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Riken R-CCS Fugaku Virtual Tour

~3000 sq m
432 cabinets
158,976 nodes
~16MW (100W / node)
163 Petabyte/s memory BW (No.1 circa 2023)
Virtual Walkthrough:
https://www.r-ccs.riken.jp/en/fugaku/3d-models/
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Operations and

Computer Technologies

HPC and AI driven

Drug Development

Platform Division

Large-Scale Digital Twin

H. Yamaguchi

(April 2024)

Office of the Fugaku

Society 5.0 initiative

Office Coordinator

H. Shirai

Quantum-HPC Hybrid

Platform Division

Quantum Computing 

Simulation

N. Ito

Quantum-HPC Hybrid 

Platform Operations

S. Miura

R-CCS

Director

S. Matsuoka

R-CCS Deputy Director

Science of Computing

K. Nakajima

R-CCS Deputy Director 

Science by Computing

Y. Sugita (April 2024)

Advanced Processor 

Architectures 

K. Sano

Large-scale Parallel 

Numerical Computing 

Technology

T. Imamura

Next Generation 

High Performance 

Architecture

M. Kondo

High Performance 

Big Data

K. Sato

Supercomputing 

Performance

J. Domke

High Performance AI 

Systems

M. Wahib

Field Theory 

Y. Aoki

Discrete Event

Simulation
N. Ito

Computational 

Molecular 

Science

T. Nakajima

Computational 

Materials 

Science

S. Yunoki

Computational 

Biophysics 

Y. Sugita

Computational

Climate Science 

H. Tomita

Data 

Assimilation 

T. Miyoshi

Complex 

Phenomena 

Unified Simulation
M. Tsubokura

Computational

Disaster 

Mitigation & 

Reduction
S. Oishi

Computational

Structural Biology

F. Tama

Division Director &

Biomedical 

Computational 

Intelligence

Y. Okuno

Deputy Division Director &

Medicinal Chemistry 

Applied AI

T. Honma

Molecular Design 

Computational 

Intelligence

M. Ikeguchi

AI driven Drug 

Discovery 

Collaborative

Y. Okuno

Advanced 

Operation 

Technologies 

K. Yamamoto

Facility Operations

and Development

S. Miura

Software Development 

Technology

H. Murai

Division Director

F. Shoji

Deputy Division Director

& System Operations

and Development

Y. Iguchi

Office Director

S. Matsuoka

Office Deputy 

Director

Y. Watanabe

（＊Now recruiting：Biomedical Computational Intelligence, Medicinal Chemistry Applied AI）

Quantum-HPC Hybrid 

Software Environment

M. Tsuji
(April 2024)

Data Interaction 

Technology Development 

T. Kai

(March 2024)

Organization of  RIKEN R-CCS as of 1st April 2024

（＊ Now recruiting：System Operations and Development Unit UL）

AI for Science 

Platform Division

(April 2024)

Division Director

M. Sato

Division Director

S. Matsuoka

AI Development Computing 

Environment Operation 

Technologies

S. Miura

Advanced AI Device 

Development

K. Sano

Learning Optimization 
Platform Development
M. Wahib

Data Management 
Platform Development
K. Sato

Life and Medical Science 
Application Interface 
Platform Development
Y. Sugita

Material Science Application 

Interface Platform Development

T. Nakajima

（＊Now recruiting：Deputy Division Director)

Considering strengthening the system at the start 
of the next medium- to long-term plan

We are 
recruiting 
researchers, 
postdocs, 
interns, …

Cloud & Security

A. Takefusa

(Sep 2024)
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Major achievements of Fugaku
#1 in major benchmark rankings:TOP500 and 
HPL-AI(Jun.2020-Nov.2021), Graph500 and 

HPCG (Jun.2020-)

#1 in MLPerf HPC(Nov.2021-)

ACM Gordon Bell Special Prize for HPC based 
COVID-19 research(Nov.2021), also 2022

Weather forecasting trial for “guerrilla
downpour” in TOKYO2020 Olympic/Paralympic 

games



The Gordon Bell Prize for Climate Modelling 2023

Nominations will be selected based 

on their impact on climate modelling, 

and on wider society by applying 

high-performance computing to 

climate modelling applications. In 

2023, the first year, three finalists 

have been selected.

The Gordon Bell Prize for
Climate Modelling

Figure: Bird's-eye view of 15-minute forecast rain 
distributions at 04:33:00 UTC, July 30, 2021, initialized at 
04:18:00 UTC. Colors represent rain intensity. Vertical scale 
is stretched by three times. Map data courtesy of the 
Geospatial Information Authority of Japan

Finalists!

Data Assimilation Research Team
Takemasa Miyoshi, Team Leader

Computational Climate Science

Research Team

Hirofumi Tomita, Team Leader

Image of the forecast web

“Big Data Assimilation: Real-time 30-second-refresh
Heavy Rain Forecast Using Fugaku During Tokyo
Olympics and Paralympics”

The work presents a real-time 30-second-

refresh numerical weather prediction (NWP), 

during the 2021 Tokyo Olympics and 

Paralympics. It  revealed the effectiveness NWP 

for rapidly evolving convective rainstorms. This 

endeavor stands as a testament to the value of 

engaging advanced computational 

methodologies to advance understanding of 

intricate meteorological phenomena.

2013: Start with "K computer"
2021: Achieve with "Fugaku"
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100

100

➢ dual polarization
➢ 100×100 

elements array 
antenna

Multi-parameter phased array weather radar (MP-PAWR) was developed by 
SIP (Cross-ministerial Strategic Innovation Promotion Program) in 2014-2018
as a research subject of “torrential rainfall and tornadoes prediction.” 

Early forecasting by water vapor, cloud, and precipitation observation 

generate develop mature

★ Saitama Univ.（MP-PAWR site)
●Olympic and Paralympic venues 

Radius 60 km

Radius 80 km

Arakawa basin

New MP-PAWR (2018)

MP-PAWR features

MP-PAWR observation area

MP-PAWR antenna

MP-PAWR installed at Saitama Univ. on Nov 21, 
2017, and observation began in July 2018.

Real-time experiments in 2021
• July 20-August 8 (Olympic)
• August 24-September 5 (Paralympic)

2020 2021

Computer Oakforest-PACS Fugaku

LETKF ensemble size 50 1000

Forecast ensemble size 1 10

Boundary data US NCEP GFS Japan JMA MSM

Nested domains 4 2 (simpler)

New “Fugaku”

https://weather.riken.jp/

Exclusive use of

~9% of Fugaku
(~.5 million cores)

Real-time data transfer & data assimilation for Tokyo Olympics 2020 and 

Osaka Expo 2025 (new!) – Weather is a huge business now --

Saitama Univ.

MP-PAWR
NICT ds01

NICT

Saitama Univ.

TOSHIBA

Fugaku login1

data monitor

auto-restarter

SCALE-

LETKF

MTI

Amazon AWS

weather.

riken.jp

JIT-DT

106 MB per obs.

in 3 seconds

webpage

smartphone



Real-time workflow of 30 sec, 500m weather forecast for 
2020 Tokyo Olympics

[2023 ACM Gordon Bell Prize Climate Prize Finalist]

3-hour update 

30-sec update

boundary condition 

boundary condition

8808 nodes

Inner domain
(500m)

Outer domain (1.5km)

JMA mesoscale model (5km)

SCALE 30-min ensemble forecasts 

…

…

30 sec MP-PAWR
observation

SCALE LETKF

2002 nodes

Real-time job scheduling of 1/2 million cores
node

4000

8000

2000

6000

10000

12000

2400 03 06 09 12 15 18 21

Hour(JST)

Outer domain: 2002 nodes (2 nodes x 1001 members) Every 3 hours

Forecast
~60min

Downscaling
~10min x6

Inner domain: 8808 nodes
DA cycle：8 nodes x (1000+1) members

Extended 30min forecasts： 8 nodes x 10 members x 10 cases

Total
10810 nodes or
~500K Cores



What if we had many PAWRs?
An Observing System Simulation Experiment (OSSE)

[mm h-1]

July 2020 heavy rain A virtual PAWR network

Maejima et al. (2022, SOLA, 

doi:10.2151/sola2022-005)
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⚫ Japan Meteorological
Agency(JMA) utilized large scale 
externa supercomputer for the 
first time to simulate torrential 
rain band causing catastrophic 
damages

⚫ Critical research advances were 
made such that they acquired a 
smaller version of Fugaku (15PF 
x 2) as a research SC, separate 
from their production SC for 
forecast

⚫ JMA Started production 12-hour 
ahead torrential rain forecast 
with its twin Fugaku-compatible 
machines from May 2024

Fugaku Siblings Preventing Natural Disasters
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Sub-Task C :Indoor-Environment Design Robust for the 
Infectious Diseases

Airflow
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Blood flow

Droplet (Virus)

Inhalation (Airway)

Bioregulation 
(Host cells, Pathogen, Adaptive Immune System)
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(Target Cells)

(Infected Cells)

(Virus)

(Interferon)

(Helper T Cells)

Numerical human body Numerical respiratory tract

Precise reproduction of body temperature

Precise reproduction of human breathing Reproduction of nasal/oral cavity and 
respiratory tract

Prediction of deposit distribution of 
droplet/aerosol on the airway surface and its 
dependence of droplet size.

Infection risk assessment based on 
the bio-regulation model

Droplet/aerosol dispersion in 
indoor environments

Generation of droplet/aerosol 
inside human body

Coupling simulation of droplet/aerosol and indoor flow

Indoor environment evaluation based on HPC simulation

Breath flow rate, droplet size distribution

Quantitative evaluation of infection risk

Condition of droplet/aerosol generation
(breathing, speaking, coughing, sneezing…) Indoor environment and human allocation

Biological information of an at-risk person

dp=5 nm dp= 100 nm

Biological information of an at-risk person Biological information of an at-risk person and target virus
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Host cell dynamics coupled with numerical respiratory tract 

Brownian 
diffusion

Gravitational
settling

Mucociliary/mucus 
transport

Infected cell (I)

Viral con. (V)

( )
( ) ( )

dT t
T t V t

dt
= −

( )
( ) ( ) ( )

dI t
T t V t I t

dt
 = −

( )
( ) ( )

dV t
pI t cV t

dt
= −

Resultant viral replication Deposition fraction

Bioregulation – Host Cell Dynamics 
(Host cells, Pathogen, Adaptive Immune System)

Regional deposition of 
virus-laden particle

PCR detection Limit

No face mask

With face mask



UT-Heart: “Personalized” Precise Heart 
Digital Twin Platform

大動脈の血流左心室内腔の血流

応用例 2 補助循環用ポンプカテーテルIMPELLAの性能評価

心筋梗塞模擬

梗塞部

心筋への負荷

圧容積関係 エネルギー損失

任意の状態の心臓に対し各種医療機器の性能評価を計算機上で行うことが可能

©UT-Heart Inc.

両大血管
右室起始

肺動脈狭窄

BTシャント

中隔欠損

人工血管による
外部流路設置

人工血管による内
部流路設置

肺動脈除去
BTシャント除去

応用例 3 小児先天性心疾患の手術シミュレーション

術後の血行
動態予測

各種術式による血行動態の改善を事前に計算機上で予測し、最適な手術を実施

現在、国立循環器病研究センター主導で多施設前向き臨床研究を実施中
次年度は医師主導治験を予定

©UT-Heart Inc.

心房細動のシミュレーション

心房内にはランダムな興奮(re-entry) 心房内のCa濃度は低く細かく振動
心室への流入は急速流入期のみに起きる

P波がなくR-R間隔は一定しない

心室筋のCaチャネルの不活性化中に興奮波が到達⇒Ca放出量↓⇒収縮力↓⇒LV圧↓⇒大動脈弁開かないことがある

応用例 1

薬剤や治療機器の
効果を計算機上で
自在に試すことが
できる

©UT-Heart Inc.

NEW! Can create personalized digital twin of 
individual hearts via non-intrusive CT Scans via AI 

techniques
↓

Now being applied to real medical apps

©UT-Heart Inc.

12
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2023 Hyperion Report on Fugaku Values
(2025 report forthcoming to include AI for Science)
#1 Research Finding: Fugaku Will 
Likely Return 68 to 90 Times Its Costs

1. The potential economic value: 

• $15 billion from projects like those that were done on the K system 
($4 billion plus has already been accomplished on 6 projects)

• $50 to $75 billion from keeping Japan from shutting down its 
economy 

• $10 to $22.5 billion for large value industrial projects

• And a potential of $22.5 billion or more from addressing important 
SDG goals 

• For a total of $102 to $135 billion in financial 
value – this represents a return of 68 to 90 
times the investment in Fugaku

© Hyperion Research 2023 1

The Fugaku potential returns are very strong

#4 Research Finding: Fugaku Is 
Focused On Creating Industrial 
Economic Growth

4. Fugaku is more focused on supporting industrial 
growth and helping companies create economic 
value vs. focusing more heavily on pre-competitive 
R&D. Riken has a strong industrial outreach 
program which is more industry-friendly than most 
other nations. 

• The focus is more directly on increasing Japanese 
companies’ economic growth and competitiveness (and 
not only on longer term R&D). 

© Hyperion Research 2023 1

By directly supporting industry with a strong outreach program 

#3 Research Finding: Fugaku Is 
Focus On High Value SDG's

Projects in these areas include:

▪ Disaster prevention, resilience to urban wind disasters and 
heat islands, wind resistance safety of bridges, realization of 
Society 5.0, availability of large-scale computers and entry 
of non-professionals into computation, increased 
international competitiveness in automobiles/manufacturing, 
safe behavior criteria for COVID-19, preventing spread of 
COVID-19, drug discovery, research and development of 
new materials, new products, fuel cells, efficiency in 
combustor and furnace design, and the efficiency of large 
offshore wind power generation.

© Hyperion Research 2023 1

Fugaku researchers are addressing a broad set of SDG's

#2 Research Finding: Researchers 
Are pleased with The Design and 
Operations of Fugaku

2. The percentage of the researchers that like the 
Fugaku system design and operations is one of the 
highest seen in our studies with only a few that 
aren’t pleased with the system design. 

