NERSC@50: Continually Changing

Sudip Dosanjh Director, NERSC ASCAC January 17, 2025 October 22 - 24, 2024

NERSC @50: Then, Now, and Into the Future

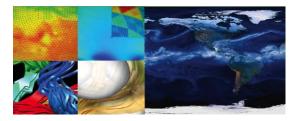
A Special Edition of the Annual NERSC User Meeting

Marriott Residence Inn & Berkeley Lab

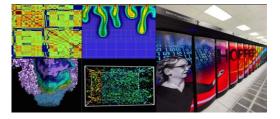
Berkeley, California, USA

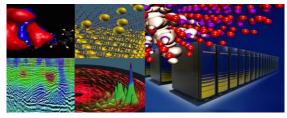
Highlights

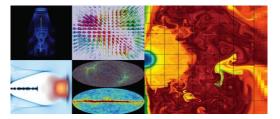
- ASCR update by Ceren Susut
- Science Highlights past accomplishments and future challenges
- Panel sessions on AI, IRI, Superfacility, Quantum Computing, Workforce Development

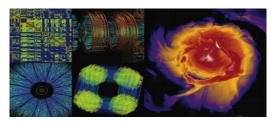


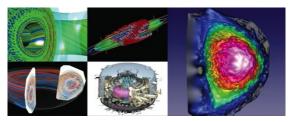
NERSC: Mission HPC for DOE Office of Science Research




Largest funder of physical science research in the U.S.


Biological and Environmental Research

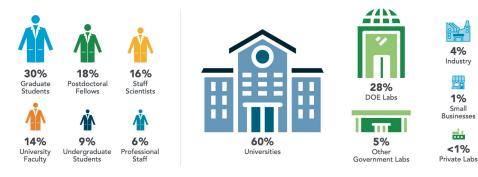

Computing


Basic Energy Sciences

High Energy Physics

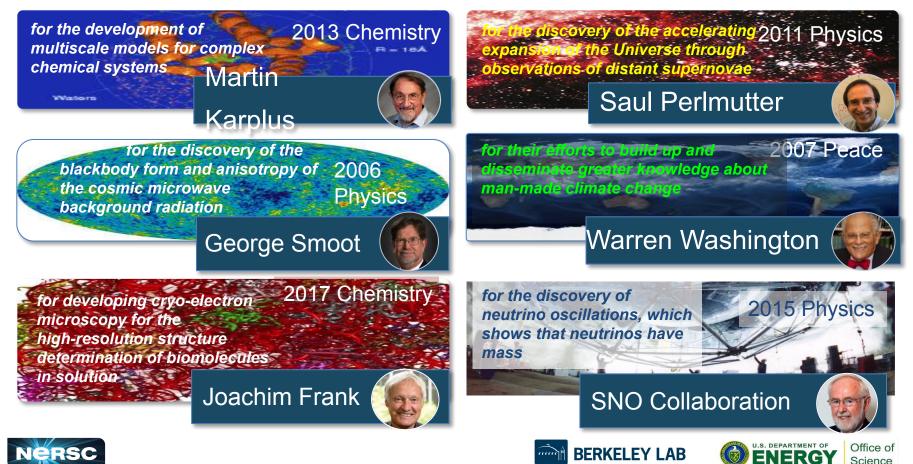
Nuclear Physics

Fusion Energy, Plasma Physics



NERSC has a very broad user base

~10,000 Annual Users from ~800 Institutions + National Labs



CDC 6600 at LLNL 1974

Nobel-Prize Winning Users

Science

Bringing Science Solutions to the V

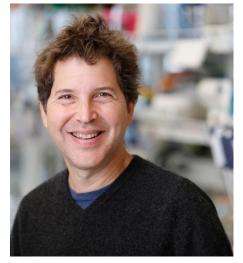
Nobel Prize in Chemistry 2024

"The Nobel Prize in Chemistry 2024 is about proteins, life's ingenious chemical tools. David Baker has succeeded with the almost impossible feat of building entirely new kinds of proteins." - Nobel committee press release

David Baker and his team were among the first to have early access to Perlmutter when it arrived in 2021.

