=
) r
\ C

[
\ eley | Labo

o e - m mf

— - . I_- T
| y
% -;?w* -

- -4-.'-"'-.
« W

T'm ETT

B IF II'I

&

ASCR Programming Environments Summit Report

Sl Ecosystem Issues
Challenges Challenges
e Energy Efficiency e Multiscale and e Not all software
e Node multiphysics will be rewritten
concurrency e Software size e Supercomputing
e Hierarchy and complexity market is small
e Heterogeneity e Data-driven e Acquiring new
e Reliability computation skills is hard

e New use models

Programing Models and Environments 2

Programming Model Stack Overview in Report

Science level:

e Embedded DSLs for important
domains

e Support for custom abstractions

e Support for manipulating them

High level
Domain Specific
Abstractions

Software level:

e Logical structure of parallelism and
locality

e Avoid committing to specific

architecture

Mid level
Domain Independent
Abstractions

Platform specific level:

e Explicit interfaces for task creation,
data movement, synchronization, etc.

* Alot of programming today is at this
level!

 New interfaces for managing power,

resilience, and introspection

Low level
Execution Level
Abstractions

Draft report by a dozen researchers MaApplngs . .
. : . tomat '
from industry, academia and Labs IR
. * Avoid all-or-nothing mechanisms
completed in February

Future Generic Node Architecture

Memory Stacks on Package
Low Capacity, High Bandwidth, Software Control?

Bulky
Cores

Lightweight Cores

(tiny, simple, massively parallel) = .
Throughput-Optimized Optimized

NVRAM: Burst
Buffers / rack-local
storage (software

control)

Based on slide from J. Shalf

Architecture Challenges and Opportunities

Lightweight cores will have all/most of the system performance
— Need fine-grained parallelism; avoid unnecessary synchronization
— Cores not powerful enough for complex communication protocols ?
On-chip interconnect offers opportunities for performance

— New models of communication may be essential

Hardware is heterogeneous: no single ISA

— Portability and performance portability are challenging

New levels of memory hierarchy, possibly software-controlled
— Locality and communication-avoidance paramount

Performance variability may increase

— Software or hardware control clock speeds

Programing Models and Environments 5

OpenMP Loop Parallelism is the Wrong Leve

e OpenMP is popular for its convenient loop parallelism
* Loop level parallelism is too coarse and too fine:

— Too coarse: Implicit synchronization between loops limits
parallelism and adds overhead

— Too fine: Need to create larger chunks of serial work by combining
across loops (fusion) to minimize data movement

1SOMP PARALLEL DO
DO 1=2,N
B(1) = (A(1) + A(1-1)) 7/ 2.0
ENDDO
ISOMP END PARALLEL DO

Programing Models and Environments

6

Sources of Unnecessary Synchronization

Loop Parallelism Abstraction

1$0MP PARALLEL DO
DO 1=2,N
B(1) = (A1) + A(1-1)) / 2.0
ENDDO
1SOMP END PARALLEL DO

“Simple” OpenMP parallelism implicitly
synchronized between loops

LAPACK: removing barriers ~2x faster (PLASMA)

Libraries Accelerator Offload

lodeeNdata rcopyan{cix, cil,€12,¢i3,ci4,c¢i5,ci6,ci¥,ciB,cif,cil0,cill, &
!Sacce cil2,cil13,cild, r,b,uxyz,cell, rho,grad, index max,index, &
!Sacce ciy,ciz,wet,np,streaming sbufl, &