• Most sites around the world typically have only 60% to 
75% of the researchers pleased with their system design 
& approach. 

© Hyperion Research 2023 1

The Fugaku potential returns are very strong

2025 report for FugakuNEXT
Expect > 100x ROI
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⚫ Science of High Performance 
Computing (towards ‘Zettascale’)

⚫ Science of High Performance AI

⚫ Science of Quantum-HPC Hybrid 
Computing

⚫ Science by High Performance 
Computing

⚫ Science by High Performance AI (AI 
for Science) w/HPC Simulations

⚫ Science by Quantum-HPC Hybrid 
Computing

Riken R-CCS Strategy for Innovation by Computing
Future of Science ‘of’ and ‘by’ Computing

Silicon Photonics Optical 
Interface

Compute Centric Accelerator

3D SRAM

3D SRAM

3D SRAM

Strong Scaling / Compute 
Intensive Accelerator
Low Latency 3D SRAM

Many Core General Purpose CPU

3D SRAM

3D SRAM

3D SRAM

High Capacity DRAM

High Capacity DRAM

High Capacity DRAM

High resolution 
3D volumes from 

MRI

AI: Deep Neural 
Networks

+

Supercomputers
(Fugaku, Frontier, ABCI)

AI-powered 
Multi-compartment 

segmented 3D 
volumes

Immersive VR to 
visualize and 

annotate

Human expert 
segmentations

Verification

Mouse Brain 
Simulations

+
Supercomputers

(Fugaku, Frontier, ABCI)

Assimilate

Cellular Connectome with Modules and Cell Types Info

GROUP 1: AI-powered Extraction + Advancing Modeling in Neuro-simulations

GROUP 2: Image Reconstruction and Visualization

Collab with 
Duke U. and 

ORNL

GROUP 2: Advancing Understanding of Mouse Brain

Large-scale optical measurement of CS activity on cerebellar cortex

3D Volumetric 
Segmentation 
Powered by 
LLMs

5 micron
resolution =>
could 
replicate 
entire brain 
connectome 

Full digital 
twin of brains 
possible!

AuroraGPT
GPT Fugaku etc.

Ongoing DoE-MEXT AI-HPC Grand Challenge on Whole Brain Digital Twin

8k x 8k x 8k 
resolution

Actual problem solved by this new solver on whole system of Fugaku (7,312,896 parallel 
computation on 152,352 computer nodes (=609,408 MPI processes × 12 OpenMP threads) )

Dream has come true! minimum discretization: 12.5cm

city is included. All the structures are finely discretized!

Generalizable New Algorithm with Integration of HPC & AI for Earthquake Simulation 
to achieve effective 10 Exascale performance on Fugaku [Ichimura et. Al.]

(Towards Effective Zettascale)

• Requires 10 Exascale Performance due to resolution, multi-
physics requirements, etc.

Dream in earthquake simulation

x25 Equation-based modeling 
+ Data-science AI Surrogate

X42 hardware performance 
improvement from K to Fugaku

x1070 speedup, EFFECTIVE
10 EXASCALE PERFORMANCE

+

1

Quantum Hybrid Computing Infrastructure for Riken TRIP
(R-CCS, RQC w/iTHEMS, AIP、Feasibility Study etc.)

World’s Largest Q-C Hybrid Computing Infrastructure

Tightly Coupled LAN
(For variational algorithms, 

low latency, high BW)

• Quantum BLAS
• Qiskit：IBM prog. Framework incl. transpiler
• Cirq：Google quantum prog. tool

• TensorFlow Quantum: Quantum ML
• Q#:Microsoft quantum prog. Tool.
• Qulacs：Osaka-u prog. Tool
• QunaSys simulation
• Covalent: Agnostiq、quantum HPC workflow
• PyQubo：converts combinatorial optimization 

problem into QUBO

Unified IL for QC/Hybrid

Quantum Alg.Quantum SW Stack

NISQ Alg

Quantum Machines (RQC, 
multiple vendors)

Quantum Computers (Physical & Simulated)

FPGA

Directly
observable

Multiple simulators on 
Fugaku (R-CCS/RQC)

Fugaku

Algorithmic Descriptions

Hybrid Variational 
Algorithms

Dedicated Simulator Machine
(classic)

Near-QC Hybrid
Programming＆API

Hybrid Programming API
＆Workflow Scheduler

Classical HPC Infrastructure

Dedicated 
Simulator 
Machine 

(Quantum Sim)

R-CCS DC

Also establish Quantum Hybrid 
Computing Division @ R-CCS 2023/4/1

AuroraGPT

Catalyst

Fugaku: Current until 2030~2031
FugakuNEXT: Feasibility Study 2022-2024, 

R&D 2025-2029, Deployment ~2029, Operations 2030-
‘Zettascale’ @ 40MW

Riken AI for Science FY 2024~
including TRIP-AGIS and other projects

$X00 million
(TRIP-AGIS 2024~2031)

Hybrid JHPC-Quantum Infrastructure Project 
Deployment FY2023~2027

~$150 million+
(2023~2027)



Fugaku Operational Status (public, live)
https://status.fugaku.r-ccs.riken.jp/
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Extremely power efficient in production, 
approaching 100W/node => 3x more efficient 
than typical supercomputer



January 2023 MoU Between AWS & R-CCS
Expanding the Scientific Platforms of Fugaku to the Cloud

High ISA (Arm+SVE) & 
Performance

Compatibility

‘Cloudifying Fugaku”

“Cloud APIs on Fugaku” 
Fugaku as part of cloud infra

e.g. Support S3 protocol (done)

‘Fugaku-fying the Cloud’

“Virtual Fugaku”

Implementing Fugaku Applications 
and Software Environment on AWS

Virtualizing the Domain Specific Platform to utilize both
E.g. Companies develop methods using massive Fugaku Resource, production run on AWS, 

allow immediate propagation of latest research results onto production

AWS Graviton3/3E (2022) 
Arm+SVE CPU

Amazon EC2
C7g/C7gn instance

Fujitsu-Riken A64FX HPC 
(2018) Arm+SVE CPU

Fugaku/FX1000

Riken R-CCS SC
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⚫ Two environments targeted at AWS Graviton CPUs: 

⚫ Satellite Fugaku: A test environment for 'Virtual Fugaku' (for Fugaku users). 

⚫ Private Fugaku: A Singularity container for AWS users. 

⚫ Both environments share the same software configuration (defined and 
containerized by SPACK).

⚫ Basis for fully vendor–independent ready-made OSS stack for HPC/AI

Overview of 'Virtual Fugaku’ Ver.1 (release Aug. 8, 2024)

Virtual FUGAKU

Satellite Fugaku

Real FUGAKU

SVE & scaling optimized R-CCS & 
User applications, OSS/ISV 

applications

Fugaku Development & Execution 
Environment (HPC&AI SW Stack e.g, 

compilers, libraries, frameworks)

SVE & scaling optimized R-CCS & 
User applications, OSS/ISV 

applications

Fugaku Development & Execution 
Environment (HPC&AI SW Stack e.g, 

compilers, libraries, frameworks)

Virtual             FUGAKU

Testbed for Virtual Fugaku on 
AWS Graviton3/3E (Arm+SVE

CPU)  provided to Fugaku
users by R-CCS

SVE & scaling optimized R-CCS & 
User applications, OSS/ISV 

applications

Fugaku Development & Execution 
Environment (HPC&AI SW Stack e.g, 

compilers, libraries, frameworks)

Virtual             FUGAKU

Private environment on AWS 
Graviton3/3E (Arm+SVE CPU) 

Private Fugaku

Define 
software 

environment 
on Fugaku by 

the 
spack.yaml

Distribute 
as the 

container

Other 
supercomputers

FugakuOnDemand provides 
the same usability.



Target Study of Carbon Neutralization for 
Fugaku-next and A sustainable HPC center 

operation(1) Use of Renewable Energy

electrical dischargestorage of electicity

Absorption of 
electricity price hikes

Market Price of Electricity

Introduction of large
storage batteries

(2) Responding to electricity price fluctuations through
the use of renewable energy

Time when sunlight is available

Carbon Neutral
Procurement of Electricity

Hydrogen and Biofuels

Carbon neutral
In-House Generation of Electricity

Sustainable power

Waste heat

(4) Energy-efficient supercomputer operation

Power saving of the main body of the calculator
• Power efficient programming
• Allocation of computing resources in response to chan

ges in electricity prices
Improved efficiency of cooling facilities
• Higher cooling water temperature
• Highly efficient cooling facilities for free cooling
• automation

Effect: Stable reuse of electrical energy
https://datacenterfrontier.com/
waste-heat-utilization-data-center-industry/

bathing facilities
(swimming) pool

greenhouse

(3) Reusing Waste heat

Heat for liquefied hydrogen naturalization

Hydrogen
biomass

DC's own operations can 
respond to future energy 
price hikes.

Supercomputer Simulation
Return of results to society

18



• Organize the concept of using storage batteries for each use case assumed in the use of storage batteries.

• Survey of storage battery types and examples in five categories organized according to the concept of 
storage battery use.

The 24/7 Carbon Free Energy Compact, an international initiative, provides 100% carbon-free power supply in accordance with hourly power consumption 24 hours a day, 365 days a year.

Storage Battery Use Cases Concept of Storage Battery Use
output (e.g. of 
dynamo) (MW)

time capacity (h)

Used as load fluctuation absorption
(Assistance for private power generation)

Absorbs minute-to-minute load fluctuations 5 to 20 0.1 to 0.5

Leveling of renewable energy sources
Absorb hourly fluctuations in renewable energy 

generation
100 3-12

Used as load fluctuation absorption
Absorbs minute-to-minute load fluctuations

(Institutional, not yet supported is also acceptable)
- -

Electricity from peak shaving
Reduction of basic fee

Discharge when power setting is exceeded
(limited number of discharge days)

1-10 1-3

Electricity prices by time of day
Charging and discharging linked to market prices

(Discharge is from 15:00 to 21:00)
1-20 3-6

Use of raw green electricity
(Re-energy and consumption are matched on an hourly basis)

Absorb load fluctuations on an hourly basis in conjunction 
with the amount of renewable energy generation

1-20 1-6

Figure . Maximum load fluctuation 
results (2023.7.27)

Variatio
n in 
excess 
of 8 
MW

Figure 1: Actual annual load 
changes in 2023.

Average: 19.8MW, Maximum: 24.0MW, 
Minimum: 10.5MW

Fig. JEPX contract prices 
(2023.9.17-25)

(2) Use of Large Energy Storage System 

19



⚫ Installation Examples in JAPAN

Source: New Energy Foundation website, New Energy "Recent Topics/Keyword" Explanation Corner
Figure 1 https://www.nef.or.jp/keyword/sa/articles_sa_03.html Figure 2 https://www.nef.or.jp/keyword/sa/articles_sa_03_02.html
Figure 3 https://www.nef.or.jp/keyword/sa/articles_sa_03_04.html Figure 4 
https://www.nef.or.jp/keyword/sa/articles_sa_03_03.html

Figure 1: Redox flow battery at the Minamihayarai 
substation of Hokkaido Electric Power Co.

Figure 2: Lithium batteries at Tohoku Electric Power 
Company's Nishi-Sendai substation

Figure 3: Lithium batteries at Tohoku Electric Power 
Company's Minamisoma substation

Figure 4: Sodium-sulfur battery at the Toyomae substation 
of Kyushu Electric Power Co.

Large Energy Storage System Case Studies

20



⚫ “Fugaku Point” program since 2023

⚫ Fugaku has several functions for power saving, called ”power knobs.” However, it was one of the 
significant issues for us to facilitate users to use the functions.

⚫ The “Fugaku point” quantifies user cooperation for energy-efficient operations and is awarded for jobs 
with lower power consumption than a standard.

⚫ User can execute their jobs with higher priority by redeeming the points.

(4) Energy-efficient HPC system operation by incentivizing user 
cooperation

The percentage of jobs that use power knobs is increasing Consequently, the watts per node have been reduced gradually21



AI for Science Important for Societal Innovation
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⚫ Goldman Sachs: Data as of December 31, 2023. The percentage of 

macro productivity upside relative to no technology breakthrough 

baseline: 30.2% for steam engine (1769), 30.6% for electricity (1880), 

12.6% for PCs/Internet (1981), 17.5% for AI (2023)

⚫ Recent Gartner talk -> “AI will increase GDP by 8~9%”

⚫ Moreover, such productivity increase could be a one-time effect

⚫ GDP increase from 1960s to 2023: > x60

⚫ (Fugaku ROI according to Hyperion: 60x~80x. Expect greater ROI for 

FugakuNEXT of over 100x)

⚫ Thus the effect of Science and Engineering to induce new technologies 

rather than being productivity gains should have profound effect

⚫ But right now AI for Science usage is still very limited, 
overshadowed by consumer-facing AI investments
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⚫ Co-optimization
Framework

CFD Framework for Co-Satisfiaction of Aerodynaic Drag Efficiency 
& Design Aestheics [Tsubokura et. al.]

Parametric Shape Morphing

複雑現象統一的解法フレームワーク

“CUBE”による空力シミュレーション

GA Multi Paramter Optimization “CHEETAH/R”

Shape 
Parameters on 

Aesthetics

Drag + Aestheics

スーパーコンピュータ”富岳”

1st Gen

Mutation

Crossover

2nd Gen 3rd Gen

Rapid 
Generation 

of CFD 
Mesh from 
Shape Data

Ultra Fast Prediction of Drag via Digital Twin

Embedding of human aesthics metrics

AI-Based Prediction and Optimization

Use of AI for Science is already the “Norm” in 
Fugaku

But AI itself has not been innovative to 
supplant human scientists

AI for Science should have the AI be the 
centerpiece of innovation itself



Generalizable New Algorithm with Integration of HPC & AI is 
developed to achieve effective 10 Exascale performance

• Requires 10 Exascale Performance due to resolution, multi-
physics requirements, etc.