The team has used 1.5 Million GPU hours on Perlmutter and continues today.

"Perlmutter is an amazing fit for our current computing needs! This is truly a game changer!!" - NERSC PI David Baker, 2021


Recent Work at NERSC

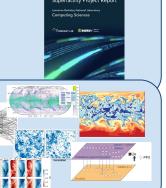
- "Over the past year, enabled by the extensive resources provided by NERSC, we have made significant progress with both new methods development and application of protein structure prediction, design, and interaction prediction to reveal new biological insights."
- "We have been able to predict human protein-protein interactions at a proteome-wide scale. While we had previously predicted protein-protein interactions in yeast and bacteria, these previous methods were not powerful enough to predict the considerably more challenging and larger scale of the human proteome."

Learn more: "Prediction and Design of Protein Interactions", David Baker, NERSC 50th Seminar Series talk, July 3, 2024 https://go.lbl.gov/Baker-NERSC-Seminar

David Baker is professor of biochemistry, Howard Hughes Medical Institute investigator, and director of the Institute for Protein Design at the University of Washington. He and his research group use AI and the power of Perlmutter to design proteins.

8 NERSC acknowledgements

Nature (4) Science (3) Nature Structural & Molecular Biology (1)


6


Success Is Depth and Breadth of Scientific Impact

NERSC Science Acceleration Program (NESAP)

The Superfacility project

Al4Science @

NERSC

NERSC has been acknowledged in 11,173 refereed scientific publications & high profile journals since 2020

- Nature [59]
- Nature Family of Journals [587]
- Proc. of the National Academy of Sciences [100]
- Science [43]
- Monthly Notices of the Royal Astron. Society [498]
- Physical Review* [1,551]
- Astrophysical Journal [428]
- Physics of Plasmas [222]

Assessing NERSC's Value and Scientific Return

- NERSC commissioned Hyperion Research to measure and convey the impact, value, and scientific return on research using the company's evaluation framework, which was developed with DOE support.
- The process included 42 interviews with leading researchers across all Office of Science domains and reviews of literature and reports.

Key Findings and Summary from Hyperion

- The value and impact of research performed at NERSC is among the best of global leadership computing sites.
- NERSC facilitates groundbreaking research, which significantly impacts the global scientific community, establishing itself as a leading force in enabling high-value computational research.
- NERSC's infrastructure is indispensable for addressing societal grand challenges in scientific research.
- Superior NERSC processes and personnel are key to accelerating researchers' time to science. NERSC was resoundingly praised by scientists and researchers.

Special Report

Measuring and Assessing the Value and Scientific ROI of NERSC's Leadership Computing in Advancing Science

Mark Nossokoff, Jaclyn Ludema, and Earl Joseph October 2024

HYPERION RESEARCH OPINION

The value and impact of the discoveries uncovered as a result of meserath done utilizing NERSC resources cannot be overstated. FOR 50 years, researchers and scientistis from academic institutions and research organizations across the country have relied on NERSC to attain goals requiring everincreasing computational capabilities to conduct their research. One measure of their accomplicitments is the serve Nobel prizes avanded for achievements enabled by NERSC resources

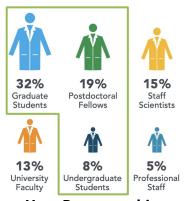
NERSC projects (large circles) compared to 650 HPC projects Hyperion has evaluated.

NERSC is a Catalyst for HPC Workforce Development

• NERSC staff & postdocs

- NERSC staff training encouraged & provided on critical topics
- NESAP postdoc program has prepared 35 professionals for career in HPC in past decade; alumni in important roles at HPC vendors (Intel, NVIDIA, AMD), LBNL & other National/International labs

NERSC users


- Approximately 60% of users are early career (students/postdocs)
- World-leading HPC Documentation
- New user experience is a major thrust of user engagement efforts
- Extensive training program with broad range of topics offered to NERSC's 10,000 users; 4,000+ training-event participants (2023)
- NERSC leads all institutions in GPUHackathon.org mentors!

