A L I N G

All calculations done in double-precision at MBE3/RI-HF+RI-MP2/cc-pVDZ level of theory (no frozen core)

☞ Strong Scaling
☞ Nearly ideal scaling
☞ Largest system (×) 232k atoms, 1.024 million 

electrons, on 9400 nodes, 
☞ Little loss of parallel efficiency on 9400 nodes due 

sufficient workload 



]

▻ 1,024 nodes
▻ 4,096 GH200

☞ Molecular Systems: 2BEG protein and urea crystal structures

☞ Percentages are with respect to FP64 R-peak

☞ 81.5% of FP64 R-peak on 4,096 GH200

PARALLEL SCALABILITY & FLOP PERFORMANCE

P E R F O R M A N C E  M E A S U R E S

☞ FLOP counts obtained counting only 
DGEMM FLOPs, i.e., 2 × 𝑚 × 𝑘 × 𝑛, where 
𝑚, 𝑘, 𝑛 are the matrix dimensions

☞ Provides a lower-bound on total FLOPs

☞ Runtime measured at the beginning of each 
time step in addition to rank local timings of 
every fragment calculation.

☞ FLOP rates obtained dividing FLOP count by 
wall time for the whole program execution

All calculations done in double-precision at MBE3/RI-HF+RI-MP2/cc-pVDZ level of theory (no frozen core)



]RECORD TIME STEP LATENCY IN AIMD

☞ Simulate the folding and misfolding processes 
of amyloid fibrils, specifically targeting the Aβ 
(beta-amyloid) fibril PDB ID: 2BEG.

☞ Aβ fibril formation is a hallmark of Alzheimer's 
pathology, with misfolded fibrils aggregating 
into plaques that disrupt cellular functions in 
the brain.

☞ Force fields have consistently failed to capture 
the complex folding dynamics of Aβ fibrils, 
primarily due to the process being governed by 
non-covalent interactions, including hydrogen 
bonding, π-π stacking, and van der Waals 
forces.

☞ 2BEG includes 1,496 atoms and 5,504 
electrons, presenting vast computational 
demands and requiring high-accuracy 
modelling of electronic effects that influence 
stability and folding.

☞ 1,024 nodes

☞ 4,096 A100 GPUs

☞ 3.4 s/timestep (25 ps/day)

☞ ≫1000× faster than SOTA

☞ 1,024 nodes

☞ 4,096 GH200 Superchips

☞ 1.03 s/timestep (83.9 ps/day)

☞ ≫1000× faster than SOTA

All calculations done in double-precision at MBE3/RI-HF+RI-MP2/cc-pVDZ level of theory (no frozen core)

Time (ps)

E
n

er
gy

 (
kJ

/m
o

l)



]BREAKING THE MILLION-ELECTRON & EFLOP/s (FP64) BARRIERS

☞ Predict polymorphic (multiple crystalline) forms of 
therapeutics and organic compounds

☞ Urea and paracetamol chosen for their academic and 
industrial relevance(pharmaceuticals, cosmetics, and 
solvent production).

☞ Both compounds display polymorphism influencing key 
properties like solubility, dissolution, and drug efficacy.

☞ Challenge in Prediction: Polymorph lattice energies differ 
by a few kJ/mol—requiring high accuracy.

☞ Relevance of Non-Covalent Interactions: Stability of 
crystal lattices in these biomolecules is dominated by non-
covalent interactions, an area where hybrid DFT methods 
struggle.

☞ Largest crystal included 510,832 atoms, 2,043,328 
electrons

☞ >1000× larger than SOTA

☞ Using 9400 nodes obtained 1.007 EFLOP/s 
performance, 59% of FP64 R-Peak

☞ 1st time breaking EFLOP/s barrier fully in FP64 
(double-precision)

▻ 9,408 nodes
▻ 75,776 GCDs

R E C O R D  S I Z E  &  P E R F O R M A N C E

All calculations done in double-precision at MBE3/RI-HF+RI-MP2/cc-pVDZ level of theory (no frozen core)
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Deep QM effects 
(electron correlation)

Shallow QM effects 
(electron polarization)

Classical electrostatics 
(no QM) 