. () o 1Saccs streaming sbufl,streaming sbuf2, streaming sbuf4,streaming sbuf5, &
Analysls /o ba rrlers Speedup !Sacce streaming sbuf7s,streaming sbuf8s,streaming sbuf9n, streaming sbuflls, &
1Saccs streaming sbuflln,streaming sbufl2n, streaming sbufl3s,streaming sbufldn, &
lSacce streaming sbuf7e,streaming_sbufBw, streaming_ sbuf9e, streaming sbufile, &
0 0, 1Sacce streaming_sbufliw,streaming sbufl2e, streaming sbufl3w, streaming sbufldw, &
Auto 42 /0 13 /o 'sacce streaming_rbufl, streaming rbuf2, streaming_rbuf4, streaming_rbufs, &
1Sacce streaming_rbufin,streaming_rbuf8n, streaming rbuf9s, streaming rbufiln, &
lSacce streaming_rbuflls, streaming rbufl2s, streaming_rbufl3n, streaming rbufids, &
G 'd d 630/ 14(y 1Saccs streaming rbuf7iw,streaming rbuffe,streaming rbuf9w,streaming rbufllw, &
u I e (0] 0 1Saccs streaming rbuflle,streaming rbufl2w,streaming rbufl3e,streaming rbuflde, &
ISaccs send e,send w,send n,send s,recv_e,recv_w,recv_n,recv_s)

NWChem: most of barriers are unnecessary (Corvette) The transfer between host and GPU can be slow and
cumbersome, and may (if not careful) get synchronized

Programing Models and Environments 7

Locality in OpenMP4 is (at Best) Computation-

Centric

subroutine vec mult(p, vl1, v2, N)
real :: p(N), vi(N), v2(N)
integer :: i
call init(vl, v2, N)
[!$omp target data map(to: vl, v2) map(from: p)}

lsomp target
lSomp parallel do
do i=1,N

p(i) = v1(i) * v2(i)
end do
ISomp end target
[!Somp end target data }
call output(p, N)

And you have to do this for every loop!

Based on slide from J. Shalf

Where Is Performance Portability?

e Titan, Mira and Edison represent 3 distinct architectures in SC

— Not performance portable across systems

e APEX 2016 and CORAL @ ANL

— Xeon Phi, no accelerator
Accelerated

e CORAL 2017
—_ |B|V| + NVlDlA Chmﬂre Model for Energy

Two different version of the code

Best case #1: OpenMP4 absorbed accelerator features
(likely), but code still requires a big ifdef

Best case #2: Architectures “converge” by 2023, perhaps
with co-design help

Programing Models and Environments 9

Major Programming Model Research Areas

Performance Portability through Compilers and Autotuning

— Automatically generate GPU and CPU code & automatically tune

— E.g., Rose (D-TEC, LLNL), Halide (D-TEC, MIT), CHILL (X-Tune, Utah), SEJITS
(DEGAS, UCB), Legion (ExaCT, Stanford/LANL), SLEEC (Purdue)

Data Locality in Languages and Libraries

— Specify location of data (Partitioned Global Address Space)

— E.g., UPC/UPC++ (LBNL), CAF (Rice), TiDA (LBNL), RAJA (LLNL), KOKKOS (SNL)
Less Synchronous DAG Execution Models

— Static and dynamic DAG construction

— Examples: OCR (Intel), HPX (XPRESS), Charm++ (UIUC), Legion

(Stanford/LANL), Habanero (Rice)

Correctness Funded by X-Stack,

— Precimonious and OPR (Corvette/UCB) Co-Design and NNSA

Resilience Models and Technology
— Use of NVRAM (GVR, UChicago); Containment Domains (DEGAS/UTexas)

10

Performance Portability

Programing Models and Environments 11

Approach #1: Compiler-Directed Autotuning

« Two hard compiler problems
* Analyzing the code to determine legal transformations
« Selecting the best (or close) optimized version

« Approach #1:. General-purpose compilers (+ annotations)
 Use communication-avoiding optimizations to reduce memory bandwidth
 Apply CHILL compiler technology with general polyhedral optimizations
« Use autotuning to select optimized version

Smooth @ All Optimizations 4.5x OCHILL
5000 O+Fusion & Wavefront 4.0x | BManual Tuning
. . B Baseli
4500 B +Fusion & Partial Sums 3.5% - Baseline
4000 - B +Fusion g 3.0x
2 3500 - 3
'C mBaseline g 25
S 3000 - _ 9 2 0x
L e00 - © Roofline Memory Bound '
&) 1.5x
= 2000 -