Dream in earthquake simulation

x25 Equation-based modeling 
+ Data-science approach

X42 hardware performance 
improvement from K to Fugaku

x1070 speedup, EFFECTIVE
10 EXASCALE PERFORMANCE

+

Actual problem solved by this new solver on whole system of Fugaku (7,312,896 parallel 
computation on 152,352 computer nodes (=609,408 MPI processes × 12 OpenMP threads) )

Dream has come true! minimum discretization: 12.5cm

city is included. All the structures are finely discretized!



Fugaku-LLM – Massive LLM Training on Fugaku

25



FugakuLLM – training on 14,000 nodes

26

⚫ Data size: 400B
⚫ Model size: 13B
⚫ Fugaku: 13,824 nodes
⚫ Weeks of training without much failure
⚫ 1-1.4 Tflops/s / node

- Public release on GitHub & Hugging Face

- Fugaku-LLM access via Fujitsu Research Portal

- Part of SambaNova CoE framework



AI for Science Roadmap in Japan
(Issued on May 31, 2024)
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⚫ Abstract:
⚫ Summary of efforts to drive future AI-for-science researchers in Japan
⚫ A roadmap is being developed that includes examples, guidelines and new 

challenges on the application of cutting-edge technologies such as surrogate 
modeling and the use of generative AI to research areas, potential use cases, and 
possibilities.

⚫ Estimation of required AI computational performance to the next-gen supercomputer 
based on the roadmap and by identifying issues related to AI governance

⚫ Steering Committee:.  
⚫ Rio Yokota (Professor, Tokyo Institute of Technology), Takashi Shimokawabe 

(Associate Professor, The University of Tokyo), Masaaki Kondo (Professor, Keio 
University), Shinji Todo (Professor, The University of Tokyo)

⚫ (RIKEN R-CCS) Mohamed Wahib, Hirofumi Tomita, Kento Sato, Akiyoshi Kuroda

⚫ Target Fields: 11 fields listed in the HPCI Consortium Computational Science 
Roadmap
⚫ Elementary Particle Physics & Nuclear Physics, Nanoscience & Devices, Energy & 

Materials, Life Sciences, Brain & Neuroscience, Drug Discovery & Medicine, Design & 
Manufacturing, Social Sciences, Earthquakes & Tsunami, Weather & Climate, 
Astrophysics

⚫ Authors：59 (including 8 promoters)
⚫ Researchers extracted from keyword searches such as AI from HPCI proposals
⚫ Authors of the HPCIC Computational Science Roadmap in their respective fields
⚫ FY2023 Accelerated Program for the Creation of Tomiyama PI
⚫ RIKEN R-CCS

AI for Science Roadmap - Overview

AI for Science Roadmap in Japan
(Issued on May 31, 2024)

Issued on May 31, 2024
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Expansion of AI application areas in various scientific fields

⚫ AI Applications in Materials Research: Machine Learning Potential Molecular Dynamics 
⚫ Construction of material analysis flow by integrating data science and spectroscopic 

experiments 
⚫ Machine Learning Model Building Using Quantum Computers and its Application to 

Computing of Physical Properties
⚫ AI Application in New Materials Development
⚫ Data-driven approach to the analysis of strongly correlated quantum matter
⚫ Numerical solution of quantum many-body problems and its applications
⚫ Integrated analysis of experimental data
⚫ AI Application to Amorphous Material Dynamics - From GNN to Generative Modeling

2. nanoscience devices

⚫ Materials Design and Exploration by Simulation and Informatics
⚫ High-precision molecular dynamics simulation of molecular systems using machine 

learning potentials
⚫ Description of quantum many-body system by artificial neural network
⚫ Quantum Chemistry Accelerated by High Performance Computing and Artificial 

Intelligence

⚫ Structure and reaction calculations for nucleon many-body systems
⚫ Analysis of quantum many-body problems using artificial neural networks 

⚫ 3D structure analysis of biomolecules based on machine learning
⚫ Searching for reaction coordinates of biomolecules using machine learning
⚫ Conducting medical and biological research through reinforcement learning 

that incorporates "world models
⚫ Fragment Molecular Orbital Calculations and AI/Data Science
⚫ Optimization of Molecular Dynamics Force Field Using Difference Simulation
⚫ Coarse-grained molecular dynamics (CGMD) force field development using AI
⚫ Development and Prospects of Machine Learning Potential
⚫ Dimensionality reduction for describing biopolymer dynamics
⚫ Expression learning of protein dynamics by extending VAE 

3. energy and resources

4. elementary particles and nuclei

5. life science

⚫ Language Models and Multimodal Infrastructure Models in Medicine
⚫ Current Status and Issues of Protein Language Models
⚫ Large-scale language models for genome sequencing
⚫ Base model for gene expression data
⚫ Molecular Design by Generative Modeling
⚫ Prediction of compound-protein interactions
⚫ Protein Structure Prediction
⚫ AI Accountability and Intervention Simulation in Healthcare

6. drug discovery and medical care

⚫ Flow feature extraction using CNN-AE and its application
⚫ Application of 3D Generation AI to Optimal Structural Design

7. design and manufacturing

8. social sciences (to be written after 2024)

⚫ Neuroscience and AI Techniques and Large-scale Detailed Neural Circuit Simulation

9. brain science and artificial intelligence

⚫ Examples of PINN in inverse problems in seismology and its applicability to 
large-scale problems

⚫ Accelerating Large-Scale Simulations with Data Science Methods 

10. earthquakes and tsunamis

⚫ Surrogate modeling: application of AI to cloud microphysical processes, gravitational 
wave parameterization, RC learning for Navier-Stokes turbulence

⚫ Weather applications: Global Numerical Climate Model (GCM) emulation, AI data 
assimilation fusion/precipitation nowcasting, reservoir computation and weather 
forecasting applications

⚫ Platform for dataset and model sharing, intercomparison, and analysis

11. weather and climate

⚫ Deep Learning to Study High Energy Astronomical Phenomena
⚫ Extracting Cosmological Information from Astronomical Big Data 

12. space and astronomy
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Develop a pioneering 

AI4Science Platform
G

en
er

ativ
e

AI
M

odels
High-quality

Data
Integrating AI

in Science

Produce large amounts of high-quality 

data through RIKEN’s and its 

parternerships/collaborations. 

Strengths in measurement techniques 

and experiment automation

Develop and share generative AI 

models for scientific research

(life and medical sciences, climate

science, engineering)

ExperimentsSimulations Robots

Physical/Earth
Life/Medical Engineering

Purpose and Challenge

- Solve intractable science problems

- Lead advanced science 

- Starting from basic science

- To societal impact

(GX, inclusive society, etc.)

RIKEN's Initiatives ～TRIP-AGIS～
Artificial General Intelligence for Science of Transformative Research Innovation Platform (TRIP-AGIS)

✓TRIP-AGIS will introduce the technology of generative AI and will develop generative AI

models for scientific research to further accelerate the research cycle.

✓Strengthen activities to lead advanced science to social impact
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Advanced

model

① Common platform technology

Development of fundamental technology that enables training of multimodal generative AIs.

③ Innovative Computational Infrastructure

Develop and operate a computer system for the development and sharing of generative AI models for scientific research that 

are optimized for inference, training, and generation of various types of scientific research data.

Research on novel computing principles with high computing and power performance beyond conventional GPUs.

② Generative AI models for scientific research in specific scientific fields

Life and medical sciences Materials sciences

Advanced

model

High-quality 

data

Time course of drug responses of cells, effects of 

diseases on the animal's behavior and body, etc.

Model that enables comprehensive interpretation  

and prediction of phenomena from genomes,  

cells to whole organisms.

Material structure, properties, electronic state, 

manufacturing method, etc.

Model that can generate data based on 

integrated interpretation of properties, material 

structures, fabrication methods, etc., both 

inorganic and organic.

High-quality 

data

Automation and acceleration of experiments that enable both (1) generation of massive data essential for 

multimodal foundation models and (2) automatic execution of the experiments designed by the AI model.

Advanced

model

High-quality 

data

Overview of Riken TRIP-AGIS AI for Science 
Project (2024-2031)



◼ We especially focused on multimodal FMs of dynamical behaviors based on

systematic data acquisition of simultaneous multimodal measurements.

▷ Dynamic / spatial transcriptome and super-resolution imaging

▷ Animal behaviors (motions and voices) with genetic backgrounds / neural activities

◼ RIKEN can cover measurements of many modalities in life science.

5

◼ We try to integrate various data as multimodal foundation models (FMs)

Genome/ 

Transcriptome
Proteins

Other 

Phenotypes
Images

Other Omics 

lipidome etc.

Neural 

activities



AI-driven automatic research and massive data production 

using robotic experiments and large-scale simulations
AI-generated 

experiment/simulation

conditions

Massive high- 

quality data

Training

Generate

Automated 

Research

Robotic experiment /

Simulation

Generative 

AI for 

Science

Parallel

robot lab.

Large-scale 

simulation 

by Fugaku

Acceleration of scientific research by AI
11



Systematic measurements of time-series of multimodal 

omics and image data for

>5,000 types of stimulus X >100 Cell types
= 500K combinations

⚫ Large-scale single-cell transcriptome

⚫ High-speed live cell imaging

…

ATGCACGTCAGC
GACCGACGTAAT

Genome 
Sequence

iPS-derivied cells etc.
～100 types

Drugs etc.
～5,000 types

⚫ Translation control by Ribosome profiling

Foundation model 
of cellular response

✓ A model to predict cellular 
dynamics on stimulus

✓ Predictions of time-series 
of cellular status by drugs 
etc.

✓ Applications to 
pharmaceutical 
developments, organoid 
developments, 
regenerative medice, and 
so on.

Resolution: λ/3 
10 ms/frame

@TogoTV

Development of cellular response atlas

6

+ More 

Modalities 

in future



Morphology
By CT

Genome

process Morphology

Behavior

Genomes

♬

♪

ATGCACGTCAGC
GACCGACGTAAT

Normal and disease
models

Human-like social behavior

Foundation model of 
animal behavior

✓ Develop a model to reproduce 
variety and complexity of animal 
behavior

✓ Predict diseases or their 
precursors from behavior, and 
vice versa.

✓ A connection with human 
behavior at diseases,
social situations etc.

Lifetime home-cage 
monitoring of animals

AI-based analysis of long-term 

motional and vocal behavior

Mouse Marmoset

7



Multimodal Foundation Model for Drug Developments

潜在空間

エ
ン

コ
ー

ダ

デ
コ

ー
ダ

プロパティ
(親和性)

ESM-2

Mutimodal data in public DB (and in RIKEN)

AI/ML-based
approach

Foundation model of 

Knowledge-graph

Clinical data

Extract data as 

Knowledge-graph

In-house data in RIKEN

Extract non-graph 
data (table etc.)

Multimodal Foundation model
for drug design

Generative AI for 

Chemical structure

8

Foundation models

for proteins

+ Molucular simulation, 
Molecular docking

Clinical applications



High quality material data from 

literature, experiments, and simulations

Propose materials with the required 

properties and predict their synthesis 

and processing methods.

9

Purpose

Our Approach

◆Propose candidate materials and synthetic methods to achieve desired material functions.

◆ Accelerate and enhance materials science research in basic science and industry by 

allowing users to train additional machine learning models using their own data

Foundation Model for 

Materials Science

◆ Generation of 3D arrangement 

information of atoms to 

achieve desired material 

properties by AI model

◆ Generation of synthesis and 

processing methods for 

proposed material.

→  Accelerate 

development of innovative 

materials

Step 1: Magnetic materials 

Step 2: Polymer materials, and 

others

⚫ Material data and information on 

synthesis and processing as 

described in the literature

Material data by computational 

materials science

⚫ High quality experimental

data to be newly acquired

Generative AI model 

for materials science 

based on a generic 

LLM

Material data by combinatorial

synthesis method

Crystal structure Electronic structure Material properties

𝑖𝑗  𝑖𝑗  𝑖ℋ = σ   𝑡  𝑎†𝑎 𝑗

+σ 𝑖  𝑈𝑖 𝑛𝑖↑𝑛𝑖↓

Model Hamiltonian

Computational Physics 

Machine Learning

Accurate prediction 

of material properties 

based on physical 

laws

⚫ Prediction of physical properties by combining computational physics

and machine learning



AI4Science Software: Models, Data, and 
Integration

August 2024

Mohamed Wahib1,2

1. High Performance Artificial Intelligence Systems Research Team

2. Learning Optimization Platform Development Unit



Consumer Facing LLMs may run out of data in 2028..

*   Villalobos et al., “Will we run out of data? Limits of LLM scaling based on human-generated data”, ICML’24 



AI for Science will Innovate Modern AI - Data

40

ExperimentsSimulations Observations

Sources of Scientific Data

Traditional AI Applications 
Data

Scientific Data

Properties Structured; low dim; 
ubiquitously-used formats; 

low-quality

Semi-structured; high dim; 
arbitrary or complex 
formats; high-quality

Tooling Rich ecosystem Abysmal

Volume O(100TB)
excluding videos

Arguably more than your 
storage budget

Growth Existing data est. to run out 
~2028*; new data grows 

~linearly

Exponential/linear 
(based on science area)

Authenticity Sources contaminated with 
Generated data**

Clean Source

Ownership Courts still deciding! Usually open

Lineage Ever tried to track a photo 
source on the Internet?

