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The Basic Argument for FASST



Global Techno-Economic Landscape

1. Alis rapidly becoming the dominate driver/signal of techno-economic progress and
competition in the next decade

2. Alis pervasive and is becoming ubiquitous across dozens of economically critical
domains

3. Massive competition/positioning in Al between western democracies, semi-aligned
petro-states and adversarial sino-russian players

4. Al provides state and non-state actors with the potential for non-linear progress in
technological, economic and national security domains

US is the clear leader in commercial Al with dominate consumer facing systems

6. US government is under investing in non-commercial non-defense frontier Al
systems development and adoption

7. US government focus has been on mitigating Al risks rather than exploiting
advantage through strategic investments in non-commercial Al capabilities
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Al Engagement across All Fields* is Exponential
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Figure 1: Change in Al engagement across all fields from 1985 - 2022

https://arxiv.org/pdf/2405.15828
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Al Engagement Across 20 Exemplar Fields

Agricultural And Food Sciences Art Biology Business Chemistry
3
8 3.0
E 6 1.2
00 E 2 275.37% 1403.90% 1108.80% 1420.41% 911.42%
~ ; 1.5 3 0.6
e 1
i
N Computer Science Economics Education Engineering Environmental Science
g 45
N % 30 4 4 5.0 10
b E 759.69% 747.67% 867.42% 2402.29% 2343.47%
© = 2 2 2.5 5
o < 15
S~
&o 0.0 0
g Geology History Linguistics Materials Science Mathematics
o — 8 6
é % 1.0 20 2
g 5, 400.48% 668.69% 843.63% 4
o
} = 0.5 10 1
(%] 2
= 0
s
< Medicine Philosophy Physics Political Science Psychology
7.5
» 3.0 16 3.0
5 3.0 ’
g 15 1389.07% 3.0 551.35% 1142.37% 696.78% 466.33%
- 1.5 0.8 1.5
< 2.5
Q QS O Q Q Q O Q M) Q
Q v M) i Q {) N v N )
’LQ ,»0 ,.],Q "19 ’19 ’LQ ,]9 ,.19 ’LQ ’19
Year Year Year Year Year

Figure 2: Change in Al engagement percentage from 1985 - 2023 by field. Inserts tally the total
change in percentage of Al-engaged publications for each field.
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DOE’s Unique Position for Al Leadership

* Operates the most capable scientific computing experimental facilities and
systems and the world’s largest collection of supercomputers
advanced experimental facilities '

* Responsible for US nuclear security through deep
partnerships across government

* Largest producer of classified and unclassified
scientific data in the world

» Strongest foundation combining physical,
biological, environmental, energy, mathematical
and computing sciences

 Largest scientific workforce in the free world

» Strong ties with private sector technology and
energy organizations and stakeholders
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Why DOE Needs to Lead in Al?

1. Effective execution of DOE mission requires the best and most powerful scientific
tools. Al is beeoming such a tool.

2. Private sector Al efforts alone will not address the deep scientific and national
security requirements of DOE use cases.

3. Government efforts to regulate Al will require deep expertise in Al technologies
and risks independent from the industry to be regulated DOE can be a trusted
neutral party to provide this expertise.

4. Al offers great opportunity and great risks, especially in global security. Powerful Al
systems in the hands of bad actors poses a new type of asymmetric threat that will
need new ideas for risk management.

5. DOE has the technical ability to lead in Al and partner with other agencies to
advance the use of transformational Al across the government. No other agency is
as well placed to do this.
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DOE and Lab Planning Efforts



DOE Has Been Gathering Wide Community Input
(>1300 researchers)

Much accelerated in three years! 2022
& .",.
4, * Language Models (e.g. ChatGPT) released “ _
ey ¢ Artificial image generation took off ; é‘é%%%i?ﬁﬁ“ ,
' #7 ~ + Alfolded a billion proteins e A N
| e S8 . Al hints at advancing mathematics L L
“W ”‘ "% % ¢ Al automation of computer programming s - 2 Al

