DOE ADVANCED SCIENTIFIC COMPUTING ADVISORY COMMITTEE MEETING

BUILDING ON SUCCESS: ADVANCING PRIVACY-PRESERVING FEDERATED LEARNING WITH DISTRIBUTED OPTIMIZATION

KIBAEK KIM

Computational Mathematician Mathematics and Computer Science Argonne National Laboratory

Collaborators:

Wendy Di (ANL), Ravi Madduri (ANL), Minseok Ryu (former ANL; ASU)

September 27, 2024

WHAT IS FEDERATED LEARNING? **Collaboratively Training Models without Sharing Data**

Distributed learning approach with key benefits:

- Privacy: Models are trained locally.
- Efficiency: Only model updates are shared, reducing data transfer.
- Scalability: Supports large-scale applications across many computing devices.

Mathematical formulation of FL

FedAvg: one of the simplest and most widely-used algorithms $\mathbf{w}_t^k = \mathbf{w}_t - \eta \nabla F_k(\mathbf{w}_t)$ Local training at client k $\mathbf{w}_{t+1} = \sum_{k=1}^{K} \frac{n_k}{n} \mathbf{w}_t^k$

PRIVACY-PRESERVING IN FEDERATED LEARNING Ensuring Data Privacy and Secure Updates

- Local Data Retention: Raw data stays on client devices, but model updates alone can still leak sensitive information.
- Potential Data Leakage: Without privacy-preserving techniques, attackers can reconstruct raw data from gradients or model updates.
- Differential Privacy: Adds noise to model updates to prevent accurate data reconstruction by attackers.

(j) The term "differential-privacy guarantee" means protections that allow information about a group to be shared while provably limiting the improper access, use, or disclosure of personal information about particular entities. *From Executive Order 14110:*

Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence

Stronger Privacy

Weaker Privacy

APPLICATIONS ACROSS KEY DOE DOMAINS

Use Cases of Privacy-Preserving Federated Learning for DOE

Scientific Experiments:

 Collaborative experiments using multimodal data (e.g., from DOE light source facilities) while preserving data privacy across institutions.

Argonne's APS

Climate Science:

- Secure data collaboration between research centers, allowing them to share insights from climate models and data (e.g., from the ARM facility) without sharing raw data.
- Electric Grid Data Analysis:
 - Privacy-preserving FL for analyzing electricity consumption patterns across smart meters, enhancing prediction models while maintaining consumer data privacy.

ARM Facility

Smart Meters and Sensors

MATH & ALGORITHM CHALLENGES

ALGORITHMS FOR PRIVACY-PRESERVING FL Balancing Privacy and Utility in Federated Learning

6

- Key Challenge: Managing the privacy-utility trade-off.
- Algorithm design: Critical to optimize both privacy and performance.
- Noise Injection Points:
 - Data (input): Perturb data before training.
 - **Model (output):** Add noise before sharing the model.
 - Training Loss (objective): Incorporate noise during training.
- **Goal:** Enhance training performance & maintaining privacy guarantees.

Mathematical formulation of FL

PERFORMANCE UNDER PRIVACY SETTINGS Testing Accuracy vs. Privacy Level

- OutP (State of the Art): FL with noise added to the model output.
- ObjP (APPFL): FL with noise added during training.
- ObjPM (APPFL): FL with training noise and multiple local updates.
- **Results:** Our methods perform better as privacy increases, compared to current approaches.

CHALLENGE OF HETEROGENEOUS COMPUTING Stragglers and Resource Waste

- Computing Variance: Client machines have widely varying capabilities, causing significant differences in local training times.
- Synchronous FL Drawback: The server waits for all clients, leading to resource waste when slower clients (stragglers) delay the entire process.

Argonne 🐴

ADAPTIVE ASYNC UPDATES FOR EFFICIENT FL FedCompass: Faster Training with Higher Accuracy

Server FedCompass: Step 1: Dynamically estimate each client's computing power. Step 2: Adjust local tas The capability to better synchronize model Step 3: Collabora ////// the server to update the global model using client results. Clients Federated learning with a computing power aware scheduler. <u>FedCompass</u> achieves faster training and higher accuracy compared to state-of-theart methods.