Clear lineage & trackability

*   Villalobos et al., “Will we run out of data? Limits of LLM scaling based on human-generated data”, ICML’24 
** Shumailov et al., ”AI models collapse when trained on recursively generated data”, Nature 631, 755–759 (2024)

➢Now: models pre-trained on traditional AI 

applications data → tuned on science data

➢Future??: models continually or pre-

trained on scientific data → tuned on 

traditional AI applications data

Compute → Money and time problem

Data        → Sourcing problem
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Multi-dimensional Images in Science/Engineering

Dimensions Resolution
Tokens/Sample
Patch = 162/163 Dataset Sizes Example

3 Spatial +
1 Temporal +
N Channels

- 100s3

- 10s channels
(ERA5 dataset)

~ 300K ~10 PB Weather\Climate 
Simulations

2 Spatial +
1 Temporal +
N Channels

- 1000s3

- 10s channels
~5M ~ 10s TB Satelliate Images

2 Spatial +
1 or N Channels

- 100K2 ~100Ks
(4x4 patch)

~ 10s TBs Microscopic
(Ex: Pathology)

2 Spatial +
1 Temporal +
N Channels

- 100s2
~ Hours (24 f/s)
(YouTube-8m)

~1M ~1 PB Video

3 Spatial +
1 Channel

~8-12K3

>163 new beam
~1B ~100s TB X-Ray CT

(Ex: SP-μCT)

3 Spatial +
N Channels

~4K3

(sub 5-micron)
~ 30M ~ 10s TB MRI

(Ex: dMRI)
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Weather Forecasting with Vision Transformer

Pangu (by Baidu) GraphCast (by Google Deepmind)

➢Impressive results despite not training on the ENTIRE dataset (ERA5 dataset)

➢1940 to present: each year at full resolution and all parameters ~ 100TB → 8.4 Petabytes

➢For reference, GPT4 trained on 20T tokens =  15 Terabytes  (1/560 of ERA5)

➢Could we train a weather prediction foundation model with entire dataset?
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Weather Forecasting with Vision Transformer
[ACM Gordon Bell Prize Finalist 2024]

* Under review: Tsaris et al, “Sequence Length Scaling in Vision Transformers for Scientific Images on Frontier” 

➢To train with entire ERA5 → Solve the long sequence problem

➢Combine different methods

➢Train on Frontier supercomputer (in collab. w/ ORNL)

➢½ year at ~6% resolution 10K node-hours per epoch

➢Entire dataset (84 year) @100% resolution → Full Frontier 8 years MS DeepSpeed-Ulysses

DeepSpeed-Ulysses

Method
Comm Activation Parameter Attention Ease

complexity memory efficiency memory efficiency agnostic of use

ColAI-SP [Li et al., 2022b] O (M ) X x x x

Megatron-SP [Korthikanti et al., 2022] O (M ) X x X x

DS-Ulysses O (M / P ) X X X X

Table 1: Comparison of our work (DS-Ulysses) to other sequence parallelism methods.

While recent works in sequence parallelism address thememory overhead, they are lacking in communication efficiency,
thus limited in scaling capability. Similar to our work, all existing works in sequence parallelism partition the input data
along sequence dimension but differ in what input projections arepartitioned and how partitions areaggregated and
communicated for attention computation.

Theauthors in [Li et al., 2022b] (henceforward called ColAI-SP) introducering self attention, aring-likecommunication
collective in which query projections are local whereas key and values projections are transmitted in a ring-style to
compute global attention, resulting in communication complexity linear in message size, M . Megatron-LM sequence
parallelism [Korthikanti et al., 2022] approach is tightly integrated with Megatron tensor parallelism. Megatron LM
partitions sequence along sequence dimensions and applies allgather and reduce scatter collective to aggregate QKV
projections for attention computation. Communication complexity analysis shows that unlikeour approach, Megatron-
LM sequence parallelism communication volume increase linearly with message size (M ) regardless of number of
compute devices. DeepSpeed-Ulysses on the other hand keeps communication volume consistent by increasing GPUs
proportional to message size or sequence length see 3.2 for more details.

Table 1 summarizes how DeepSpeed-Ulysses differs from other existing methods. DeepSpeed-Ulysses hascommunica-
tion efficiency advantage over the other two methods. It also benefits from leveraging ZeRO [Rajbhandari et al., 2020,
2021] optimization for model parameter partitioning across both sequence and dataparallel groups. DeepSpeed-Ulysses
supports different kinds of attention and it is easy to use. Megatron-LM sequence parallelism is tightly integrated with
Megatron-LM tensor parallelism limiting both its memory efficiency and easy of use. ColAI-SP requires a different
(specific) kind of attention and is not easy to use. It is not clear how well ColAI-SP ring self-attention generalizes to
other attention types and mechanisms.

There are related works in sparse Transformer particularly focusing on full-attention approximation such as sparse
attention [Child et al., 2019, Choromanski et al., 2020, Zaheer et al., 2021, Beltagy et al., 2020]. There are also recent
works on singleGPU memory and compute efficient attention. A popular example in this category is Flash attention
[Dao et al., 2022, Dao, 2023], which leverages known techniques such as tiling and recomputation for compute and
memory efficiency. These works are orthogonal to our work and were leveraged accordingly.

3 DeepSpeed-Ulysses CoreDesign

3.1 System Design

Figure 2: DeepSpeed sequence parallelism (DeepSpeed-Ulysses) design

Figure 2 shows thecore design of DeepSpeed-Ulysses. As with theknown transformer architecture, thedesign consists
of input sequences N partitioned across P available devices. Each local N/P partition is projected into queries (Q), keys

4

FlashAttention

Fully Distributed Sequence
Ultra-Long Sequence Distr ibuted Transformer

Figure 2. (i) and (ii) show the difference without and with fused communications. (iii) shows distributed self-attention’ s forward pass

with fused communications. Note that the distributed self-attention outputs are not concatenated. (iv) LSS Transformer’s Backward pass.

Model parameters, except the positional embedding, are synchronized through gradient averaging. (v) The distributed self-attention’s

backward pass with reduce-scatter.

is linearly transformed into query, key and value segments.

Then, two all-gather communications are independently op-

erated on the key and value segments into the collected K

and V . Fig. 2(ii) shows the fused communication operation

in the forward pass, requiring only a single all-gather com-

munication. x i is linearly transformed into query segment

Qi . Meanwhile, x i is gathered into a temporary collected

sequence x, before x is linearly transformed into the col-

lected key and value vectors. The same technique is also

applied to backward pass, reducing the total number of

communications from 6 to 4 per attention layer.

Pr inciple 4: Gradient Averaging Technique to Synchro-

nizeGPUsand Avoid Concatenation. Thereare two issues

from Principles 1 and 3. First, since sequence parallel GPU

trains on the same model parameters but using different

input sequence segments, the gradients for the model pa-

rameters are different for each GPU. The second issue is

that the self-attention communication frequency needs to

be further reduced to achieve even better scalability and

parallel efficiency.

To address both issues, we use a gradient averaging tech-

nique to synchronize model parameters and avoid the con-

catenation for theGPUs’ individual self-attention outputs.

Therefore, communication frequency is reduced from 4 to

2 per attention layer. Figs. 2(iii)-(v) use a 2 GPU exam-

ple to demonstrate how this gradient averaging technique

is applied. In the forward pass for the self-attention in

Fig. 2(iii), adistributed query Qi is computed from the in-

put sequence segment x i . Meanwhile, the self-attention

input segmentsaregathered among GPUs beforecomputing

collected K and V vectors using a single all-gather fused

communication, as explained before in Principle 3. Subse-

quent computations and memory storage are all distributed

and independently updated in the sequence dimension, pro-

ducing individual self-attention output for each GPU.

The individual self-attention outputs, however, are not con-

catenated across GPUs in Fig. 2(iii). Instead, the LSS

Transformer allows each GPU to use its assigned sequence

segment and individual self-attention output to compute a

partial cross-entropy loss and gradients in the backward

pass in Figs. 2(iv) and (v). Note that the backward pass

in Fig. 2(v) uses reduce-scatter as the backward operation

for the all-gather in the forward pass. Finally, the averaged

gradientsarecomputed and used for synchronized model pa-

rameter updates before training on the next data batch. One

important technical detail to mention is that the averaged

gradients are not computed for the positional embeddings,

which are distributed parameters across GPUs and should

not be synchronized.

To understand why this gradient averaging technique can

avoid self-attention concatenation and synchronize model

parameters at thesametime, let usassume that thepredicted

sequence output from transformer is y and its true label

is ỹ. The cross-entropy loss for the whole sequence, de-

noted as L (y, ỹ), equals the average of individual token’s

loss: L (y, ỹ) = 1
l x

P l x

i = 1 L (yi , ỹi ), where lx is sequence

length. According to thegradient summation rule, thegradi-

ent of L (y, ỹ) with respect to model parameters, denoted as

r L (y, ỹ), equals theaveraged gradient of each token’s loss:

r L (y, ỹ) = 1
l x

P l x

i = 1 r L (yi , ỹi ). Therefore, there is no

Validation accuracy on half-year of the ERA5 dataset. The effect in the 
accuracy is shown for including all 92 variables in the model. 

B. Sequence Length for Scientific Images400

Scientific images are usually found in very high resolution401

on multiple channels. Data resolution in Earth system science402

can vary depending on the targeted phenomena and whether403

the data comes from simulations or satellites. In our current404

work, the primary dataset utilized for convergence runs was405

the ECMWF Reanalysis v5 (ERA5) [12]. ERA5 represents406

the fifth generation of reanalysis by the European Centre407

for Medium-Range Weather Forecasts (ECMWF), covering408

global climate and weather for the past eight decades. It409

provides hourly estimates across a range of variables that410

represent the atmosphere, ocean, and land surface. Typically,411

a ViT patch size of 2 is employed to embed the climate412

data, which, when trained on low resolution, results in an413

8K sequence length [8]. The native resolution of ERA5 is414

770x1440 grid points, leading to a 277K sequence, which415

is impractical to accommodate on a single GPU. Moreover,416

weather models, such as those referenced in [32], can have417

resolutions up to 100 times greater than those of climate418

models in CMIP6. Additionally, these datasets may feature419

more than 100 channels, culminating in sequence lengths that420

extend into the millions.421

C. Training Results for Different Sequence Length422

Given the many ways the sequence length can be increased423

with climate data, along with the growing interest in devel-424

oping Earth system foundational models based on ViTs, we425

think this application space is ideal for studying the effect of426

sequence length.427

With the ERA5 dataset, we choose 5 input atmospheric428

variables: geopotential, temperature, u-component of wind,429

v-component of wind and specific humidity on 17 pressure430

levels: 10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 400,431

500, 600, 700, 850, 925, 1000, 3 surface level variables: 2m432

temperature, 10m u-component of wind, 10m v-component of433

wind, and 2 statics: orography and land-sea mask. Collectively,434

this combination leads to a total of 92 variables (or channels).435

The performance is evaluated for 4 variables: 2m temperature436

(T2m), 10m u-component of wind (U10), geopotential at437

500hPa (Z500), and temperature at 850hPa(T850). Wealso re-438

gridded the original dataset from 0.25° (770 × 1440) to 3 low439

resolutions for the experiments: 1.0° (180 × 360), 1.40625°440

(128 × 256), and 5.625° (32 × 64). The re-gridding is done by441

utilizing the xESMF [33] based on the high-performance Earth442

System Modeling Framework (ESMF) as the backend, and443

it performs re-gridding between the general curvilinear grids444

with different re-gridding algorithms, e.g., bilinear, nearest445

neighbor and conservative, we applied the bilinear method to446

all of our re-gridding tasks.447

We used the first half of the 2018 year for training and the448

second half for testing. All the hyper-parameters were kept449

constant between each experiment, using a predicted range of450

28 hours, with a lead-time of 6 hours. Figure 2 shows the451

effect of three different spatial resolutions: 5.625°, 1.40625°,452

and 1.0°. Since we use a constant patch size of 4, it will453

result in the following sequence lengths: 128, 2048, and 4050,454

Fig. 2. Validation accuracy on half-year of the ERA5 dataset of the Z500,
T850, T2m, and U10 variables. The effect in the accuracy is shown for three
different spatial resolutions: 5.625°, 1.40625°, and 1.0°. A patch size of 4 was
used, and so the sequence length for each resolution is 128, 2048, and 4050
respectively.

Fig. 3. Validation accuracy on half-year of the ERA5 dataset of the Z500,
T850, T2m, and U10 variables. The effect in the accuracy is shown for
including all 92 variables in the model, Multi-Ch-ViT, versus Agg-Ch-ViT.
The sequence length of the first approach is 11,776, while it reduces to 128
for the second approach.

respectively. Figure 3 shows the effect of Multi-Ch-ViT, by 455

using all 92 channels for each time-step, against the Agg- 456

Ch-ViT as implemented in [8]. This will also increase the 457

sequence length from 128 to 11,776 tokens per time step. 458

Even though experiments in Figures 2 and 3 are different, 459

they both show that increasing the sequence length results in 460

a better overall accuracy. Also it is worth noting, increasing 461

the resolution leads to a better accuracy from the very first 462

epoch, while for the multi-ch-ViT, we see improvements for 463

the majority of the predicted variables after the 4th epoch. The 464

reason for the latter is in multi-ch-ViT the sequence length 465

increases 92 times from the baseline, compare to 32 time 466

for the resolution increase, and so it takes longer time for 467

5
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• Multi-modalities

• Complex and custom encoding schemes are often required

• AI for Science: much more variety in modalities vs. consumer facing AI

• Different encoders for different modalities: share common latent space (ex: concat)

• Aligning representations of different modalities

• Mask and predict information about modality A from modality B

• Advanced multimodal fusion to combine features from different modalities

M
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Consumer facing AI: 
- Switching between modalities
- Injecting from modality A to modality B

AI-based Science:      
- Extracting knowledge from combined view of modalities

“generate python code 
to generate this cat 
drawn by polygons”

Different partially/completely 
aligned (or not) view of same 
target phenomenon (animal 
behavior) → Extract knowledge 
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Longer Sequence: a Challenge

➢The longer the sequence, the more the context that can be extracted

➢Ex: feeding an LLM entire books, library of papers, RAG, or segmentation

➢GPT-4-turbo → 128,000 tokens – GPT4-32k → 32,768 tokens    (1 Token = ¾ Word)

➢Gemini supports 1 million tokens but…

➢Compute and memory cost ∝ sequence2
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➢Very high resolution (up to 100,000 x 100,000 pixels)

➢Used in pathology

➢Ex: PAIP dataset

➢Pancreas

➢Diagnostic: Perineural Invasion

➢Segmentation with Vision Transformer (ViT)

➢Might require 1 billion input tokens(!)

