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WHAT IS FEDERATED LEARNING?

Distributed learning approach with key benefits:
§ Privacy: Models are trained locally.
§ Efficiency: Only model updates are shared, 

reducing data transfer.
§ Scalability: Supports large-scale applications 

across many computing devices.

Collaboratively Training Models without Sharing Data
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PRIVACY-PRESERVING IN FEDERATED LEARNING

§ Local Data Retention: Raw data stays on client devices, but model updates alone 
can still leak sensitive information.

§ Potential Data Leakage: Without privacy-preserving techniques, attackers can 
reconstruct raw data from gradients or model updates.

§ Differential Privacy: Adds noise to model updates to prevent accurate data 
reconstruction by attackers.

Ensuring Data Privacy and Secure Updates
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From Executive Order 14110: 
Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence 



APPLICATIONS ACROSS KEY DOE DOMAINS

§ Scientific Experiments:
– Collaborative experiments using multimodal data (e.g., from 

DOE light source facilities) while preserving data privacy 
across institutions.

§ Climate Science:
– Secure data collaboration between research centers, allowing 

them to share insights from climate models and data (e.g., 
from the ARM facility) without sharing raw data.

§ Electric Grid Data Analysis:
– Privacy-preserving FL for analyzing electricity consumption 

patterns across smart meters, enhancing prediction models 
while maintaining consumer data privacy.

Use Cases of Privacy-Preserving Federated Learning for DOE
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Argonne’s APS

ARM Facility

Smart Meters and Sensors



MATH & ALGORITHM CHALLENGES



ALGORITHMS FOR PRIVACY-PRESERVING FL

§ Key Challenge: Managing the privacy-utility trade-off.
§ Algorithm design: Critical to optimize both privacy and 

performance.
§ Noise Injection Points:

– Data (input): Perturb data before training.
– Model (output): Add noise before sharing the model.
– Training Loss (objective): Incorporate noise during 

training.
§ Goal: Enhance training performance & maintaining privacy 

guarantees.

Balancing Privacy and Utility in Federated Learning
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Mathematical formulation of FL
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PERFORMANCE UNDER PRIVACY SETTINGS

§ OutP (State of the Art): FL with noise added to the model output.
§ ObjP (APPFL): FL with noise added during training.
§ ObjPM (APPFL): FL with training noise and multiple local updates.
§ Results: Our methods perform better as privacy increases, compared to current approaches.

Testing Accuracy vs. Privacy Level
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CHALLENGE OF HETEROGENEOUS COMPUTING

§ Computing Variance: Client machines have widely varying capabilities, causing 
significant differences in local training times.

§ Synchronous FL Drawback: The server waits for all clients, leading to 
resource waste when slower clients (stragglers) delay the entire process.

Stragglers and Resource Waste
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Heterogeneous client computing resources.
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Lots of resources 
are wasted for 
powerful clients.

Illustration of Resource waste in synchronous FL.
45 mins idle time!



ADAPTIVE ASYNC UPDATES FOR EFFICIENT FL
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FedCompass: Faster Training with Higher Accuracy

Federated learning with a computing power aware scheduler.

Clients

Step 1: Dynamically estimate each client’s computing power.

Step 2: Adjust local tasks based on client capabilities to better 
synchronize model updates.

Step 3: Collaborate with the server to update the global model using 
client results.

Server

FedCompass achieves faster training and 
higher accuracy compared to state-of-the-
art methods.

slow training and 
less accurate

FedCompass:



CHALLENGE OF CLIENT DRIFT

§ Client Drift: Clients run multiple updates locally, 
leading to misalignment with the global model, 
reducing overall accuracy.

§ Existing Solutions: Drift correction methods (e.g., 
FedProx, SCAFFOLD, FedLin) help mitigate drift 
but come with trade-offs:
– Higher Costs: Increased communication and 

storage for correction terms.
– Practical Limitations: Solutions can be 

unstable and lack asynchronous methods, 
limiting scalability.

Balancing Communication Efficiency and Modal Accuracy
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AREA: ASYNCHRONOUS EXACT AVERAGING

§ Client-Side: Clients save information from 
previous updates to improve future updates 
sent to the server.

§ Server-Side: The server combines these 
improved updates to create a more accurate 
global model.

§ Secure: Compatible with privacy-focused 
protocols, ensuring data remains secure 
during the process.

Asynchronous Client Drift Correction
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AREA achieves faster training and higher 
accuracy compared to state-of-the-art methods.

MNIST classification, 128 heterogeneous clients. 



OPEN-SOURCE SOFTWARE
APPFL: Advanced Privacy-Preserving Federated Learning



APPFL V1.0 (08/2024)

§ First Code: Started in 10/2021; First Release: 02/2022.