• Future HPC careers

- NERSC hosted HPC Bootcamp for underrepresented students in collaboration with ALCF/OLCF in 2023
- Early supporter of Sustainable Research Horizons program to match underrepresented students with research projects at DOE labs; ~15 students placed at NERSC

10

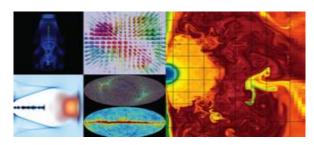
User Demographics

Office of Science

Bringing Science Solutions to the W

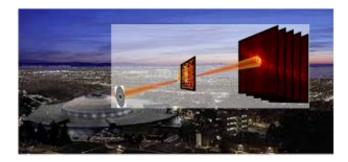
NERSC is Creating an HPC Workforce

Current NESAP Postdocs


Name	Workflow
Soham Ghosh	Materials Science
Vinicius Mikuni	HEP-ML
Andrew Naylor	U.S. CMS, HEP Mini-apps
Mukul Dave	WarpX
Wenbin Xu	Catalysis, BonDNet
Jared Willard	iNAIADS, FourCastNeXT
Sam Welborn	Superfacility, NCEM
Madan Timalsina	Superfacility, U.S. CMS

Recent NESAP PostDocs

Name	Current Position		
Taylor Barnes	NSF MOLSSI		
Andrey Ovsyannikov	Intel		
Tuomas Koskela	University of Helsinki		
Mathieu Lobet	CEA		
Tareq Malas	Meta		
Zahra Ronaghi	NVIDIA		
Bill Arndt	LBNL / NERSC		
Jonathan Madsen	AMD		
Michael Rowan	AMD		
Kevin Gott	LBNL / NERSC		
Muaaz Awan	LBNL / NERSC		
Laurie Stephey	CalEPA		
Oisin Creaner	Dublin Institute of Advanced Tech.		
Ozgur Cekmer	CSIRO		
Yunsong Wang	NVIDIA		
Yan Zhang	Velodyne Lidar		
Hugo Brunie	CEA (France)		
Dossay Oryspayev	Brookhaven Lab		
Brandon Wood	Al at Meta		
Dhruva Kulkarni	LBNL / NERSC		
Amanda Dufek	LBNL / NERSC		
Raphael Prat	CEA (France)		
Jaideep Pathak	NVIDIA		
Daniel Margala	LBNL / NERSC		
Muhammad Haseeb	NVIDIA		
Lipi Gupta	LBNL / NERSC		
Nestor Demeure	LBNL / NERSC		