1500 -
1000 -
500 -

Hopper Edison Hopper Edison
7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

MGSolve smooth() on 6473
Edison Hopper

Results on Geometric Multigrid (miniGMG Smoother) 15

Approach #2: Domain-Specific Languages (but not too

specific)

Developed for Image Processing Halide performance
* Autogenerated schedule for CPU

i) [e) o+
'\‘ 5 ' « Hand created schedule for GPU
Adobe ' Erhane « No change to the algorithm

— 10+ FTEs developing Halide
— 50+ FTEs use it; > 20 kLOC

HPGMG (Multigrid on Halide) +8
. o . 1.6 1/\3
* Halide Algorithm by domain expert L. = s
o 12 4"3
A B
K] w1673
gos | 323
g =
“oe | 6413
e Halide Schedule either 04 - u 12813
— Auto-generated by autotuning with opentuner 02 w2563
— Or hand created by an optimization expert 0

Original Halide CPU

13

DSLs to Generate Code for Hierarchical Memory

 Generation of Complex Code for 10 Levels
of Memory Hierarchy with SW managed
cache

— 4th order stencil computation from
CNS Co-Design Proxy-App

— Same DSL code can generateto =
2,3,4, ... levels too

— Code size of autogenerated code

10

DSL Code
Auto Generated Code 446 500 553 819

Use of Rose/PolyOpt to apply DSLs to large applications and collaboration on AMR

14

Approach #3: Dynamic Specialization

e SEJITS: Selected Embedded Just-In-Time Specialiation:
— General optimization framework (Ctree)

— Currently implemented part of HPGMG benchmark in stencil DSL

e Within 50% of hand-optimized code
e 1400 lines of DSL-specific code; 1 undergrad over <2 months

Speedup of Kernel Fusion For Stencils

M 2 Fused Ker
e 3§ 2months effort, 1400 lines of
° domain-specific code generation
4
5 17m B
g 3
&
» 2m B
1 I | 10s B
0 1024 2048 4096 S

Size of input

Python SEJITS HPGMG

15

Locality Control

Programing Models and Environments 16

Tiling: Abstraction for Memory Layout

Data layouts can be used to improve locality (and find
parallelism), e.g., CAF2, UPC++, Chapel, TiDA, Raja/Kokkos

e OpenMP allows a user to specify any of these layouts
e However, the code is different for GPUs vs CPUs.
e Several approaches pursued here as well

a) Logical Tiles(CPU) b) Separated Tiles (GPU) c) Regional Tiles (NUMA)
Separated tiles with halos

’:

cell tile

17

Supporting Applications without Locality

Programing Models and Environments 18

Random Access to Large Memory

Meaculos ssembly Pipeline Perl to PGAS: Distributed Hash Tables

* Remote Atomics
* Dynamic Aggregation
e Software Caching (sometimes)
e Clever algorithms and data structures
(bloom filters, locality-aware hashing)
It el RN - - UPC++ Hash Table with “tunable”
Human: 44 hours to 20 secs runtime optimizations

i ’ ”
Wheat: “doesn’t run” to 32 secs 16384
A i 1(8192
100 @3]
90 e © + Soil 4096 -
- 80 B Marine
270 = Groundwater L 2048
5 60 - © Bioreactor S
g 20 ¢ 8 1024
& 40 . (77}
w
2 30 512 ;
3= 20 = Y LU i _n(;ner,lﬁ\llgr?er-wheat
10 o * :0 Idea -\{V eat
etz “ ** | =@ merAligner-human
0 * ts3te 3 ' 256 ideal-human
0 10 20 30 === BWAmem-human
128 | ==@== Bowtie2-human
Gbp sequenced 5 5 . . . -
480 960 1920 3840 7680 15360
Grand Challenge: Metagenomes Number of Cores

Productivity: Enabling a New Class of Applications?