* Explosion of new Al hardware
# * Al accelerates HPC simulations

. . .‘
* Exascale machines start to arrive ‘l@% o

Report posted here:
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https://www.anl.gov/ai-for-science-report

WH Executive Order on Al (October 30, 2023)

Al for Science, Energy, and National Security. Consistent with DOE’s priorities in the May 2023 Al for
Science, Energy, and Security report, DOE is tasked with expanding partnerships with industry,
academia, other agencies, and international partners to utilize DOE’s computing capabilities and Al
testsbeds to build foundation models that support new applications in science, energy, and national J
security, including community preparedness for climate-related risks, enable clean-energy deployment
(including addressing delays in permitting reviews), and enhance grid reliability and resilience.

DOE is also charged with issuing a public report “ enable the provision of clean, affordable, reliable, resilient,
and secure electric power to all describing the potential for Al to improve planning, permitting, investment,
and operations for electric grid infrastructure and to Americans.” DOE is also tasked as the lead agency,
through the National Nuclear Security Administration, to reduce the risks at the intersection of Al and
chemical, biological, radiological, and nuclear (CBRN) threats. DOE is required to develop testbeds and /
“tools to evaluate Al capabilities to generate outputs that may represent nuclear, nonproliferation,
biological, chemical, critical infrastructure, and energy-security threats or hazards” and “develop model
guardrails that reduce such risks.”
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\ Application of Artificial Intelligence Methods and Technologies to Nuclear Security Mission

e Areas: the demonstration and application of Al to the Nuclear Security Enterprise and high-
‘H/SE' consequence applications will be accomplished by partnering with key stakeholders in the

weapons design, production, and analysis community.

ARTlFICIAL INTELLlGENCE FOR Foundational R&D in Machine Learning Methods and Technologies: the development of ML
tools and techniques that enable successful application in sparse or limited data environments
NUCLEAR DETERRENCE STRATEGY 's and tech h bl ful appl limited d

where model accuracy constraints are likely to be much tighter than in industry or academia. In
2023 addition, the methods that will be developed will need to scale to the substantial data

environment associated with the simulation of complex nuclear physics phenomena.

Scalable and Performant Data Infrastructure: the availability of rich, curated data sets will be
critical to the use of ML within ASC. Investment will be required to create a secure hardware
and software infrastructure that connects users across the design and production agencies of
the Nuclear Security Enterprise. Ensuring the environment is scalable into the future and

. provides sufficient performance to prevent model training and inference from becoming a

) 3 bottleneck will be an essential component to a successful execution of this strategy.

s Enabling the Data-Driven Workforce of the Future: ASC’s most important asset is its unique

workforce of laboratory technical staff who provide expertise in a wide variety of technical

areas, including physics, engineering, mathematics, and advanced computing. ASC will invest in
training and developing a pipeline of additional staff to engage across projects and activities,
with the goal of providing data analytics and complex data-driven modeling. Attracting and
retaining the best workforce will likewise mean demonstrating that ASC is performing cutting-
edge research in Al methods and applying them to the nation’s most challenging problems. ASC
will collaborate with industry, academia, and other U.S. agencies to leverage existing
knowledge, experienced staff, and best practices.

Image credit: DALL-E Machine Learning Generated Image




Al4E in 2023

Key Findings for Establishing the Cross-cutting Aspects of Al Supremacy Needed to Ensure Success
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May 8" SCSP Al Expo DOE Announcement

Driving the news: The department announced the Frontiers in Artificial Intelligence for
Science, Security and Technology (FASST) initiative at the Al Expo for National
Competitiveness in Washington.

e 'Imagine we had a basic science Al foundational model like ChatGPT for English — but it

speaks physics and chemistry,” Deputy Energy Secretary David Turk said in announcing the
initiative.

e Combine that "with the world-class laboratory test facilities we have at [DOE] labs and you
will get a sense of the incredible potential here,” he said, adding it is already happening with
fusion ignition research at Lawrence Livermore National Lab.