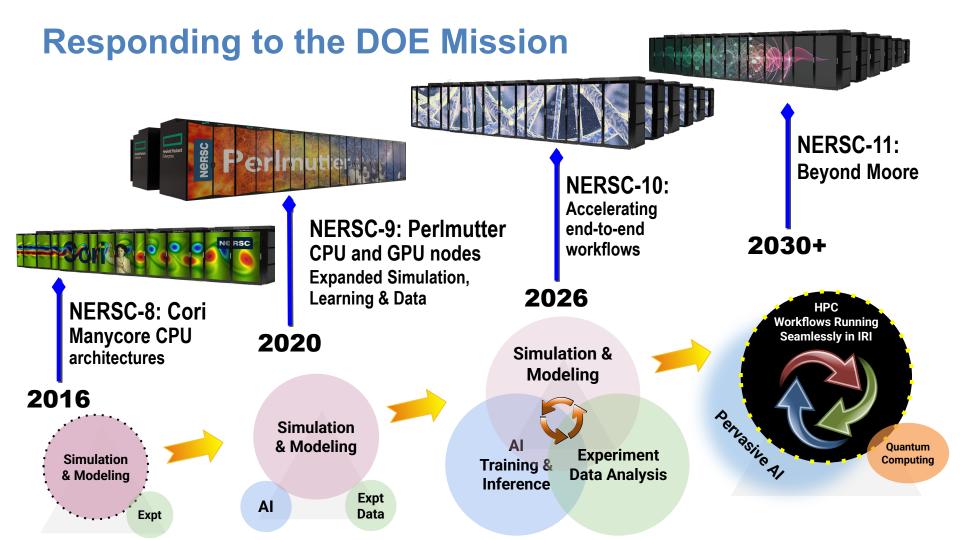


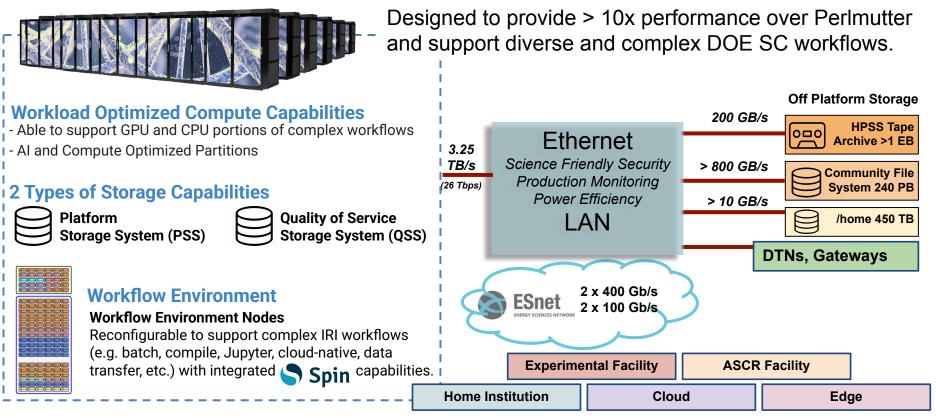
We Accelerate Scientific Discovery for Thousands of **Office of Science Users with 3 Advanced Capability** Thrusts

Large-scale applications for simulation, modeling and data analysis

Complex experimental and Al driven workflows

Time-sensitive and interactive computing


The NERSC workload is diverse with growing emphasis on integrated research workflows



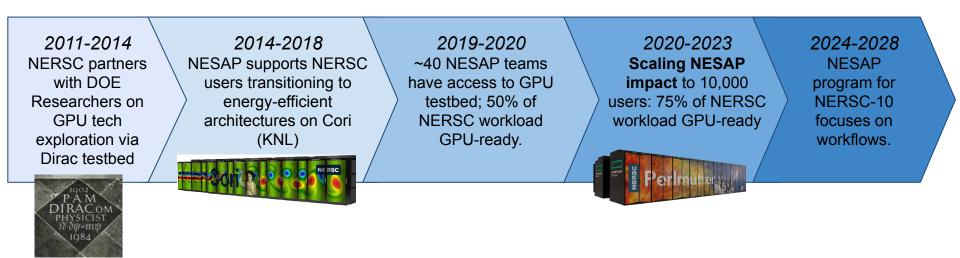
NERSC-10: A Productive System for Complex Workflows

BERKELEY LAR

Bringing Science Solutions to the V

Office of

Science


NERG

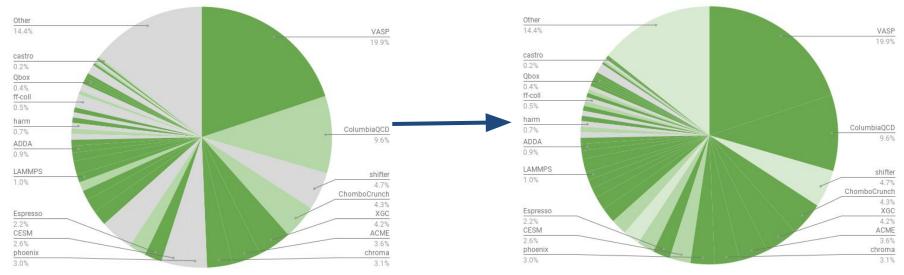
NERSC Exascale Science Applications Program (NESAP) was founded to transition the broad science user base

NESAP Strategy: (1) Form deep partnerships with ~20 Science teams at a time. Directly improve strategic workflows + gain expertise.