➢Challenge:

PAIP 2023: Tumor cellularity prediction in pancreatic cancer and colon cancer (transfer learning)

Tumor Cellularity Prediction in Pancreatic Cancer and Colon Cancer 

* https://arxiv.org/pdf/2404.09707

Enzhi Zhang (PhD Student @Hokkaido U.)

https://arxiv.org/pdf/2404.09707
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Tumor Cellularity Prediction in Pancreatic Cancer and Colon Cancer 

4,096 patches 424 patches

Original Image

512x512

Canny Edge

Image

K0

K1

Morton Curve

Traditional Patching Proposed Adaptive Patching

Z-order Curve

Quadtree

Down-sampling

Transformer-based Model: ViT, UNTER, ViTUNET, Swin … etc  

~10x ↓ Patches: ~100x ↓ Compute and Memory

1 2 3

4 4
,

5

6

1

2

3

Fig. 1: Overview of AFP. The right-side flow (green) shows all the steps, starting from the original image, and ending up with

feeding the patches (tokens) to an intact transformer-based model. The reduction from 4,096 to 424 patches (of size 4⇥4)

while achieving the same dice score is from a real example of training 512⇥512 images from the PAIP [55] liver cancer

dataset on the UNTER [10] model: ⇠ 9.6⇥ reduction in sequence length, and ⇠ 12.7⇥ speedup in end-to-end training.

We summarize the core idea of each approach and their253

limitations in Table I. Hierarchical and attention approximation254

methods exploit the hierarchy and sparsity of the features255

inside the model. On the other hand, our solution is a256

lightweight mechanism that exploits the hierarchy and sparsity257

of features at different resolutions directly on the images in258

a pre-processing step, which leaves the attention mechanism259

and the model architecture intact.260

D. High-Resolution Segmentation261

High Resolution (HR) aggravates the long-sequence prob-262

lem. Initially, the common way in literature to handle this263

problem was to rely on a convolutional input encoder, which264

first down-samples the image to learn low-resolution fea-265

tures [57], [58] and then up-sample to complete the predic-266

tion [59]. To benefit from the effective entire-image receptive267

field of transformers, many efforts turned to transformer268

encoders (as pure ViT or CNN+ViT), and resorted to the269

techniques mentioned in the previous section for handling270

the long sequence problem. HRViT[60], HRFormer[61], and271

HRNet[62] learn the HR representations by cross-resolution272

stream. Vision-LongFormer [63] uses a pyramid-like hier-273

archical structure of models at different scales to combine274

local attention and global memory. HIPT [36] also applied a275

hierarchical pyramid transformer to a pathology dataset with 276

the utmost 4K 2 resolution. However, in comparison to these 277

models, our method is a pre-processing strategy, which doesn’ t 278

require additional revision to of the model or attention design. 279

I I I . ADAPTIVE PATCHING FOR HIGH-RESOLUTION 280

SEGMENTATION 281

Figure 1 gives an overview of the flow of AFP, in compar- 282

ison to the traditional method of dividing images uniformly 283

into equal-sized patches. AFP divides the image into patches 284

of different sizes based on the level of details, and then 285

downsamples the large patches so that all patches have the 286

same size. In the next section, we follow the flow of AFP 287

starting from the original image up until the patches are fed 288

to the model. 289

A. Quadtree-based Adaptive Patches 290

Image and Patches We use the following notation to distin- 291

guish the size of an ” image” and the ”patch” corresponding to 292

that image. Consider an image dataset D consisting of input 293

images x 2 RZ ⇥Z where Z is the resolution of image x. 294

Then, the sequence of non-overlapping patches can be noted 295

as { x i }
N
i = 1 2 RN ⇥P where N is the sequence length and P 296

is the patch size. For the traditional uniform grid patching in 297

ViT [2], the sequence length is N = ( Z
P

)2. For an image x 298

4 / 12
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(a) 5122@100% (b) Dice Score:100% (c) 73.32% (d) 77.31% (e) 78.32%

(f) 4, 0962@1.5% (g) Dice Score:100% (h) 71.32% (i) 75.77%
(j) 79.63%

(k) 8, 1922@0.39% (l) Dice Score:100% (m) 71.32% (n) 75.77% (o) 79.63%

(p) 32, 7682@0.024% (q) Dice Score:100% (r) 69.88% (s) 74.96% (t) 78.98%

(u) 65, 53462@0.006%

(v) PAIP dataset images

(w) Dice Score:100%

(x) Ground Truth

(y) 69.88%

(z) TransUNet

(aa) 75.31%

(ab) UNETR

(ac) 77.77%

(ad) APF-UNETR

Fig. 2: Example of segmentation quality for PAIP dataset. From 4K 2 to 64K 2 we zoom-in to show a portion of the image.

V. CONCLUSION557

We propose a solution that adaptively patches high-558

resolution images based on image details, drastically reducing559

the number of patches fed to vision transformer models. This560

pre-processing approach incurs minimal overhead. We achieve 561

segmentation quality for 64K 2 images comparable to SoTA 562

models operating on no more than 4K 2, at much higher 563

efficiency (geomean speedup of 6.9⇥). 564

9 / 12

Tumor Cellularity Prediction in Pancreatic Cancer and Colon Cancer 



Resolution of Mouse-brain MRI Images

15 microns

Classified regions
(Glasser et al., 2016)

Network structure
(Colleta et al., 2020)

Find Functional 
Module Structure

Cellular 
Connectome

15 micron iso voxel dMRI
(Johnson et al., 2022)

5 micron tractography and single 
cell level registration with LSM

(Johnson et al., 2023)

100 micron 
connectome
(Knox et al., 2019)

1-2mm Human 
connectome, 

and atlas (HCP)

Columns (ex: Maruoka et al., 

2017, Zeeuw et al., 2020)

Brain Data (collab. ORNL/Duke U.)

EXPECTED OUTPUT IN THIS PROJECT

<5 microns100 microns>100 microns

Capability of Understanding Mouse Brain 

Michikawa et al., in prep Igarashi et al., in prep

Calcium Imaging Brain Simulation

49
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⚫ Co-optimization
Framework

CFD+AI Design framework Aerodynaic Drag Efficiency & Design 
Aestheics => Better EV Design [Tsubokura et.al.]

Parametric Shape Morphing

複雑現象統一的解法フレームワーク

“CUBE” による空力シミュレーション

GA Multi Paramter Optimization “CHEETAH/R”

Shape 
Parameters on 

Aesthetics

Drag + Aestheics

Supercomputer Fugaku

1st Gen

Mutation

Crossover

2nd Gen 3rd Gen

Rapid 
Generation 

of CFD 
Mesh from 
Shape Data

Ultra Fast Prediction of Drag via Digital Twin

Embedding of human aesthics metrics

AI-Based Prediction and Optimization



Towards Foundational Models for Structural Engineering 
[Koji Nishiguchi](Nagoya-U/Riken R-CCS)

Giga-press (Tesla)

30% weight reduction

40% manufacturing cost reduction

3D generative AI (Parameter-to-3D model) 

for nonlinear structural engineering

Magic3D （NVIDIA, 2022） Shap-E （OpenAI， 2023）

Rapid performance improvement of 3D generative AI

Innovating vehicle structure with a giant aluminum die-casting



Recent studies of 3D generative AI 

• From 2022 onwards, not only 2D generative AI but also 3D generative AI 
have been emerging one after another.

―Lack of 3D datasets

―No dataset that can be applied to structural mechanics has been proposed.

Model name Release date
Research 

group
3D 

representation
Model architecture Data set

Number of 
3D data

Shap-E May 2023 OpenAI
Implicit 
function

Transformer-based 
diffusion model

ShapeNet（3D），
WebImageText（2D）

Several 
millions

Point-E December 2022 OpenAI 3D point cloud
Transformer-based 

diffusion model
ShapeNet（3D），

WebImageText（2D）
Several 
millions

Magic3D November 2022 NVIDIA 3D mesh NeRF, diffusion model
COCO（2D）, 

ImageNet（2D）
None

DreamFusion
September 

2022
Google, 

UCB
Implicit 
function

NeRF, diffusion model
COCO（2D）, 

ImageNet（2D）
None

Shap-E

Magic3D



DeepSDF incorporating structural dynamics



Parameter-to-3D foundation model

• Future Challenges: Model for thin-walled structures
―Almost all automotive structures and civil engineering structures are 

composed of thin-walled structures.

―In our present model, generating thin-walled structures is difficult.

• Future Challenges: Model for structures including local features 
(beads, spot welds, bolt joints)

https://images.app.goo.gl/S7DhP33XuP58gnfJ6 https://www.cars.com/auto-repair/glossary/ball-joint/

Original shape Generated shape



Final goal: Automation and democratization of structural design 

Natural 

language

Mechanical

parameters

3D structure
Natural 

language

Human 

feedback

Marketer 

Human feedback by Non-experts

Designer

Text-to-parameter model
(LLMs as Parameter Interpreter)

Paramter-to-3D model3D-to-text model
(LLMs to understand 3D structure)
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Another Real-world Problem:

How to Inspect Roads for Maintenance?
• Manual inspection

• Time: O(Decades)

• Cost: O($ Billions)

• Camera/laser Imaging technology

• Good for fast screening of visible surface cracks, depressions etc

• Not a reliable technology for understanding sub-surface conditions
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How?

• Machines mounted on vehicles 

• Extract cylindrical samples from core of asphalt layers

• Scan (projections) at RIKEN Spring-8 Synchrotron 

• Move projections to R-CCS (or other HPC facilities) 

• High-performance high-resolution CT image reconstruction

• 3D volumetric segmentation (~8K3)

• Provide resulting data for experts to analyze

---------------------------------------------------------------------------

• Radically changes how road infrastructure is inspected
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Can Imaging + HPC + AI Solve this Intractable Problem?

Riken Spring-8 + Sacla Synchrotron Light Source Facility
Hanshin Highway Co.
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Analyzing and Solving the Science of Infrastructural Decays

[Wahib et.al.]

End-to-end High-resolution CT Powered by Supercomputing

+

3D Volumetric Segmentation Powered by LLMs
(Image from https://developer.nvidia.com/blog/novel-transformer-model-

achieves-state-of-the-art-benchmarks-in-3d-medical-image-analysis/ )

State-of-the-art scale of resolution

Reconstruction + AI + Analytics

Supercomputers
(Fugaku/ABCI/ Frontier/AWS)

LLM powering 3D segmentation technology at 
unprecedented level of detail and accuracy

Sand particles
(4Kx4Kx6K)

Concrete & Asphalt
(6Kx6Kx11K)

Concrete
(6Kx6Kx3K)

↓ Cost: O($ Billions)
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TRIP-AGIS AI & HPC Infrastructure 2025
Extensive re-use of Existing Fugaku Assets=>FugakuNEXT

HPC Supercomputer “Fugaku”
HPC: 163PetaBytes/s memory bandwidth (No.1 currently)

Foundation model training: 2 Exaflops FP16
Operational Power: 16~20MW

Inference to be enhanced exploiting world’s top mem BW

External Network> 3.2 Terabps
NTT IOWN, to Clouds, 

Instruments, other SCs, 
etc.

> 20Terabps> 20Terabps

Fugaku Storage: 150 PetaBytes (current)
Fujitsu FEFS-LUSTRE HDD PFS + NVMe

HPCI Wide Area Storage：>100 PetaBytes

Distributed FS GFARM, S3, etc.

R-CCS DC Facility
> 40MW Power & Cooling

AI for Science Supercomputer Accelerator
AI Training 8+ Exaflops 8bits (4~5x Fugaku)

AI Inference 8+ Exaflops, 15PB/s Mem BW (1/10 Fugaku()
Operational Power 5~10MW (1/4 Fugaku)

Current Fugaku 
Resources
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MoU between DOE & MEXT on HPC (incl. AI)
as well as ANL-Riken MOU on AI for Science

April, 2024

Nov/19/2021

DOE-MEXT
David Turk (DoE Deputy Secretary)

Masahito Moriyama (MEXT Minister)

ANL-Riken
Paul Kerns & Rick Stevens (ANL)

Makoto Gonokami, Makiko Naka, Satoshi 
Matsuoka & Makoto Taiji (Riken)
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⚫ Quantum HPC hybrid software: Development of 
system software for seamless and efficient use of 
quantum computers and supercomputers by 
coordinating computing resources optimally.

⚫ Modular quantum software libraries: 
Developing modular software tailored to 
application fields and developing high-level 
software libraries for error mitigation and circuit 
optimization processing specialized to the 
characteristics of quantum computers. The 
software enables to develop advanced quantum 
applications by combining them as modules.

⚫ Cloud computing technology for quantum 
supercomputer hybrid platform: Develop cloud 
infrastructure software to support the use of 
quantum applications for business development 
using quantum computer for post-5G era.

JHPC Quantum Project: R&D Topics
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⚫ Two types of quantum computers with different characteristics will be installed at 
on-premises the RIKEN Center for Computational Science (Kobe) and (Wako). 
Planned quantum supercomputers hybrid platform consist of these quantum 
computers, Fugaku supercomputer, and supercomputers of the University of 
Tokyo and Osaka University.

Overview of our QC-supercomputer hybrid platform

IBM > 100qubits
May-June 2025

Quantinuum > 20
qubits Feb, 2025

Riken RQC ‘A’ 
QC 64 qubits



WP1: RPC 

middleware and APIs 
for Quantum-HPC 
Hybrid computing

WP2: Programming 

Environment for Quantum-
HPC Hybrid computing

WP3:Co-scheduler and cou
pler middleware for Quant
um-HPC Hybrid computing

WP4:modular quantum 
computing software 
libraries for Quantum-HPC 
Hybrid computing

WP6: Advanced 

quantum computing 
simulators

WP7: Optimization 

algorithm and technique 
for Quantum-HPC Hybrid 
computing 

WP5: Integration and 

Operation of Quantum-
HPC Hybrid computing 
platform

WP8:  Applications for 
Quantum-HPC Hybrid 
computing and 
demonstration of 
Quantum-HPC advantage

WP9: Cloud PaaS systems 
for Quantum-HPC Hybrid 
computing

Quantum-HPC Hybrid computing platform
WP10: Promotion of 
practical applications of 
Quantum-HPC Hybrid 
computing

JHPC quantum software structure and work package

64



IBM Quantum System 2 (Heron, 133Qubits) Installation 
Prep @ Riken R-CCS Kobe (Prodution by May 2025)



Quantinuum H1-2 Installation @ Riken Wako Campus
(Production Feb 2025)
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⚫ System software for QC-HPC integration should be able to support different 
kinds of QCs.