Why it matters: The DOE has world-class supercomputing, a powerful scientific infrastructure
and experience working with dual-use technologies that position it to power Al advances for
science and national security.

e 'ltis arguably the most important Al initiative yet from the Biden administration”
considering the ambition, scale, funding and focus squarely on Al, says Divyansh Kaushik, a
VP at Beacon Global Strategies who focuses on critical and emerging tech.

e 'The president's budget request for $455 million is a starting point but it remains to be seen
what DOE can do with that amount of money and they certainly will need a lot more if you
compare to private sector investments,” Kaushik says, adding it will arguably require tens of

U.S. DEPARTMENT OF billions of dollars over five years.

(#)ENERGY “ /




Driving U.S.
Innovation in
Artificial Intelligence

A ROADMAP FOR ARTIFICIAL INTELLIGENCE POLICY
IN THE UNITED STATES SENATE

The Bipartisan Senate
Al Working Group

Majority Leader Chuck Schumer
Senator Mike Rounds

Senator Martin Heinrich
Senator Todd Young

May 14th SENATE ROADMAP
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https://arxiv.org/pdf/2108.07258.pdf

Trend is towards fewer more universal models:
increasing emergence and homogenization

Machine Learning g; @) S
Deep Foundation Models "%;
A

Learning "
Emergence of... “how” Features Functionalities
Homogenization of... learning algorithms architectures  models
¢ >

Fig. 1. The story of Al has been one of increasing emergence and homogenization. With the introduction of
machine learning, how a task is performed emerges (is inferred automatically) from examples; with deep
learning, the high-level features used for prediction emerge; and with foundation models, even advanced
functionalities such as in-context learning emerge. At the same time, machine learning homogenizes learning
algorithms (e.g., logistic regression), deep learning homogenizes model architectures (e.g., Convolutional
Neural Networks), and foundation models homogenizes the model itself (e.g., GPT-3).
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The Platonic Representation Hypothesis

Neural networks, trained with different objectives
on different data and modalities, are converging to a
shared statistical model of reality in their representa-
tion spaces.

to

Figure 1. The Platonic Representation Hypothesis: Images (X))
and text (YY) are projections of a common underlying reality (£).
We conjecture that representation learning algorithms will con-
verge on a shared representation of Z, and scaling model size, as
well as data and task diversity, drives this convergence.
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The Platonic Representation Hypothesis

Minyoung Huh*! Brian Cheung*! Tongzhou Wang"*' Phillip Isola "'

Abstract

We argue that representations in Al models, par-
ticularly deep networks, are converging. First, we
survey many examples of convergence in the lit-
erature: over time and across multiple domains,
the ways by which different neural networks rep-
resent data are becoming more aligned. Next, we
demonstrate convergence across data modalities:
as vision models and language models get larger,
they measure distance between datapoints in a
more and more alike way. We hypothesize that
this convergence is driving toward a shared sta-
tistical model of reality, akin to Plato’s concept
of an ideal reality. We term such a representation
the platonic representation and discuss several
possible selective pressures toward it. Finally,
we discuss the implications of these trends, their
limitations, and counterexamples to our analysis.
Project Page: phillipi.github.io/prh
Code: github.com/minyoungg/platonic-rep

1. Introduction

Al systems are rapidly evolving into highly multifunctional
entities. For example, whereas in the past we had special-
purpose solutions for different language processing tasks
(e.g., sentiment analysis, parsing, dialogue), modern large
language models (LLMs) are competent at all these tasks us-
ing a single set of weights (Srivastava et al., 2022). Unified
systems are also being built across data modalities: instead
of using a different architecture for processing images ver-
sus text, recent models, such as GPT4-V (Achiam et al,,
2023), Gemini (Anil et al., 2023), and LLaVA (Liu et al.,
2023), handle both modalities with a combined architecture.
More and more systems are built off of general-purpose
pretrained backbones, sometimes called foundation mod-
els (Bommasani et al., 2021), that support a large range
of tasks, including robotics (Driess et al., 2023; Brohan
et al.,, 2023), bioinformatics (Ma et al., 2024), and health-

“Equal contribution 'MIT. Correspondence to: Minyoung Huh
<minhuh@mit.edu>.