(2) Take lessons learned from deep-dives & apply to full NERSC community.

NESAP is NERSC's Vehicle for Preparing Users for Current and Future Systems

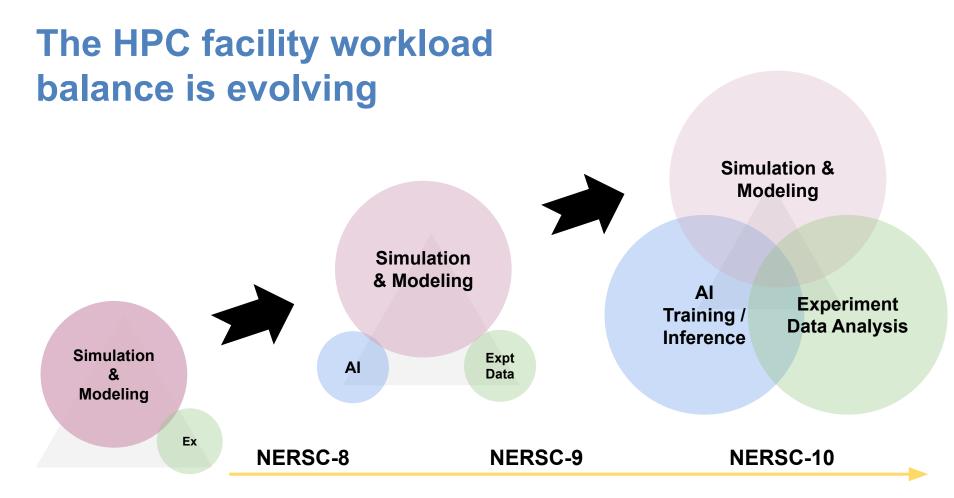
Collaboration between **NERSC, Strategic Science Teams**, and **Technology Vendors** to prepare science workflows for systems at NERSC


The partnership include:

- Science Application + Technology CoDesign
- Early Access to Advanced Hardware
- Collaborative Code Development, Analysis
 and Optimization
- Mutual Staff Embedding, Training
- Creation of Lessons Learned and Best Practices to be shared with community

Proven Successful on Cori and Perlmutter

Application	NESAP Category	Perlmutter Speedup	
FlowGAN	Learning	89.7	
BerkeleyGW	Electronic Structure	78.3	
ExaFEL	Data	186.9	
WarpX	Particles & Grids	27.2	
LAMMPs	Molecular Dynamics	79.1	
Chroma	LQCD	56.0	
Mean		73.5	


NESAP is NERSC's Vehicle for Preparing Users for Current and Future Systems

GPU Readiness of NERSC Workload Before NESAP GPU Readiness of NERSC Workload After NESAP

Broadening Mission Space to support Experimental and Observational Science

The **Superfacility** model at LBL connects experiment and compute facilities with the expertise and community they need for success

 Close collaboration between NERSC, ESnet and CS Research Divisions supports multiple DOE science teams who use automated pipelines to analyze data from remote facilities, at large scale.

NERSC supports a large number of users and projects from DOE SC's experimental and observational facilities

Palomar Transient Factory Supernova

Davabay Neutrinos

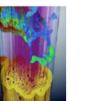
Star Planck Satellite Cosmic Microwave Particle Physics

Atlas Large Hadron Collider

The River of

APS

GLUE



KStar

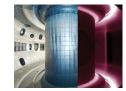
Each m with 17,

Background

Radiation

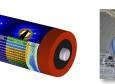
LCIS Light Source

Joint Genome Institute Bioinformatics


NSLS-II

HSX

AMERIFLUX


DIII-D

Crvo-EM

Light Source

ALS

NCEM

DESI

I SST-DESC

17

IceCube

EXO

Multiple science teams are using NERSC for superfacility-enabled science, in production

The 3 year Superfacility project kick-started this work, building the base infrastructure and services. We now support **multiple science teams using automated pipelines to analyze data from remote facilities at large scale**, without routine human intervention, using:

- Real-time computing support
- Dynamic, high-performance networking
- Data management and movement tools, incl. Globus
- API-driven automation
- HPC-scale notebooks via Jupyter
- Authentication using Federated Identity
- Container-based edge services supported via Spin

Multiple science teams are using NERSC for superfacility-enabled science, in production

A set of 8 initial close science engagements drove this work, but the impact has scaled to benefit all NERSC users

- Real-time computing support
- Dynamic, high-performance networking
- Data management+movement tools, incl. **Globus**
- Interactive HPC via Jupyter
- Container-based edge services supported via Spin
- **API** interfaces
- Federated Identity /auth -
- Collaboration accounts for automated "robot" access

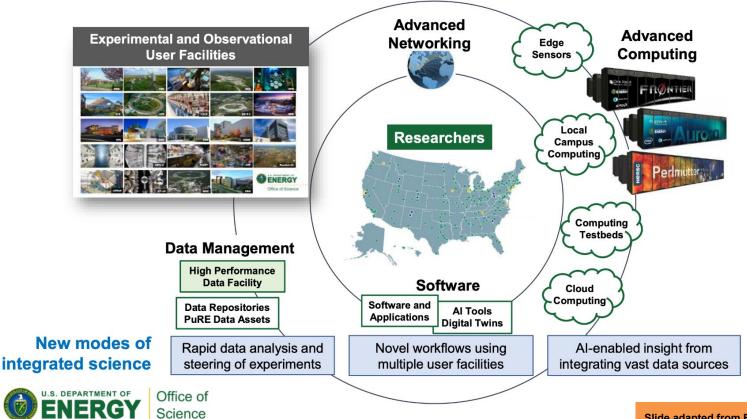
>20 science teams use the **realtime** qos to process urgent data

>1500 unique **Jupyter** users per month, similar to number of users who ssh into our systems

>250 users, >85 projects use **Spin**

>40 projects use the NERSC API, ~19M logged requests since May 2022 = one request every 2 sec

>1400 users are now logging in with a home lab identity



Office of

DOE's Integrated Research Infrastructure (IRI) Vision:

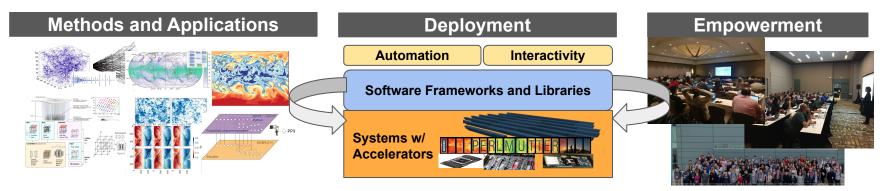
To empower researchers to meld DOE's world-class research tools, infrastructure, and user facilities seamlessly and securely in novel ways to radically accelerate discovery and innovation

Slide adapted from Ben Brown, ASCR

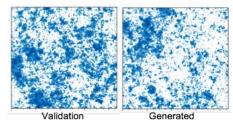
Partnerships with ASCR Ecosystem

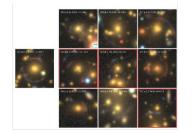
• LCFs

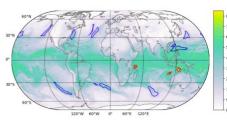
- Collaborated closely to deploy current generation systems
- Joint training, hack-a-thons
- Outreach to underserved communities
- Coordinated strategy on upcoming procurements
 - o frequent communication, as many common requirements as possible
- ESnet
 - Collaborations to deploy new networking technologies and enable workflows
- HPDF
 - Collaborative Effort Between JLab and LBNL
 - Frequent communication with NERSC to define roles, leverage opportunities
- All ASCR Facilities working together on IRI
 - Frequent Topic on Weekly Leadership CallsEstablished 5 Facility IRI Management Council;
 Debbie Bard is Chair of Leadership group