⚫ Quantum computers differ in their characteristics such as speed, fidelity, etc.

⚫ Superconducting quantum computers are reaching the scale of several 
hundred qubits. In order to aim practical use of QC including NISQ, we 
should explore use-case using large qubits for practical use. 

Why IBM and Quantinuum?

QC qubits Characteristics Targets

Superconducting Qubits
(IBM and ‘A’

Medium qubit count (100 qubits or more)
Fast operating speed (a few ns). Medium
Fidelity.

Development of utilization technology and
system software for the utilization and
practical use of large- and medium-scale
NISQ machines.

Trapped Ion Qubits
(Quantinuum)

High fidelity, the number of qubits is not
large.(about 20 qubits). Slow operation
speed (a few ms). Efficient all-to-all qubit
operation.

Software development using small scale
but high fidelity. Use of quantum
computers with properties different from
superconducting qubits.



Quantum-centric Supercomputing for quantum chemistry
J. Robledo-Moreno et al., arXiv:2405.05068

“Chemistry Beyond Exact Solutions on a Quantum-Centric Supercomputer” Although universal quantum computers are promising for predicting electronic structure 
problems in quantum chemistry, the deep circuits and huge amount of measurements required by current quantum computers make realistic quantum chemistry 
calculations difficult. In this study, the 6400 nodes of the supercomputer "Fugaku" are used to assist IBM's latest quantum processor, Heron, to study large 
molecules that cannot be handled by conventional quantum-classical hybrid calculations, and molecules that are difficult to calculate only by HPC-based classical 
computers (N2 triple bond breaking and the electronic structure of iron-sulfur clusters), which are difficult to calculate using only HPC computers. As a result, it was shown 
that the combination of supercomputer and quantum processors (quantum-centric supercomputing) can provide good approximate solutions for practical quantum 
chemical calculations. In this study, the quantum circuits representing the quantum states of molecules were fixed, and large data were transferred only from the quantum 
computer to the supercomputer. For  more accurate computation, future tasks include the improvement of quantum circuits by data transfer between the quantum 
computer and the supercomputer, and the development of algorithms on the classical computer side that are suitable for quantum-centric supercomputing. 

Quantum system Classical HPC system

chemical properties

target material

Quantum-centric supercomputing

Sampling orbital occupation patterns

q1, q2

q3, q4

q5, q6

q7, q8

q9, q10

⋯

Solving eigenvalue problems

& recovery occupation patterns

𝑅

𝐸

orbital index

occupation density

N2 : Bond breaking on large basis set 

58 qubits

45 qubits

Fe2S2: Precision many-body physics

Fe4S4: Pushing hardware capabilities

77 qubits
68
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Coordinated scheduling with HPC scheduler and 
QC request scheduler by priority control 
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⚫ Our project, JHPC quantum, was accepted and started from Nov. 2023.

⚫ Installation of QC hardware in 2Q 2025

⚫ In 1st Q of 2026, operation of the quantum supercomputer hybrid platform will be 
started and used to demonstrate the effectiveness of quantum and HPC hybrid 
applications in the later half of our project.

JHPC quantum project schedule

We will start “test-user 
program” to invite external 
users who are interested in 
QC-HPC hybrid computing.

International collaboration is 
welcome
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FugakuNEXT Feasilibity Study (Towards “Zetta-scale” AI&HPC)

The next-generation computational infrastructure is expected to become a platform for realizing SDGs and Society 5.0 by
providing advanced digital twins that will bring "Research DX" in the science. Aiming to realize a versatile computing
infrastructure that can execute entire workflow by making full use of wide range of computational methods, such as
simulation techniques, AI, and BigData at scale, we conduct a holistic investigation on architecture, system software and
library technologies through co-design with applications.

As a basic principle of system design, we practice the "FLOPS to Byte" concept from architecture development to
algorithm or application design to streamline data transfer and computation under power constraints, while taking necessary
computing accuracy into consideration. Under the ALL JAPAN team composition, we will investigate system configurations
and elementary technologies which improve effective performance of the next-generation computing infrastructure.

Project Overview

Research on Architecture
⚫ Investigating technological possibilities (such as 3D stacked mem, accelerators, chip-to-chip direct optical link) and

performance of the entire system or its components based on trends in semiconductor and packaging technologies
⚫ Predicting future system performance based on performance analysis of benchmark sets provided by Application Research

Group, and feeding back to next-generation application development

Research on System Software and Library
⚫ Drawing roadmap for future system software development in Japan, specially considering data utilization enhancement,

integration of AI technology with first-principles simulation, real-time data processing, and assurance of high security

Subject of Investigation

Investigation Schedule

H
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Wider application area

Research DX platform
by digital-twins

Research on Applications
⚫ Building a broad benchmark set to evaluate multiple architecture choices while considering improvements in algorithms and 

parameters of application based on the results of architectural evaluations and exploratory "what-if" performance analysis
⚫ Investigating what classes of algorithms are expected to evolve significantly for future systems

Architecture

System Software

Application

Explore device/arch technology Performance estimation with benchmarks Arch selection and their R&D

Examine existing SW and its utilization Identify requirement of SW development Draw roadmap 

Examine existing apps and benchmark design Perf. analysis by benchmark evaluation Study for target science

Architecture
Research

System Soft.
Library

Research

Application
Research

Provide / evaluate 
benchmarks

Strawman processing element architecture

Examine SW 
utilization and 

requirements

Explore SW 
requirement and 

draw roadmap

Co-design

2023 H1 2023 H2 2024 H1 2024 H22022 H2
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Organization Chart of System Research by RIKEN
GL: Group Leader
AD: Advisor
SGL: Sub Group Leader

Architecture Research Group System Software and Library Research Group
Application Research Group

(Representative Institution) RIKEN R-CCS
【PI: M. Kondo, AD: S. Matsuoka(R-CCS)】

System Research Team

RIKEN R-CCS
【GL: Sano, Co-GL: Miwa (UEC), AD:Amano (Keio)】

Architecture Research Group

RIKEN R-CCS
【GL: Sato,Co-GL:Katagiri (Nagoya-U), Sato (TUT),  AD: Sato】

System Software and Library Research Group

Hokkaido Univ. (Co-I Institution)
【GL: Iwashita, Co-GL :Takahashi (U. Tsukuba), Fukazawa (Kyoto U.),

AD: Nakajima / Tomita (R-CCS)】

Application Research Group

Kyoto Univ. (Collaborator)
【Delegate: Fukazawa】

Fujitsu Ltd. (Co-I institution )
【SGL: Shinjo】

Architecture Research sub-G2

Tohoku Univ. (Co-I institution)
【SGL: Takizawa】

Scheduler / Runtime sub-G

Yokohama City Univ. (Co-I institution)
【SGL: Terayama】

Life Science App. Area sub-G

Univ. Tsukuba  (Co-I institution)
【SGL: Tatebe】

IO / Storage / Filesystem sub-G

Intel Corporation (Co-I institution )
【SGL:Yazawa】

Architecture Research sub-G3

NIMS (Co-I institution)
【SGL: Yamaji,Co-SGL:Fukushima(UTokyo)  】

Material and Energy  App. Area sub-G

National Institute of Informatics (Collaborator)
【SGL: Takefusa】

OS / Virtualization / Cloud sub-GAMD Inc. (Co-I institution )
【SGL:Yoshida】

Architecture Research sub-G4

JAMSTEC (Co-I institution)
【SGL: Kodama】

Weather/Climate Sci. App. Area sub-G

Osaka Univ. (Co-I institution)
【SGL: Date】

HPC Env. Usage Investigation  sub-GNVIDIA Corporation (Collaborator)
【SGL:Wells】

Architecture Research sub-G5

Support on Group Management

Univ. Tokyo  (Co-I institution)
【SGL: Fujita】

Disaster Prevention App. Area sub-G

Kyushu Univ. (Co-I institution)
【SGL: Nanri】

Communication Library sub-G

Hewlett Packard Enterprise (Collaborator)
【SGL:Negishi】

Architecture Research sub-G6

RIKEN
【SGL: Onishi】

Manufacturing App. Area sub-G

RIKEN
【SGL: Aoki】

Fundamental Science App. Area sub-G

RIKEN
【SGL: Imamura】

Numerical Library sub-G

RIKEN
【SGL: Umemoto】

Social Science App. Area sub-G

RIKEN
【SGL: Mohamed】

AI Framework sub-G

Univ. Tokyo  (Co-I institution)
【SGL: Shimokawabe】

Digital-twin / Society5.0 App. Area sub-G

Univ. Tsukuba  (Co-I institution)
【SGL: Takahashi】

Computational Science Algorithm sub-G

TiTech (Co-I institution)
【SGL: Yokota】

Machine Learning Algorithm sub-G

RIKEN
【SGL: Murai】

Benchmark Construction sub-G

RIKEN
【SGL: Domke】

Performance Modeling sub-G

Nagoya Univ. (Collaborator)
【Delegate: Katagiri】

Support on Group Management

RIKEN BDR
【SGL: Taiji (RIKEN BDR】

Architecture Research sub-G1

DDN Japan (Collaborator)
【Delegate: Hashizume】

Storage Archi Pattern Investigation

NAOJ (Collaborator)
【Delegate: Takiwaki】

Support on Space / Planet Sci. Apps

Japan Atomic Energy Agency (Collaborator)
【Delegate: Onodera】

Support on Digital-twin Apps

JAXA (Collaborator)
【Delegate: TBA】

Support on Manufacturing Apps

RIKEN
【SGL: Tsuji】

Compiler / Programming-model sub-G

RIKEN
【SGL: Kodama】

Weather Model Perf Analysis sub-G

Meteorological Research Institute (Collab)
【Delegate: Eito】

Support on Weather Model Analysis

Arm Ltd. (Collaborator)
【SGL:Lecomber】

Architecture Research sub-G7
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⚫ Expected schedule

Expected Timeline of Fugaku-NEXT R&D and Future Plan

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

Feasibility
Study

Preliminary
Design F-Next Operation

Detailed
Design

Deploy

Fugaku OperationFugaku

Fugaku-
NEXT

Feasibility
Study

Preliminary
Design

F-Next2

Operation
Detailed
Design

DeployFugaku-
NEXT2

⚫ What’s going on in FY2024 for Fugaku-NEXT development

2024
Apr

May Jun Jul Aug Sep Oct Nov Dec
2025
Jan

Feb Mar Apr

Candidate Arch. FixFeasibility
Study

Architecture Study Report to MEXT

RIKEN Selected as main
project body Development 

PJ start?
MEXT

Committee evaluation Project preparation

Budget allocation request Budget approved?

Vendor bidding



Organization for FugakuNEXT Development

RIKEN  

Director

Satoshi Matsuoka (Ph.D.)

President

Makoto Gonokami （Ph.D.）

Center for Computational Science

Next-Generation HPC Infrastructure Development Division

Kentaro Sano
(Ph.D.)

In order to promote research and development of Japanese new flagship supercomputer, “Next-Generation HPC
Infrastructure Development Division (tentative name)” will be established at the RIKEN Center for
Computational Science (R-CCS) in April 2025. This division will coordinate and promote the development effort
for the next-generation flagship supercomputer system collaborating with research organizations both within
and outside R-CCS.

Division Director Masaki Kondo (Ph.D.)

Yoshiyasu Aoki 
(Ph.D.)

Kento Sato 
(Ph.D.)

Next-Generation HPC Infrastructure System Development Unit

Next-Generation HPC Application Development Unit

Other Units / Project Management Office

Development of architectures, system software and other systems related to next-
generation HPC infrastructures

Develop and support applications related to the next-generation HPC infrastructure, and 
study co-design (co-design) using these applications.
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System Performance Requirement in RFP

CPU GPU

Total Num. of Nodes >= 3400 Nodes

FP64 Vector FLOPS >= 48PFLOPS >= 3.0EFLOPS

FP16/BF16 AI FLOPS >= 1.5EFLOPS >= 150EFLOPS

FP8 AI FLOPS >= 3.0ELOP >= 300EFLOP

FP8 AI FLOPS (w/ sparsity) ー >= 600EFLOPS

Memory Size >= 10PiB >= 10PiB

Memory Bandwidth >= 7PB/s >= 800PB/s

Total power consumption < 40MW (compute node and storage）

⚫ Performance requirement for FugakuNEXT entire system
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⚫ Initial vision of architectural directions
⚫ Paradigm shift in architecture-algorithm toward “FLOPS to Byte (data movement efficiency)”
⚫ Significant increase in relative memory bandwidth using 3D stacked memories and processors
⚫ Silicon photonics to ensure high bandwidth for remote memory accesses
⚫ Ensure execution efficiency in strongly scaled problems with low latency execution, etc.

A Direction toward Next-Generation Computational Infrastructure

Tightly coupled and 
homogeneous system

organization

Integration to
substrate

Strawman architecture of processing element

Organic Substrate

TSV Interposer

Silicon Photonics 
Optical InterfaceCompute Centric Accelerator

3D SRAM//DRAM

3D SRAM/DRAM

3D SRAM/DRAM

Strong Scaling / Compute 
Intensive Accelerator
Low Latency 3D SRAM

Many Core General Purpose CPU

3D SRAM

3D SRAM

3D SRAM

High Capacity DRAM

High Capacity DRAM

High Capacity DRAM
Silicon Photonics 

Multi-Port High Injection
1Tbps x 12 = 12Tbps

“3D stacked memory” & “Photonics” technologies: Post-Fugaku technology driver
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⚫ Heterogeneous node architecture

⚫ CPU + GPU architecture

⚫ Tentatively 2-CPU and 4-GPU configuration

⚫ Subject to Scale-up/Scale-out and chiplet

integration technologies

⚫ High BW with advanced memory technology

⚫ Scale-up NW (intra-node socket NW)

⚫ P2P or switched connection w/ UALink

⚫ Scale-out NW (inter-node NW)

⚫ Fat-tree topology with Ultra-Ethernet 

Example Node Architecture for the AI-for-Science Machine

System target: More than 5-10x effective 
performance improvement in HPC applications 

and more than 50EFLOPS AI training performance
(needs Zetta-scale low-precision arithmetic perf.)