Proceedings of the 41°* International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

The Platonic Representation Hypothesis

Neural networks, trained with different objectives
on different data and modalities, are converging to a
shared statistical model of reality in their representa-
tion spaces.

Figure 1. The Platonic Representation Hypothesis: Images (X)
and text (Y") are projections of a common underlying reality (Z).
‘We conjecture that representation learning algorithms will con-
verge on a shared representation of Z, and scaling model size, as
well as data and task diversity, drives this convergence.

care (Steinberg et al., 2021). In short, Al systems are becom-
ing increasingly homogeneous in both their architectures
and their capabilities.

This paper explores one aspect of this trend: representational
convergence. We argue that there is a growing similarity
in how datapoints are represented in different neural net-
work models. This similarity spans across different model
architectures, training objectives, and even data modalities.

What has led to this convergence? Will it continue? And
ultimately, where does it end?

Our central hypothesis, stated above in Figure 1, is that there
is indeed an endpoint to this convergence and a principle
that drives it: different models are all trying to arrive at a
representation of reality, meaning a representation of the




The 2022 workshops recognized
This trend and organized differently



AI4SES Organized on Six Conceptual Clusters

Al for advanced Al and robotics

properties inference for autonomous
and inverse design discovery

Energy Storage Materials, Chemistry, Biology

Proteins, Polymers, Light-Sources, Neutrons
Stockpile modernization

Al for software Al for prediction and Foundation models for
engineering and control of complex scientific knowledge
programming engineered systems tasks

Code Translation, Optimization Accelerators, Buildings, Cities

Hypothesis Formation, Math
Quantum Compilation, QAlgs Reactors, Power Grid, Networks

Theory and Modeling Synthesis,
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LLMs and Foundation Models






Foundation Models — What are they?

https://arxiv.org/pdf/2108.07258.pdf

» Large scale model trained on large One Model = Many tasks Tasks
datasets from many sources (text, papers, ¢ %
datasets, code, molecules, etc.) pata o @ =

- Additional training to improve the human = 4 . @
. . . ® 7} /images L5 QU  [nformation
interaction experience (e.g., ChatGPT-40) we g e Y

o Tpaaen = U/ ,: Model %S" I(;::st,iining I

« Large models are remarkably flexible and ——
exhibit emergent behaviors (capable of s & g
tasks not originally trained to do) G = -

 Applications built on top

* There are multiple early efforts underway in Trained on trillions of input "tokens”
DOE labs to create Foundation Models for many weeks on a large-scale computers

explicitly targeting scientific use cases SOTA models (GPT-4) have about

1.8 trillion parameters (~1% brainscale)
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Foundation Models for Science — Opportunities

* FMs can summarize and distill knowledge - extract
information from million of papers into compact y o
computing representation - PPl networks, materials e
compositions, code kernels, biological function, etc. D o St i M T,

? Institute of New Media and Communications, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul
08826, Republic of Korea

* FMs can synthesize - combine information from multiple oo T

sources - generate small programs for specific tasks - kb
uantum computing programs using QISkit & Cirg, e e
erivations for applied physics, code for visualization and by, e s i ey e et v vl ¢ v

animation, etc.

In a university or research institute, a significant portion of fresh ideas arises out of discussions.
Can talking to ChatGPT-4,' OpenAl’s latest chatbot, create genuinely interesting scientific

* FMs can generate plans, solve Io%ic problems and e
write experimental protocols for robots - powering self- e i e b e 0 e e

driving labs, generate strategies for problem solving, and et ot et s i s i

engineering. Generative Pre-trained Transformer (GPT-4), released on March 14, 2023, is a large

p | ann | N g 'FO r te St | N g h y p Ot h eses language model (LLM) significantly bigger than its predecessor GPT-3 released in 2020 (already

with 1.75x10"" parameters). GPT-4 neural network was trained on a text corpus of books,

webpages, academic papers from various disciplines, discussion forums, etc., up to September
2021. After experimenting with GPT-4 in our own research domains in materials chemistry,

L] F M s Ca n g e n e rate hyp ot h e s es to b e te ste d a n d physics and quantum information, we find that ChatGPT-4 is knowledgeable, frequently wrong,

and interesting to talk to. In other words, not unlike a college professor or a colleague.