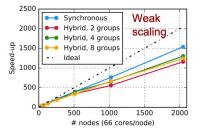


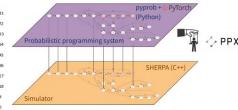
NERSC Executing on Current AI Strategy


- Deploy optimized hardware and software systems
 Work with vendors for optimized AI software
- Apply AI for science using cutting-edge techniques
 "NESAP" and strategic projects leverage lessons learned for scalable impact
- *Empower* and develop workforce through seminars, training and schools as well as staff, student intern and postdoctoral programs
 - Over 20 DL@Scale tutorials (e.g. SC18-23), 1000s of total participants

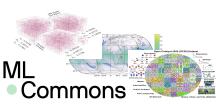



NERSC has Driven Emergence of AI for Science on HPC


First generative DL for science (CosmoGAN and CaloGAN 2017)


First self-supervised DL in cosmology (<u>2020</u>) - Mining for Strong Gravitational Lenses (<u>2021</u>)

First Exascale DL application (SC18 Gordon Bell <u>Exascale DL</u> for Climate Analytics)


First 10k node DL application (SC17 *Deep learning at 15PF*)

Large Scale Probabilistic Programming (SC19 <u>Etalumis</u>)

DL@Scale tutorials (e.g. SC18-SC23)

Founded HPC benchmarks in MLPerf

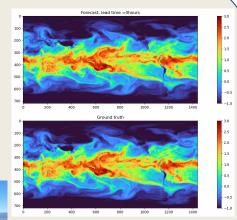
Deep learning for science school

NESAP and Perlmutter Enabled Adoption of Large-scale and Groundbreaking AI Open Catalyst 2020 (OC20) Datase

FourCastNet

Pathak et al. 2022 arXiv:2202.11214 Collab with Nvidia, Caltech, ...

- Forecasts global weather at high-resolution.
- Prediction skill of numerical model; 10000s times faster



Jaideep Pathak former NERSC Postdoc now NVIDIA

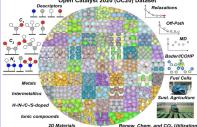
Jared Willard Subramanian **NERSC** Postdoc Former NERSC Postdoc now Staff

HEP-ML

Collab with LBL Physics division (and H1 Collaboration)

- AI "Unfolding" extracts new physics insights from data
 - **Requires Perlmutter for** 1000s of UQ runs