Scale-up
Network

CPU 

Accel. Accel.

Accel. Accel.

CPU CPU 

Accel. Accel.

Accel. Accel.

CPU 

Scale-out Network

⚫ System network which is good for both 
strong/weak scaling

⚫ Combination of scale-up/scale-out NW

⚫ Having more than 10K accelerator sockets 
in the system

⚫ NW among accelerator sockets

System Architecture for AI-for-Science
Computing Infrastructure



⚫ Needs for a power-efficient compute node
→ Exploration of accelerators

⚫ Truly useful accelerator for HPC and AI workloads

⚫ HPC→Memory bound, AI→Compute & Memory bound

⚫ Characteristics of current processing element

⚫ CPU: high generality, low-latency, low compute density

⚫ GPU (SP): vector processing, middle compute density

⚫ Matrix: dedicated for dense algebra, high compute density
(ex. Tensor core, XMM, SME, AMX, TPU, CGRA, …)

⚫ What to study in node architecture exploration

⚫ What and how to integrate them

⚫ Effective memory bandwidth + data movement with 
high programming productivity

Key Research Item for Node Architecture Selection

CPU
GPU/

Vector
Matrix

Need to find the optimal balance

Roofline analysis on A64FX

Quantitative benchmarking analyses is necessary
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⚫ Candidates of packaging technologies

Implementation Approaches for Node Architectures

Technical difficulty
Low High

chip-to-chip connection
(chiplets)

Monolithic die
(conventional)

Chiplet-based
(becoming main-stream)

More aggressive chiplet-based
(Future direction)

3D stacking approaches

2.5D connection
(conventional)

3D - Hybrid Bonding
(single chip stacked)

3D implementation
(multi chips stacked)

Optics

AOC
(conventional)

Silicon-Photonics – co-packaged optics connection
(various technology candidates incl. WDM)

CPU Acc

HBM

HBM

HBM

HBM

CPU/
Acc

I/O

CPU/
Acc

Acc

Acc

CPUHBM

HBM

HBM

HBMAcc

CPU / 
Acc

HBM

HBM

HBM

HBM

CPU / Acc HBM

HBM

HBM

HBM

3D
Memory

CPU / Acc HBM

HBM

HBM

HBM
3D

Memory

3D
Memory

3D
Memory

3D
Memory

CPU / 
Acc

HBM

HBM

HBM

Si
 

P
h

o
to

CPU / 
Acc

HBM

HBM

HBM

Si
 

P
h

o
to

Power efficiency of data movement
Low High



pJ/bit

LPDDR

HBM

3D Mem
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⚫ Estimated energy per operation on current and future technologies

⚫ Based on historical trend obtained by publically available data

⚫ Not related to any partner vendors’ perspective

⚫ Case for 30MW power budget (10MW for memory and 20MW for compute)

⚫ Network is omitted for simplicity but it is very important 

⚫ May not be realistic due to other constraint such as cost and thermal issues

Performance Projection in Power Constrained Scenarios

pJ/FLOP

LS-CPU
(FP64 Vec)

GPU
(FP64 Vec)

Matrix
(FP16/BF16)

50-200PB/s
by LPDDR

300-700PB/s
By HBM

2000-6000PB/s
by 3D stacking mem

0.4-1+EFlops
By LS-CPU

2-4 EFlops
By GPU (FP64)

20-100+ EFlops
By Matrix (FP16/BF16)
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⚫ Estimated energy per operation on current and future technologies

⚫ Based on historical trend obtained by publically available data

⚫ Not related to any partner vendors’ perspective

⚫ Case for 30MW power budget (10MW for memory and 20MW for compute)

⚫ Network is omitted for simplicity but it is very important 

⚫ May not be realistic due to other constraint such as cost and thermal issues

Performance Projection in Power Constrained Scenarios

LPDDR HBM 3D Staking Mem.

LS CPU (FP64 Vec.)
1EFlops, 100PB/s

(B/F = 0.1)
1EFlops, 500PB/s

(B/F = 0.5)
1EFlops, 4000PB/s

(B/F = 4.0)

GPU (FP64 Vec.)
4EFlops, 100PB/s

(B/F = 0.025)
4EFlops, 500PB/s

(B/F = 0.13)
4EFlops, 4000PB/s

(B/F = 1.0)

Matrix (FP16 Tensor)
100EFlops, 100PB/s
(B/F = don’t care)

100EFlops, 500PB/s
(B/F = don’t care)

100EFlops, 4000PB/s
(B/F =don’t care)

Summary of system performance projection
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System Software and Library Research

Survey of system SW trend &
draw development roadmap

Examine new system SW areas 
for industrialization

①Scheduler/
Runtime sub-G ②IO/Storage/

Filesystem sub-G

③OS/Virtualization/
Cloud sub-G

④HPC Env. Usage 
Investigation sub-G⑤Communication

Library sub-G

⑥Compiler/Progra-
mming model sub-G

⑦Numerical
Library sub-G

⑧AI framework
sub-G

Cross-cutting 
technologies (security, 

auto-tuning, etc.)

ALL Japan team organization with industry-academia collaboration

⚫ Objective

⚫ Investigate technological trend of system software and draw R&D roadmap based on it

⚫ Research overview

⚫ Item 1: Investigates System Software Trends

⚫ Study existing system software and future trends in terms of portability, productivity and performance

⚫ Study current usage status of system software in the HPCI systems and major supercomputing centers in the world 

⚫ Item 2: Collects information to decide software development strategies

⚫ Define strategies for software development (proprietary or open-source software?)

⚫ Item 3: Comparison of similar software

⚫ Select best software and clarification of alternative software

Objective and Overview
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Expectation of Storage System (Under Consideration)

⚫ Direction to storage system for FugakuNEXT

⚫ Need advanced storage system that can treat with new I/O request for data science, large scale 
checkpoint, and AI-for-Science

⚫ Requirement of storage system performance and size from users

⚫

⚫ Data migration from Fugaku to FugakuNEXT (Continuous operation and usage)

⚫ Hardware/Software design for stable performance

⚫ Sustainable development of file-system and system software (needs OSS-based ) 

Architecture File System
Bandwidth 

(effective performance)
IOPS Amount

First 
Tier

(Near) node local 
storage

Now consideration
(such as CHFS) 

Time for dumping all 
memory: Less than 1min

Time for meta-data processing 
of max I/O processes: less than 1s

Twice as total 
memory size

Second 
Tier

Shared storage Lustre, DAOS
Time for dumping all 

memory: Less than 5min
1/10 of first tier storage

30x of total memory 
size

First-tier
(Near) node 

local storage +CHFS

Second-tier
Shared storage
+ Lustre/DAOS

bandwidth: 350 TB/s (stable perf. by SSF)
IOPS: More than 100M IOPS (more than 1 IOPS per process)
Size: 40 PB

*SSF: Single Shared File

First
tier

(example for memory size: 20PB, max num. of I/O processes: a few tens millions processes

bandwidth: 70 TB/s (stable perf. by SSF)
IOPS: More than 10M IOPS (more than 0.1 IOPS per process)
Size: 600 PB

Second
tier

⚫ An example of FugakuNEXT storage system (subject to change based on further assessment)
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⚫ Surveying computational resources requirement to realize cutting-edge research results 
by next-generation computing infrastructure

⚫ Not only in general performance but also in various indices such as programming productivity

⚫ Constructing (micro)benchmarks that reflect the characteristics of representative 
applications to estimate application performance

Application Research

Objective

Overview and Current Status

⚫ Pure apps group (Life science, Materials and energy, Weather and climate, Earthquake/tsunami disaster 
prevention, Manufacturing, Fundamental science, Social science, Digital-twin & Society 5.0)

⚫ Completed a survey on application analysis on current supercomputers

⚫ Studying expected results in each application field and the computer resources required for them around 2030 

⚫ Developed benchmark programs reflecting the characteristics of programs in each application area 
(GENESIS, qNET_kernel, QWS, SCALE, CUBE, QWS, ISPACK) 

⚫ CS group (computational science/ML algorithms, benchmark building, performance modeling)

⚫ Decided to use MLPerf as a machine learning benchmark and completed model selection

⚫ Studying benchmarks with variable problem size and amount of memory per core

Hardware and application co-design for post Exascale computing is important



85

Science Target in FugakuNEXT Era

Simulation of Subcellular Sequence Dynamics

Faster all-atom 
molecular dynamics 
calculations (>100x)

multi-scale models

Long-term dynamics 
and cellular function

The “K computer“ achieves short time 
dynamics of 100 million atoms system.

“Fugaku” allows for longer dynamics 
of even larger systems.

Enables dynamics considering 
electronic states (applied to bio-
digital twin antibody drug 
discovery, etc.)

Parallel evolution 
of machines and 

algorithms 
(coarse-grained) 
accelerated x10~

「Fugaku
NEXT」

20302011～ 「K computer」 2020～ 「Fugaku」

Digital Twin（Upper）
AI-Assisted Multi-Objective Optimization (Lower) 
to Shorten Automotive Design Time

Automation of automobile design 
by proposing optimal shapes usin
g generative AI,

Automobile aerodynamics

Wind tunnel replacement by high-resolution LES
Fundamental research Establishment of automatic dri

ving technology



Fugaku LLM (13 billion parameters) 

It takes about “10 -15 years” to 
learn Fugaku LLM in advance. 

Fugaku LLM pre-study completed in 
“a month” using “Fugaku”'s 1/11th scale

Pre-training of state-of-the-
art trillion-level parameter
infrastructure models in 2 
months

Dramatic evolution of the 
innovation cycle through AI 
for Science acceleration

Available free of charge on the Fujitsu Res
earch Portal SambaNova of the U.S. provi

des a commercial platform.

https://portal.research.global.fujitsu.com/

Weather and Climate

Development of a guerrilla rainfall forecasting 
method using the “K computer”

World’s first Real-time guerrilla rainstorm forecast by 
“Fugaku” during 2021 Tokyo Olympic & Paralympic Games

Solving the global climate crisis
Integrate with social and urban 
digital twin and AI to virtual trial 
and recommendation of policies

w/o control

controlled
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Science Target in FugakuNEXT Era

Target models
Number of 

tokens learned

13B
Transformer 

models

230B 
Token

「Fugaku
NEXT」

20302011～ 「K computer」 2020～ 「Fugaku」



AI Hardware Trends
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⚫ As pretraining models becomes ever expensive with super-quadratic 
complexity, and LLM usage spreads, training market will confined to 
a few players while market emphasis will shift to inference chips 
that can be made much more power efficient.

⚫ Also LLM training improvement is saturating with lack of data; 
emphasis is now shifting to reinforcement learning at inference time 
as per ChatGPT-o1

⚫ Inference of heavy-duty LLMs will not happen at the edge as it will 
be much cheaper to send the data over 5G/6G, not sacrificing 
battery life and other resources such as memory

⚫ Thus inference at IDC will be the largest infrastructure as well as 
consumer of societal energy (e.g., ChatGPT-o1)

⚫ ‘Zettascale’ in AI with 40MW power budget on FugakuNEXT
contributes to this with emphasis on low precision (FP/INT 4/8 bits)



Jens Domke

Modern GPUs accelerated by Low Precision 

Matrix Engines
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H100 B200 Mi300A

FP64 67TF 40TF 123TF (60+TF)

FP32 67TF 40TF 123TF

TF32 495TF 1100TF 490TF

FP16/BF 990TF 2200TF 981TF

FP8 1980TF 4500TF 1960TF

INT8 1980TOPS 4500TOPS 1960TOPS

FP4 NA 9000TF NA



Jens Domke

What about Dense Linear Algebra?
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Precision Depending Analysis – what and how matrix engines 

provide good ROI relative to their silicon occupancy?

⚫ Energy = compute (multipliers, volume) + data movement 

(between units, surface)

⚫ Low precision – low surface:volume, optimize to minimize 

data movement, matrix engines to minimize wire distance

⚫ High precision – high surface:volume, data transfer less 

problem, performance & energy gain small, dark silicon of 

unused multipliers wasteful, wide vectors sufficient.

⚫ 4~16 bit apps: Deep Learning/AI training

⚫ 19~ (TF32) ~ 32 bit apps: DL/AI, molecular dynamics, higher 

order methods (mixed precision)

⚫ 64 bit apps: first-principle material science eg DFT  => 

Emulation of “64 bit” apps with “Ozaki Scheme” => with 

1/20 slowdown we expect effective 10 Exaflops from 200 

INT8 ExaOps “Zettascale” AI machine (20x Fugaku)

Low precision 

MM

Low volume 

(compute) : 

surface 

(comm) ratio

Matrix units 

help to reduce 

data transfer 

energy

High precision 

MM

high volume 

(compute) : 

surface (comm) 

ratio

Vector units may 

be sufficient as 

benefit of matrix 

may be low



FP64 Emulation Using INT8 Tensor Cores
Algorithm Description

• We implemented this on NVIDIA Ada,
Hopper, and Blackwell GPUs

• Various applications were tested to 
determine accuracy and performance 
impact:

• H P L

• Materials Science

• Electronic Structure

• Molecular Dynamics

• Computational Chemistry

• Sparse Direct Solvers

https://arxiv.org/abs/2306.11975

• Input and output matrices are IEEE FP64 
(C = A x B)

• Structure of DGEMM leveraging INT8 
Tensor cores

• Prologue:

• Find max(A[i,:]), max(B[:,j])

• Align mantissa values of A and B elements to 
the same exponent

• Slice up A and B mantissas in integer buckets

• Compute:

• Compute-accumulate dot products of slices 
using integer arithmetic

• Structurally similar to FP64 hardware MAC, just 
8 bits at a time but using IMMA tensor cores

• Epilogue:

• Assemble FP64 results from sliced 
representation and the exponent information

(Slide Courtesy NVIDIA)



Acceleration of Quantum Chemistry using 
Combinatios of Emulation (Ozaki) & Mixed 

Precision utilizing AI-Centric GPUs 

91
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⚫ Science needs to be accelerated by AI via innovations, not merely by streamlining

⚫ Just getting rid of the mundane admin work for the scientists has limited value due to
Amdahl’s Law

⚫ The ultimate goal of AI for Scientist is for the AI to have sufficient scientific creativity
that would rival or even exceeded human scientists, thus solving the true energy
crisis (of having too many human scientists)

AI for Science Needs to Be “Scientifically Creative”
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⚫Tensor Parallel  [TP]
⚫ The more you split the layer via TP → less compute and more comm

⚫ TP → strong scaling

⚫ Conclusion: do TP inside the node (on a multi-GPU system)

⚫ In practice, we observe TP = 2~8 

⚫ Depends on intra-node interconnect

⚫Context Parallel  [CP]
⚫ Necessary evil

⚫Pipeline Parallel  [PP]
⚫ Necessary evil

⚫ There is always inefficiency (bubble in a pipeline)

⚫ Used when running into the limits of TP, CP, and DP

⚫Data Parallel  [DP]
⚫ Use to the maximum possible

TPPPDP CP

4D Parallelism: TP+CP+PP+DP



⚫ “Compute and Communication 

cost per an iteration of GPT3-

175B parameterized as: B = 

16, E = 12K, S = 32K, 

$N_p$ = 175B, L =96, W = 2. 