erhaps eventually new theories for exploration - a P s 3 i B, s

hypotheses™ is (a) whether after a conversation, some experienced practitioner of a field can feel

ull-time shared scientific assistant that learns from 1
across all of science is possible

After experimenting with GPT-4 in our own research domains in materials chemistry, physics and quantum
information, we find that ChatGPT-4 is knowledgeable, frequently wrong, and interesting to talk to. In other

@E words, not unlike a college professor or a colleague. https://arxiv.org/pdf/2304.12208.pdf



https://arxiv.org/pdf/2108.07258.pdf
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Google Gemini

Input Natively Multimodal — text, speech, images, video
Sequence
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Science oriented LLMs

and

Domain Foundation Models



FASST - Cartoon

Scientific &
Engineering
Datasets

Mathematics
Biology
Materials
Chemistry
Particle Physics
Nuclear Physics
Computer Science
Climate
Medicine
Cosmology
Fusion Energy
Accelerators
Reactors
Energy Systems
Manufacturing

&% U.S. DEPARTMENT OF

ENERGY

Text and Code
Corpora

General Text
Media

News

Humanities
History

Law

Digital Libraries
OSTI Archive
Scientific Journals
arXiv

Code repositories
Data.gov
PubMed

Agency Archives

DOE and NNSA Exascale Systems
FASST Common Al Software Frameworks
FASST Responsible Al Techniques

Open
Science
Foundation

Training
IIr Model

National
Security

Foundation
Model

Integrated Research Infrastructure
Online Experimental Facilities
Strategic Partnerships

Tuned and Adapted Downstream Models

Exemplar DOE
Mission Tasks

Scientific
Discovery

Digital Twins

Inverse Design

Code Optimization

Accelerated
Simulations

Autonomous
Experiments

Secure Data
Infrastructure

Co-Design




Data

Kcientific &

Engineering
Datasets

Mathematics
Biology
Materials
Chemistry
Particle Physics
Nuclear Physics
Computer Science
Climate
Medicine
Cosmology
Fusion Energy
Accelerators
Reactors
Energy Systems
Manufacturing

5 '”":"5'\ U.S. DEPARTMENT OF

Text and Code
Corpora

General Text
Media

News

Humanities
History

Law

Digital Libraries
OSTI Archive
Scientific Journals
arXiv

Code repositories
Data.gov
PubMed

Agency Archives

DOE and NNSA Exascale Systems

FASST Common Al Software Frameworks

FASST Responsible Al Techniques

Models
N

Compute

Open
Science
Foundation
Models

Training

National
Security

g
FC r?cﬁiﬂ‘“%nzgzmgﬁ,

Foundation

Tralmng Model
: odels

iG]

J

Integrated Research Infrastructure
Online Experimental Facilities
Strategic Partnerships

Applications
Exemplar DOE
/ Mission Tasks \

Scientific
Discovery

Digital Twins
Inverse Design

Code Optimization

Accelerated
Simulations

Autonomous
Experiments

luned and Adapted Downstream Iviodels

Secure Data
Infrastructure

/

Co-Design /




It is likely that many of
the use cases we
imagine can be driven
directly or indirectly
from sufficiently
powerful Foundation
Models but we should
not limit our thinking to
FMs

Advanced Al systems
often integrate many
tools and technologies
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Foundation Models Mapped Against
DOE Mission Areas



Clean Energy Systems Model: This model would focus on the physics,
chemistry, and engineering principles underlying various renewable energy
sources, hydrogen production, solar energy, wind energy, and storage
technologies. It can be fine-tuned for specific energy systems, optimization of
energy output, and efficiency improvements.

Smart Grid and Infrastructure Model: This model would encompass
electrical engineering, network optimization, smart grid technologies, and
energy systems management. It can be fine-tuned for specific applications
like EV infrastructure planning, grid resilience strategies, and smart grid
implementations.