§ For Developers: Design, simulate, and evaluate new privacy- and FL algorithms.

§ For Users: Deploy secure, scalable FL experiments across distributed clients.

§ Key Features
– Comprehensive: Handles data and system heterogeneity and privacy 

challenges.
– Easy-to-use: Simplifies transitioning from centralized to federated learning.
– Extensible: Modular interface for integrating new algorithms in aggregation, 

training, and privacy. 
– Scalable Deployment: Capable of running FL across multiple HPC clusters 

and over DOE Energy Sciences Network (ESnet) facility for large-scale 
distributed experiments.

Building and Deploying Secure, Scalable FL Algorithms
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https://appfl.ai 

Argonne Polaris

National Center for 
Supercomputing Applications

Delta

https://appfl.ai/


COMPARISON OF OPEN-SOURCE FL SOFTWARE

§ APPFL v1.0 stands out with enhanced support for privacy, asynchronous algorithms, and 
versatile communication, advancing beyond APPFL v0 and other platforms.

Key Capabilities Across FL Frameworks
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As of Aug, 2024



DOE USE CASES OF 
PRIVACY-PRESERVING FEDERATED LEARNING



Training a forecast model 
without moving data

Weaker privacyStronger privacy

FEDERATED LEARNING FOR LOAD FORECASTING

§ Data: Electricity consumption from 42 buildings in CA, IL, NY.
§ Challenge: Heterogeneous patterns across buildings.
§ Model: Attention-based LSTM (long short-term memory) 

neural network architecture with personalized layers.
§ Results:

– Personalized FL achieves the lowest error.
– PPFL successfully integrates to ensure data privacy.

Accurate, Secure Predictions using Building Energy Data

Privacy preserving 
technique+



XRT AND XRF AT ARGONNE’S APS FACILITY
Complimentary Data for Advanced Materials Research
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§ X-Ray Tomography (XRT): Provides 3D structural imaging of materials.

§ X-Ray Fluorescence (XRF): Maps elemental composition of materials.

§ Complimentary Nature: 
– XRT shows physical structure, while XRF reveals chemical 

composition.
– Together, they offer a complete view of material properties.

§ Why Federated Learning?
– Scalable Collaborative Research: Enable joint analysis across labs 

without sharing raw data.
– Data Privacy: Keep sensitive data local, further protection with 

differential privacy.
– Better Models: Combines data from diverse sources for improved 

generalization.
– Resource Efficiency: Utilizes distributed computing power across 

multiple facilities.



FEDERATED LEARNING ON XRT AND XRF DATA

§ FL integrates distributed XRT and XRF 
data for improved, privacy-preserving 
image reconstruction.

§ Key Results
– Combined XRT and XRF data 

improves reconstruction accuracy.
– Developed communication efficient 

algorithm for federated reconstruction.

§ Takeaway: Combining data and efficient 
algorithms boost accuracy and scalability 
in multimodal federated analysis.

Empirical Results and Performance Insights

18

𝑤1′

𝑤1

Client 1
(XRF 1)

Client 2
(XRF 2)

Client 3
(XRF 3)

Client 4
(XRT)

𝑤2′

𝑤2

𝑤3′

𝑤3

𝑤4′

𝑤4

Results of individual reconstruction

Reconstruction Result

FL Server: Combining XRT 
and XRT data as constraints.

Ground Truth as Benchmark



PATHWAY TO AI FOR SCIENCE (AI4S)
Success Built on ECRP, PALISADE-X, and EXPRESS
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Privacy-preserving 
FL

Distributed 
optimization

Heterogeneous 
data and system

Large-scale 
constrained 
optimization

Biomedical data 
and privacy 

analysis

Exploratory Research in Extreme-
Scale Sciences (EXPRESS)

PALISADE-X

Modeling and 
reformulation

Decomposition 
algorithms

Early Career Research Program (ECRP)

• Large AI and foundation models
• Incentive and fairness to FL clients
• Privacy preservation at scale
• Synthetic data generation
• Sustainable and robust workflows
• Interdisciplinary study: AM + CS + Facilities

AI4S PPFL for Large AI and Foundation Models



ACKNOWLEDGEMENTS
§ DOE ASCR Early Career Research Program (2019 - 2024)
§ DOE ASCR PALISADE-X Project (2022 – 2024)
§ DOE ASCR EXPRESS (2023 – 2024)
§ DOE ASCR Resilient Distributed Systems (2024 – 2028)
§ NSF NAIRR Pilot (2024)
§ LDRD Seed (2024)
§ DOE ASCR AI4S (2025 – 2027)
§ Collaborators:

20



www.anl.gov

THANK YOU