A A Alberta Market

CHALLENGE OF CLIENT DRIFT Balancing Communication Efficiency and Modal Accuracy

- Client Drift: Clients run multiple updates locally, leading to misalignment with the global model, reducing overall accuracy.
- Existing Solutions: Drift correction methods (e.g., FedProx, SCAFFOLD, FedLin) help mitigate drift but come with trade-offs:
 - Higher Costs: Increased communication and storage for correction terms.
 - Practical Limitations: Solutions can be unstable and lack asynchronous methods, limiting scalability.

AREA: <u>ASYNCHRONOUS</u> <u>EXACT</u> <u>AVERAGING</u>

Asynchronous Client Drift Correction

- Client-Side: Clients save information from previous updates to improve future updates sent to the server.
- Server-Side: The server combines these improved updates to create a more accurate global model.
- Secure: Compatible with privacy-focused protocols, ensuring data remains secure during the process.

<u>AREA</u> achieves faster training and higher accuracy compared to state-of-the-art methods.

MNIST classification, 128 heterogeneous clients.

OPEN-SOURCE SOFTWARE

APPFL: Advanced Privacy-Preserving Federated Learning

APPFL V1.0 (08/2024)

Building and Deploying Secure, Scalable FL Algorithms

- First Code: Started in 10/2021; First Release: 02/2022.
- For Developers: Design, simulate, and evaluate new privacy- and FL algorithms.
- For Users: Deploy secure, scalable FL experiments across distributed clients.
- Key Features
 - Comprehensive: Handles data and system heterogeneity and privacy challenges.
 - **Easy-to-use:** Simplifies transitioning from centralized to federated learning.
 - Extensible: Modular interface for integrating new algorithms in aggregation, training, and privacy.
 - Scalable Deployment: Capable of running FL across <u>multiple HPC clusters</u> and over DOE Energy Sciences Network (ESnet) facility for large-scale distributed experiments.

Argonne Polaris

National Center for Supercomputing Applications Delta

COMPARISON OF OPEN-SOURCE FL SOFTWARE Key Capabilities Across FL Frameworks

APPFL v1.0 stands out with enhanced support for privacy, asynchronous algorithms, and versatile communication, advancing beyond APPFL v0 and other platforms.

DOE USE CASES OF PRIVACY-PRESERVING FEDERATED LEARNING

FEDERATED LEARNING FOR LOAD FORECASTING Accurate, Secure Predictions using Building Energy Data

- Data: Electricity consumption from 42 buildings in CA, IL, NY.
- Challenge: Heterogeneous patterns across buildings.
- **Model:** Attention-based LSTM (long short-term memory) neural network architecture with personalized layers.
- Results:
 - Personalized FL achieves the lowest error.
 - **PPFL** successfully integrates to ensure data privacy.

XRT AND XRF AT ARGONNE'S APS FACILITY Complimentary Data for Advanced Materials Research

- X-Ray Tomography (XRT): Provides 3D structural imaging of materials.
- X-Ray Fluorescence (XRF): Maps elemental composition of materials.
- Complimentary Nature:
 - XRT shows physical structure, while XRF reveals chemical composition.
 - Together, they offer a complete view of material properties.
- Why Federated Learning?
 - Scalable Collaborative Research: Enable joint analysis across labs without sharing raw data.
 - Data Privacy: Keep sensitive data local, further protection with differential privacy.
 - Better Models: Combines data from diverse sources for improved generalization.
 - Resource Efficiency: Utilizes distributed computing power across multiple facilities.

FEDERATED LEARNING ON XRT AND XRF DATA

Empirical Results and Performance Insights

 FL integrates distributed XRT and XRF data for improved, privacy-preserving image reconstruction.

Key Results

- Combined XRT and XRF data improves reconstruction accuracy.
- Developed communication efficient algorithm for federated reconstruction.
- Takeaway: Combining data and efficient algorithms boost accuracy and scalability in multimodal federated analysis.

Results of individual reconstruction

PATHWAY TO AI FOR SCIENCE (AI4S) Success Built on ECRP, PALISADE-X, and EXPRESS

19

ACKNOWLEDGEMENTS

- DOE ASCR Early Career Research Program (2019 2024)
- DOE ASCR PALISADE-X Project (2022 2024)
- DOE ASCR EXPRESS (2023 2024)
- DOE ASCR Resilient Distributed Systems (2024 2028)
- NSF NAIRR Pilot (2024)
- LDRD Seed (2024)
- DOE ASCR AI4S (2025 2027)
- Collaborators:

NERGY

U.S. DEPARTMENT OF

THANK YOU

www.anl.gov