Reference
monomer

FURTHER ACCELERATION

Fragment ‘𝑰𝑱’

G
PU

 
W

or
ke

rs

Dynamic  Workload 
Distribution 

Bayesian 
NNFF

𝝈𝟐 ≥
𝑻𝒉𝒓𝒆𝒔𝒉

?no yes

(𝑬𝑰𝑱
 , 𝛁𝑬𝑰𝑱

 ) = 𝔼 𝒚
𝑬𝑰𝑱

 = 𝑬𝑰𝑱
 𝑷𝑻𝟐

𝛁𝑬𝑰𝑱
 = 𝛁𝑬𝑰𝑱

 𝑷𝑻𝟐

Bayesian NNFF
Evaluation

QM
 Evaluation 

M U LT I - L AY E R  M O L E C U L A R  M E C H A N I C S A D A P T I V E  H Y B R I D  Q M / M L   

☞ Current scheme evaluates all fragment interactions at the MP2 level

PT2, CCSD(T) HF, xTB, DFTB Force Field

☞ Large time savings can be obtained by treating fragment interactions in a 
multi-layer hierarchical way based on distance

☞ Close fragments require higher level of theory, while distant ones can be 
treated even classically (ONIOM style)

☞ In development an adaptive hybrid quantum-AI (QAI)  AIMD simulator

☞ Fragments are treated with either QM or BNNFFs, trained on quantum-
level data, based on prediction uncertainty. 

☞ BNNFF can actively learn from QM, lowering uncertainty and accelerating 
large/long simulations

DoE INCITE awarded!



Polymorphism and Crystal 
Lattice Energies

Enzymatic Reaction 
Mapping & Enzyme Design 

X-Ray Electron Density Resolution 
(more accurate Crystal Structures)

High-Accuracy Design of 
Non-Covalent Therapeutics

Covalent Therapeutics Reaction 
Mapping and Design

SOME EXCITING APPLICATIONS

Small Molecule Drug Design 
Targeting RNA



Automatic Molecular 
Fragmentation

 

Crystal Lattice 

Energies

Ligand-Protein 
Binding 

Affinities

Geometry

 Optimization

High Angular Momentum HF/DFT 
(g functions, for RI already available ) 

ADDITIONAL CAPABILITIES IN EXESS (ON GPU)

Ab Initio Molecular 
Dynamics 

Coupled Cluster [CCSD(T)]

Available Under Development

GGA, meta-GGA 
Hybrid DFT, 

Regularized MP2

Numerical 

Hessians

PBSA 
implicit solvent

Neural Network Force Fields

Polarizable Continuum Models

QM/MM

Analytical Hessians

Transition State Search

Ab Initio Meta-Dynamics

Range-separated DFT & Double Hybrids

EXESS is currently being released — free for academics — on the major HPC platforms



➲ Quantum Chemistry at Scale: Performed the largest-ever AIMD simulations 
using MP2 potentials, modelling systems with up to over 2 million electrons, 
>1,000× larger than prior state-of-the-art.

➲ Record-Breaking Performance: Achieved 1,006.7 PFLOP/s on Frontier, utilizing 
59% of its FP64 R-Peak, and broke the 1 EFLOP/s barrier for the first time.

➲ Excellent Scalability: Near-perfect strong and weak scaling across thousands of 
GPUs, showcasing the versatility and adaptability of the computational 
framework for current and future exascale systems.

➲ Record Time to Solution: Achieved a timestep latency of 1.03 s  for a >5.5k 
electron  protein using 4,096 GH200s, >1,000× faster than state-of-the-art.

➲ Direct Impact on Science and Society : Enabling to tackle grand challenges in in 
drug discovery, enzymatic catalysis, and biomolecular science, from 
polymorphism and Alzheimer’s disease, to the design of covalent therapeutics.

➲ Vision for the Future: This work not only pushes the limits of what is 
computationally possible but also sets the stage for the next generation of 
quantum-AI simulations, enhancing capabilities for real-world challenges.

➲ Serving the Community: EXESS is available free of charge for the academic 
community!

EXESS

https://exess.qdx.co

]

CONCLUDING REMARKS
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