Model_FLOPS is empirically 

measured (ModelFLOPS = 

467.9 x 96 TF)”

⚫Given 2PF compute FP8 

w/50%utilization, and 

400GByte/s injection BW, TP 

transfer time would be less 

than compute.

GPT Compute & communication estimate
[by M. Wahib & A. Drozd, R-CCS]



• Quad APU (Mi300A, GB200 etc.) x 4 node as a 
unit

• 8 high bandwidth intra node links tightly 
connecting APUs, 6 links intra node and 2 links 
inter node (as PCIe5-400GbE)

• This creates an isomorphic quad-tree with 
almost same bandwidth for IF (64GB/s x2 ) 
and 400GbE(50GB/s x 2)

• So the tree is 4, 16, 64, 256, … There are 
shortcut links as in practice the 400GbE links 
are connected to a fat switch, allowing 
shortcuts but we will ignore those for the 
moment

• Given such a tree, there is a classic collective 
algorithm for reduction, whose runtime is 
exactly the amount of data that are injected 
into the network / bandwidth, sans a small 
startup overhead. This does not change for 
arbitrary tree size

• For example, to do a word-wise collective 
summation of 100GB data on every node in 
this network will always take one second, 
which is equivalent to the time it takes to 
inject 100GB of data into the network. There is 
a small amount of logarithmic overhead but 
can be ignored for a large payload

• In a nutshell, gather-scatter time ~= injection 
time

Isomorophic Tree gather-scatter network ‘merging’ 
scale-up and scale-out

IF (64GB/s)

PCIe5+400GbE 
(50GB/s)

Can be properly overlayed on top of standard 
HPC networks e.g. Fattree, prioritarizing
shortcuts to reducing latency
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Macro-scale terascale memory within Scale-up 
Network

Training Inference

(caching)

Model
Swapping

✓ Aggressive 

offloading

Tandem 
sim/training

✓ w/o affecting 

performance

Checkpoint/

Logging

Datasets

✓ Very long 

decoding jobs

(ex: CoT, GoT)

✓ KV-cache: perf 

penalized, job 

stays local

✓ Commercial:

pooling/comparing   

different models

✓ Science:

Different models at  

different phases in 

simulation

✓ Simulation does 

in-Situ training

✓ Swap model and 

simulation data

✓ Avoid jitter or 

interruptions when 

checkpointing or 

logging

✓ Stream data

when training

✓ Free shuffle

(memory is byte 

addressable)

Per DeepSpeed:

~20-25% 

Offloadable

Simple perf model:

~10-20x ↑ KV-cache     

~5-10x  ↓ slowdown 

Swapping 1TB:

~1 Second

Swapping-in 500B 

Parameter Model:

~1 Second

Zero Overhead: 

checkpointing 500B 

Parameter Model

(Very important for 

GPUs whose RAS are 

not up to A64FX level)

Staging Dataset

From Storage

✓ Prompt caching

(90% cost saving)



Research: Dynamic LLMs
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Background The Lottery T icket Hypothesis Experiments Discussion

Network Pruning

Neural network pruning: Reduce

parameters (sometimes by 90+ %)

without sacrificing (much)

accuracy

Old idea: e.g. Optimal Brain

Damage (LeCun et al. 1990)

Many types:

Unstructured (by weight) vs

structured (by neuron/ channel)

Pre-defined vs automatic

By loss vs by activat ion vs by

magnitude vs ...

Background The Lot tery T icket Hypothesis Experiments Discussion

Network Pruning

Neural network pruning: Reduce

parameters (sometimes by 90+ %)

without sacrificing (much)

accuracy

Old idea: e.g. Optimal Brain

Damage (LeCun et al. 1990)

Many types:

Unstructured (by weight) vs

structured (by neuron/ channel)

Pre-defined vs automatic

By loss vs by act ivation vs by

magnitude vs ...

Learned Token Pruning for Transformers KDD ’22, August 14–18, 2022, Washington, DC, USA.

This is the best restaurant, and I will be returning for another meal.

This is the best restaurant, and I will be returning for another meal.  

This is the best restaurant, and I will be returning for another meal.

This is the best restaurant, and I will be returning for another meal.

Layer 1   

Layer 4

Layer 8

Layer 12

Positive SentimentClassification

15 tokens

11 tokens

4 tokens

2 tokens

Figur e 2: (Lef t) Schematic of tok en pruning for a sentiment analysis task . Unimp or tant tok ens ar e pruned as the input sequence

passes thr ough the layers. (Right) An example of attention pr obabi l i ty in a single head wher e a mor e impor tant tok en receives

mor e attention f r om other tok ens. Thus each tok en’s impor tance scor e is computed by tak ing the average attention probabi l i ty

i t receives, which is computed by tak ing the column mean of the attention probabi l i ty .

prune attention heads and lters of weight matrices. [15, 29] dy-

namically determines structured pruning ratios during inference.

Recent block pruning schemes chunk weight matrices into multiple

blocks and prune them based on group Lasso optimization [26],

adaptive regularization [53], and movement pruning [24]. All of

these methods correspond to weight pruning, where model parame-

ters (i.e., weights) are pruned.

Recently, there has been work on pruning input sentences to

transformers, rather than model parameters. This is referred to

as token pruning, where less important tokens are progressively

removed during inference. PoWER-BERT [13], one of the earliest

works, proposes to directly learn token pruning con gurations.

LAT [21] extends this idea by introducing LengthDrop, a procedure

in which a model is trained with di erent token pruning con gu-

rations, followed by an evolutionar y search. This method has an

advantage that the former training procedure need not be repeated

for di erent pruning ratios of the same model. While these meth-

ods have shown a large computation reduction on various NLP

downstream tasks, they x a single token pruning con guration

for the entire dataset. That is, they prune all input sequences to

the same length. However, as shown in Figure 1, input sequence

lengths vary greatly within a task. As a consequence, xing a sin-

gle pruning con guration can under-prune shorter sequences so

as to retain su cient tokens for processing longer sequences or,

conversely, over-prune longer sequences to remove su cient to-

kens to e ciently process shorter sequences. More importantly,

a single pruning con guration lacks robustness against input se-

quence length variations, where input sentences at inference time

are longer than those in the training dataset [32].

In contrast, SpAtten [49] circumvents this issue by assigning a

pruning con guration proportional to the input sequence length.

While this allows pruning more tokens from longer sequences and

fewer tokens from shorter ones, it is not adaptive to individual in-

put sequences as it assigns the same con guration to all sequences

with the same length regardless of their contents. In addition, the

pruning con gurations are determined heuristically and thus can

result in a suboptimal solution. Recently, TR-BERT [54] proposes to

learn a RL policy network to apply adaptive pruning con gurations

for each input sequence. However, as noted by the authors, the

problem has a large search spaces which can behard for RL to solve.

This issue is mitigated by heuristics involving imitation learning

and sampling of action sequences, which signi cantly increases

the cost of training. Importantly, all of the aforementioned token

pruning methodsdepend partially or entirely on top- operation for

selecting the most important tokens during infer ence or training.

This operation can be costly without specialized hardware support,

as discussed in [49]. LTP, on the other hand, is based on a fully

learnable threshold-based pruning strategy . Therefore, it is (i) adap-

tive to both input length and content, (ii) robust to sentence length

variations, (iii) computationally e cient, and (iv) easy to deploy.

3 METHODOLOGY

3.1 Backgr ound

BERT [7] consists of multiple transformer encoder layers [45]

stacked up together. A basic transformer encoder layer consists

of a multi-head attention (MHA) block followed by a point-wise

feed-forward (FFN) block, with residual connections around each.

Speci cally, an MHA consists of independently parameter-
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Figure 1: Idleness percentage of GPUs for a single training iteration of GPT models Radford u. a.
(2018) parameterized to have between 24 and 48 layers with six example cases of dynamicity in
training LLMs. For pipeline parallelism, weuse thehighest performing pipeline parallelism scheme
known to the authors: the ”almost zero-bubble pipeline parallelism” scheme Qi u. a. (2024). All
reported bubble ratios are measured on a hybrid of pipeline parallelism and data parallelism on 720
A100 GPUs in total, excluding MoEs which uses 128 A100 GPUs in total. Mixture of Experts:
we observe ⇠25% bubble ratio in the pipeline on Mixtral 8x7b Jiang u. a. (2024) and LLaMA-
MoE-3.5b Team (2024), arising from the load imbalance imposed by the routing schemes used in
token choice(S-BASE Lewisu.a. (2021a) and load imbalance with auxiliary lossJiang u. a. (2024)).
Gradual prunning of model parameters: weobservealmost afivefold increase in idleness at 90%
sparsity levels. Note that idleness at Dense is the inherent pipeline bubbles of a static model. Layer
freezing: SoTA freezing schemes that incorporate load balancing (Egeria Wang u. a. (2022) and
AutoFreeze Liu u. a. (2021)) yield ⇠40% bubble ratio. Dynamic Sparse Flash Attention: locality
sensitivehashing with support for flash attention Pagliardini u.a. (2023) exhibits a4x increase in the
bubbleratio over thebaselinedenseattention. Ear ly exit: SoTA early exit methods(CALM Schuster
u. a. (2022) and ADP-C Liu u. a. (2022b)) exhibits up to 5x increase in the bubble ratio over the
baseline (w/o early exit), mainly due to the accumulation of bubbles in late layers. Mixture of
Depths: weobserve⇠18% bubble ratio in thepipeline, arising from the load imbalance imposed by
the routing scheme of expert choices that lacks information about future tokensRaposo u. a. (2024).

gradual pruning where the parameters of a model are pruned (i.e. sparsified) during training Gale38

u. a. (2019), c) freeze training where some of the layers of the model are adapatively frozen during39

training Wang u. a. (2022), d) different schemes to dynamically sparsify the attention matrix Liu40

u. a. (2022a); Pagliardini u. a. (2023); Tay u. a. (2020), and e) early exit strategies where tokens41

skip remaining layers based on an exit decision Elbayad u. a. (2020); Schuster u. a. (2022); Liu u. a.42

(2022b); Kim u. a. (2022). Other than computational efficiency, there is a wide range of reasons43

that motivate theuseof different formsof dynamic models to improvecertain model attributes, such44

as explainability and generalization. We refer the reader to the surveys Han u. a. (2021); Tay u. a.45

(2022) on different forms of dynamic models.46

One of the main downsides of using dynamic models is that they introduce load imbalance in47

pipeline parallelism, effectively decreasing the throughput of LLM training Zhou u. a. (2022a); He48

u. a. (2022). For example, Figure1 showsthemaximum idleness of GPUsfor GPT languagemodels49

with different numbers of layers, for different types of dynamic models. Load imbalance manifests50

itself asbubbles that appear in thepipeline due to astalling accelerator waiting to receivework from51

its late neighboring worker(s). Since a pipeline is only as fast as its slowest stage, load balancing52

becomes crucial for efficient resource utilization.53

Production distributed training solutions typically implement a static load balance at the beginning54

of training and maintain the same load distribution throughout the training. For instance, Megatron-55

2



Towards ‘Zettascale’ HPC Performance for 
FugakuNEXT

98

⚫ Simulation Workloads

⚫ Raw HW Performance Gain: 10x ~ 20x

⚫ Mixed precision or emulation: 2x ~ 8x

⚫ Surrogates / PINN: 10x ~ 25x

⚫ Total: 200x ~ 1000x or more over Fugaku => ‘Zettascale’

⚫ Raw AI HW performance

⚫ Low precision, sparsity, new models…

⚫ Expect ‘Zettascale’ AI performance

⚫ With 40MW Limit (not GigaW e.g., hyperscalars)



Many of the FugakuNEXT Concepts will be tried 
out in TRIP-AGIS 2025 AI machine… Stay tuned
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⚫ Both AI and HPC (simulation) performance & tight coupling

⚫ High GPU (throughput) & CPU (latency) performance

⚫ Extensive mixed precision and emulation support

⚫ Convergence of Scale-up and Scale-out network beyond 
standard HPC network 

⚫ Low cost bearing in mind AI and HPC communication patterns

⚫ High capacity memory within scale-up network for PIM-like 
processing – performance, resilience, …

⚫ DLC Ultra high-density configuration (> 100KW/OCP rack) 
despite massive cabling and water 

⚫ Compliant to industry standards (e.g., OCP)



• Date: January 26 – 29, 2026

• Venue: Osaka International Convention Center

• Co-located events: in progress
・Asian International HPC School,
・Trillion Parameter Consortium, etc.

• Expected number of participants: 1500〜3000

• In collaboration with NSCC Singapore

SCA/HPC Asia 2026 will be held in Japan!

100

➢Co-hosted by SCA and HPC Asia

➢Showcase of cutting-edge HPC, AI, Big Data, Cloud Storage and 
Quantum Computing

➢Science and Innovation through HPC, AI, Big Data and QC

➢Opportunity to attract international talents from Asia and other 
countries
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