Data Fusion in UPC++

Distributed Matrix Assembly

e Remote asyncs with user-controlled
resource management

e Team idea to divide threads into injectors
/ updaters

e 6x faster than MPI 3.0 on 1K nodes

e Seismic modeling for energy applications - Improving UPC++ team support
“fuses” observational data into simulation

e With UPC++, can solve larger problems

=

Note
scale:

1 >85%
efficien
tin
worst
case

Parallel Efficiency

Cores: 48 192 768 3K 12K

Similar ideas being use for the Hartree-Fock algorithm as part of NWChem
study
20

Domain Specific Library Interfaces

T T
mfofiof:

(1, . 1. [, &l

o el @

S-level Multi-scale
9 Leaf nodes (finest level models)

4 processors —

5]

SLEEC Project using general-purpose
compilers and domain-specific interfaces

Use of Autotuning to align recursive
decomposition to machine

Programing Models and Environments 21

Rethinking Communication

Programing Models and Environments 22

Lowering Overhead for Smaller Messages

Send/Receive

two-sided message

message id

data payload

18000
16000

one-sided put message

address

data payload

network
interface

Y9 %&wﬁi\b‘b@é\ '\,&%6\\'
. Msg. NV 9 S
The + in MPI+X weSen T
MPI+X today:

0
14000
0
S 12000
= 10000
% 8000
cores | ‘S
o) 6000
S 4000
@
memory 2000
0

exg=mBerkeley UPC
ali=Cray UPC
7| ====Cray MPI

e Communicate on one lightweight core
e Reverse offload to heavyweight core
Want to allow all cores to communicate
(but keep the protocol simple!)

Lightweight communication is more
important with lightweight cores

Programing Models and Environments 23

Lightweight Communication for Lightweight Cores

e DMA (Put/Get)
— Blocking and non-blocking (completion signaled on initiator)
— Single word or Bulk
— Strided (multi-dimensional), Index (sparse matrix)
e Signaling Store
— All of the above, but with completion on receiver
— What type of “signal”?
» Set a bit (index into fixed set of bits ®)
e Set a bit (second address sent ©®)
* Increment a counter (index into fixed set of counters ®)
* Increment a counter (second address for counter ©®)

* Universal primitives: compare-and-swap (2"¢ address + value), fetch-and-
add handy but not sufficient for multi/reader-writers ©

e Remote atomic (see above) — should allow for remote enqueue
e Remote invocation

— Requires resources to run: use dedicated set of threads?

DEGAS Overview 24

Avoiding Synchronization

Programing Models and Environments 25

HPX Asynchronous Runtime Performs on

Manycore

LibGeoDecomp - Weak Scaling -
Distributed

OpenMP

700000 (Host Cores) — MPI Babba;ge :
— HPX parallel loop | e s e A
600000 | —m— HPX — HPX blocked 1 | |

500000 | —*— MPI s o e o T ——

Theoretical Peak

& 400000
o

—

t5 300000

200000

100000

0

Cores 0O 3K 6K 9K 13K 16K

Credit: Harmut Kaiser, LSU and HPX team
26

Legion Programming Model & Runtime

Dynamic task-based

— Data-centric — tasks specify what data
they access and how they use them
(read-only, read-write, exclusive, etc.)

— Separates task implementation
from hardware mapping decisions

— Latency tolerant

Port of S3D complete

— Currently programmed at the
runtime layer (Realm)

Declarative specification of
task graph in Legion
— Serial program

— Read/Write effects on regions of
data structures

— Determine maximum parallelism

ExaCT Co-Design Center

30000 |

10000

Weak écaling 6n Titani(throuéhput)

V-V -V--¥-¥--V

< < Legion S3D
| ¥ ¥ MPI Fortran S3D

Avallable Proxies and Kernels for OCR

.. |Programming ... _|Programming Programming
Appl
Application Model Application Model pplication Model
CoMD Baseline Ba.se-llne.DOE Serial
MPI+OpenMP Original in OpenMP