Computational Intelligence Model: This model would integrate capabilities
in high-performance computing, machine learning, quantum algorithms,
computer science, mathematics, computer architecture, data science,
advanced data analysis, applied mathematics, and parallel computing. It can
be fine-tuned for applications in Al, complex simulations, and computational
research.

Environmental Sciences Model: This model would focus on climate
modeling, environmental impact assessments, atmospheric science, climate
mitigation strategies, climate risk assessment, bio-geosphere interactions,
climate engineering, and biological systems in the environment. It can be fine-
tuned for specific environmental applications and climate studies.

Materials and Chemical Sciences Model: This model would cover
computational chemistry, materials discovery, molecular dynamics,

manufacturing processes, inverse design of materials and systems, self-driving
laboratories, and autonomous discovery. It can be fine-tuned for developing new

materials, chemical processes, and manufacturing techniques for energy
applications.
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Biological Systems Model: This model would cover the study of biological
systems, including genomics, synthetic biology, microbiology, environmental
biology, engineering plants, medicine, protein design, self-driving laboratories,
autonomous discovery, and microbial engineering. It can be fine-tuned for
applications in environmental biology, plant engineering, biotechnology, and
medical research.

Nuclear Security Model: This model would integrate nuclear physics,
engineering, security protocols, reactor technologies, nuclear fission, automated
reactor design, and reactor control. It can be fine-tuned for nuclear energy

applications, nonproliferation technologies, and national security measures.

High-Energy and Particle Physics Model: This model would focus on the
principles of high-energy physics, nuclear reactions, particle physics,

accelerators, and cosmology. It can be fine-tuned for applications in experimental

physics, particle accelerators, and fundamental research in physics.

Advanced Manufacturing Model: This model would focus on manufacturing
technologies, including inverse design, process optimization, supply chain
optimization, applied materials, precision manufacturing, self-driving
laboratories, and autonomous discovery. It can be fine-tuned for specific
applications in optimizing manufacturing processes and supply chains.

Carbon Management Model: This model would integrate knowledge on the
physics and chemistry of capturing CO2, managing CO2 flows, carbon storage,
conversion to fuels, and direct air capture. It aims to support the design and
analysis of CO2 management systems and advance research into the
fundamentals of carbon management.

Knowledge Integration Model: This model would integrate scientific literature,
codes, texts, and tutorials to support knowledge extraction, synthesis, and
automated hypothesis generation. It aims to advance theory and experimental
design, forming the core of a system that interacts with humans and manages
interactions with other foundation models included in this list.



Clean Energy Systems Model: This model would focus on the physics,
chemistry, and engineering principles underlying various renewable energy
sources, hydrogen production, solar energy, wind energy, and storage
technologies. It can be fine-tuned for specific energy systems, optimization of
energy output, and efficiency improvements.

Smart Grid and Infrastructure Model: This model would encompass
electrical engineering, network optimization, smart grid technologies, and
energy systems management. It can be fine-tuned for specific applications
like EV infrastructure planning, grid resilience strategies, and smart grid
implementations.

Computational Intelligence Model: This model would integrate capabilities
in high-performance computing, machine learning, quantum algorithms,
computer science, mathematics, computer architecture, data science,
advanced data analysis, applied mathematics, and parallel computing. It can
be fine-tuned for applications in Al, complex simulations, and computational
research.

Environmental Sciences Model: This model would focus on climate
modeling, environmental impact assessments, atmospheric science, climate
mitigation strategies, climate risk assessment, bio-geosphere interactions,
climate engineering, and biological systems in the environment. It can be fine-
tuned for specific environmental applications and climate studies.

Materials and Chemical Sciences Model: This model would cover
computational chemistry, materials discovery, molecular dynamics,

manufacturing processes, inverse design of materials and systems, self-driving
laboratories, and autonomous discovery. It can be fine-tuned for developing new

materials, chemical processes, and manufacturing techniques for energy
applications.
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Biological Systems Model: This model would cover the study of biological
systems, including genomics, synthetic biology, microbiology, environmental
biology, engineering plants, medicine, protein design, self-driving laboratories,
autonomous discovery, and microbial engineering. It can be fine-tuned for
applications in environmental biology, plant engineering, biotechnology, and
medical research.