V. Andreev et al. (H1 Collaboration) Phys. Rev. Lett. 128, 132002 (2022)

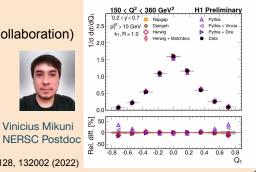


Chanussot et al. 2021 Collab with CMU, MetaAI, ... arXiv:2010.09990

NeurIPS 2021-23

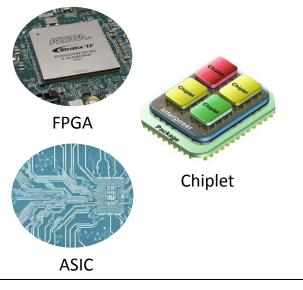
Competitions

Pre-trained models now used with DFT e.g. FineTuna; <u>AdsorbML</u>

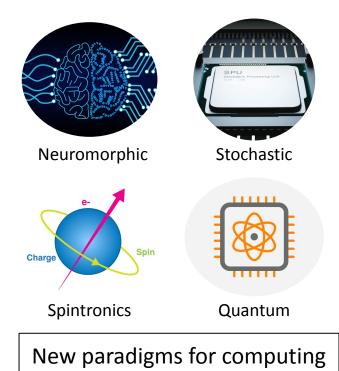



Brandon Wood former NFRSC Postdoc now Meta Al

Wenbin Xu NERSC postdoc

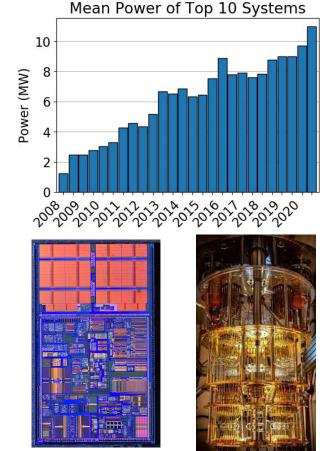


Office of Science


As AI Becomes Pervasive Science will be Transformed

End of Moore's Law Opens Up New Approaches to Computing

Improved energy efficiency through hardware specialization

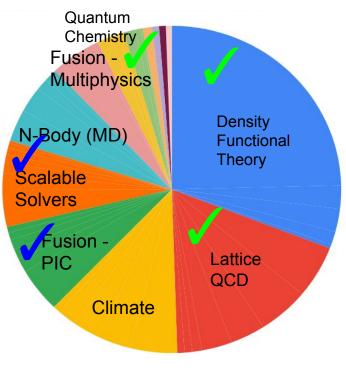


Office of

Science

Beyond Moore's Strategy

- Maximize energy efficiency
 - Use every Joule available for science as efficiently as possible
- Deploy best in class specialized computing elements to accelerate components of users workflows
 - Deploy testbeds and collaborate with community to determine best-in-class
- Continue NRE & co-design efforts
 - develop representative benchmarks



Office of

Why Quantum Computing at NERSC?

Top Algorithms Run at NERSC

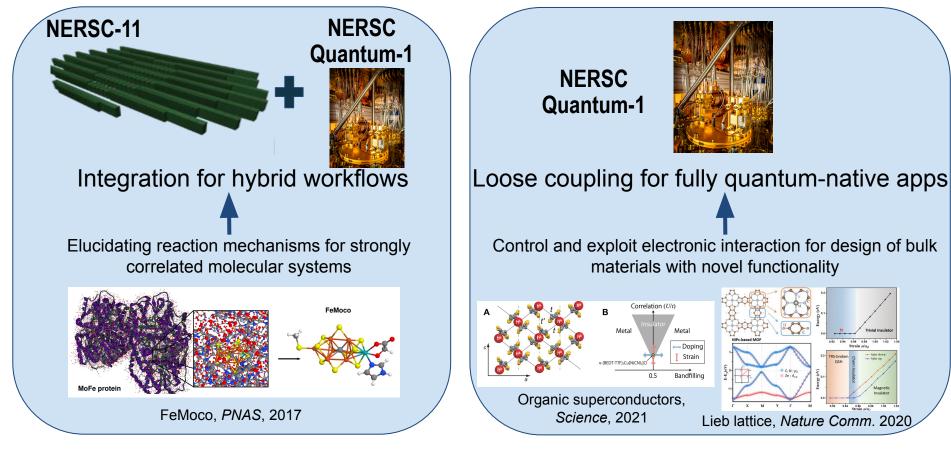
Quantum mechanical problem
 Quantum algorithms proposed

>50% of cycles

non-Quantum mechanical problem
 Quantum algorithms proposed

20% of cycles

What is **not** on the pie chart? Growth areas for quantum technologies!


NERSC Quantum Computing Roadmap

	Next 10 years			
2022-2024	2024-2026	2026-2029	2030-2034	
 Ramp up engagement with QIS community Director's Discretionary Reserve Call for quantum information science (QIS) on Perlmutter 	 Enable user access to quantum hardware Engage with relevant quantum vendors Develop/evaluate quantum and hybrid quantum-classical algorithms Identify opportunities for quantum-accelerated HPC codes Benchmark quantum hardware Perform resource analysis for executing useful quantum algorithms 	 Availability of near-term quantum hardware becoming standard Users request both classical and quantum resources Workforce development through training / tutorials / quantum day Evaluate the need and requirements for quantum hardware on premise 	 High-performing quantum hardware becoming available Potential integration with traditional HPC Users routinely solve problems using both quantum and classical hardware 	
O(1) users	O(10) users	O(100) users	O(1,000) users	

Potential Quantum Hardware in the NERSC-11 Era

Final Thoughts

- NERSC has deployed numerous innovative supercomputers
- Result has been many scientific breakthroughs and publications
- The next 10-20 years will see great change
- Expansion of the mission space (complex coupled workflows, Superfacility, IRI, AI)
- End of Moore's Law
- An opportunity to use AI to revolutionize science and operations

Questions?