OCR
Legacy serial on Baseline Translated CnC on OCR
OCR with newlib into C from the
MPI-Lite

Smith
OCR
DOE Original
CnC on OCR

Waterman
ISNAP N VTR Smith

CnCon OCR

Baseline DOE P Original in MPI

[TEA OCR

Original in MPI-Lite Fibonacci [oei;
MPI+OpenMP Baseline in Synthetic
I MPI-Lite B openMp Aperture [o]8

Baseline Radar (SAR)

ROCR (R Stream =
OCR)

MPI+OpenMP Global Sum [e]e}}
HPGMG [old]; P MPI-Lite R Serial
Baseline P OCR OCR
MPI+OpenMP OCR OCR
Intel CnC OCR
(TR serial € MPI

LULESH CnCon OCR Sizle i MPI-Lite

https://xstack.exascale-tech.com/git/public/xstack.git

https://xstack.exascale-tech.com/git/public/xstack.git

OpenMP and MPI Also have Ongoing Research

MPI: Fast implementations and extended OpenMP: Location based on locales, places...

interfaces for one-sided communication
enMP 3.0: privatize data where

100.000- - . ..

RO WP S A &N\ possible, optimize cache usage

& Cray r 'l “ . ’ .
| Cray MPL_ 7 ' o “First touch” Implicit data layout
c?i? 10.000- 5 “ [
5 . X Distributed
£ R " '|Hash Table o Represent execution environment by
s 3 collection of “locations” (Chapel/X10)
= . _ o Map data, threads to a location;

0.100- intra-node inter-node . . .
distribute data across locations
00263 B 32 128 512 2048 8192 32768
Number of Processes
$'%

oM MP S)
T agE e, 3D FFT
& i
E.BUU- do 4;;'
£ r 4
[-C.l"lc‘
E 400 . &° ,,}al':

£

b i
b
2007, g4 5384 E5536

4096 153
Mumber of Processes

Gerstenberger et al (SC13) 29

Technology Transfer Paths

* Languages
— Adoption into popular programming models
e One-sided into MPI (again)
e Locality control into OpenMP
— Adoption by a compiler community (Chemistry DSL)
e Compilers
— Leverage mainstream compilers (LLVM)
— Leverage another existing “domain-specific” language
— Small compilers for small languages
 Next phase
— Focus on application partnerships
— Partnerships with library and frame work deveopers
— Collaborate with vendors on hardware desires and constraints

If they come, we will build it!

Programing Models and Environments 30

	Programming Models and Environments Workshop Report�Kathy Yelick�Lawrence Berkeley National Laboratory and UC Berkeley
	ASCR Programming Environments Summit Report Summary
	Programming Model Stack Overview in Report
	Future Generic Node Architecture
	Architecture Challenges and Opportunities
	OpenMP Loop Parallelism is the Wrong Level
	Sources of Unnecessary Synchronization
	Locality in OpenMP4 is (at Best) Computation-Centric
	Where is Performance Portability?
	Major Programming Model Research Areas
	Performance Portability
	Approach #1: Compiler-Directed Autotuning
	 Approach #2: Domain-Specific Languages (but not too specific)
	 DSLs to Generate Code for Hierarchical Memory
	Approach #3: Dynamic Specialization
	Locality Control
	Tiling: Abstraction for Memory Layout
	Supporting Applications without Locality
	Random Access to Large Memory
	Data Fusion in UPC++
	Domain Specific Library Interfaces
	Rethinking Communication
	Lowering Overhead for Smaller Messages
	Lightweight Communication for Lightweight Cores
	Avoiding Synchronization
	HPX Asynchronous Runtime Performs on Manycore
	Legion Programming Model & Runtime
	Available Proxies and Kernels for OCR
	OpenMP and MPI Also have Ongoing Research
	Technology Transfer Paths