Nuclear Security Model: This model would integrate nuclear physics,
engineering, security protocols, reactor technologies, nuclear fission, automated
reactor design, and reactor control. It can be fine-tuned for nuclear energy

applications, nonproliferation technologies, and national security measures.

High-Energy and Particle Physics Model: This model would focus on the
principles of high-energy physics, nuclear reactions, particle physics,

accelerators, and cosmology. It can be fine-tuned for applications in experiment
physics, particle accelerators, and fundamental research in physics.

Advanced Manufacturing Model: This model would focus on manufacturing
technologies, including inverse design, process optimization, supply chain
optimization, applied materials, precision manufacturing, self-driving
laboratories, and autonomous discovery. It can be fine-tuned for specific
applications in optimizing manufacturing processes and supply chains.

Carbon Management Model: This model would integrate knowledge on the
physics and chemistry of capturing CO2, managing CO2 flows, carbon storage,
conversion to fuels, and direct air capture. It aims to support the design and
analysis of CO2 management systems and advance research into the
fundamentals of carbon management.

Knowledge Integration Model: This model would integrate scientific literature,
codes, texts, and tutorials to support knowledge extraction, synthesis, and
automated hypothesis generation. It aims to advance theory and experimental
design, forming the core of a system that interacts with humans and manages
interactions with other foundation models included in this list.
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MatterGen - Microsoft Al4dScience — Materials
Desigh with Stable Diffusion
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[1-3]. Generative models provide a new paradigm for materials design by directly stable materials by reversing a corruption process through iteratively denoising an ini-
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structures by gradually refining atom types, coordinates, and the periodic lattice. tra'lne on a arge a't'aiset ) Sta e materla; St rUCtureS to JOlnt y €enoise atom typeS,
We further introduce adapter modules to enable fine-tuning towards any given . . . .
property constraints with a labeled dataset, Compared to prior goncrative mod. coordinates, and the lattice. The score network is then fine-tuned with a labeled
1 duced by M G h i likel; b 1 .
ol stable. o more.tham 15 times closer to the local enerey minmum. After dataset through an adapter module that alters the model using the encoded property
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Figure 1: A foundation model for materials modelling. Trained only on Materials Project data (19)
which consists primarily of inorganic crystals and is skewed heavily towards oxides, MACE-MP-0 is capable
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% Check for updates Deep-learning language models have shown promise in various

biotechnological applications, including protein design and engineering.
Here we describe ProGen, a language model that can generate protein
sequences with a predictable function across large protein families, akin
to generating grammatically and semantically correct natural language
sentences on diverse topics. The model was trained on 280 million protein
sequences from >19,000 families and is augmented with control tags
specifying protein properties. ProGen can be further fine-tuned to curated
sequences and tags toimprove controllable generation performance

of proteins from families with sufficient homologous samples. Artificial
proteins fine-tuned to five distinct lysozyme families showed similar
catalytic efficiencies as natural lysozymes, with sequence identity to
natural proteins as low as 31.4%. ProGenis readily adapted to diverse
protein families, as we demonstrate with chorismate mutase and malate
dehydrogenase.

Traditional methods for protein engineering perform iterative
mutagenesis and selection of natural protein sequences to identify
proteins with desired functional and structural properties. By con-
trast, rational or de novo protein design methods aim to improve the
efficiency and precision of creating novel proteins with desired prop-
erties. Structure-based de novo design methods'* employ simula-
tions grounded in biophysical principles, whereas coevolutionary
methods®'° build statistical models from evolutionary sequence data
to specify novel sequences with desired function or stability. Both
structural and coevolutionary approaches are not without limitations.
Structural methods rely on scarce experimental structure data and
difficult or intractable biophysical simulations*". Coevolutionary
statistical models are tailored to specific protein families, frequently
rely on multiple sequence alignments, and do not operate well in space
outside of the defined multiple sequence alignment. Recently, deep

neural networks have shown promise as generative and discriminative
models for protein science and engineering'* *’. Their ability to learn
complex representations could be essential to effectively exploit an
exponentially growing source of diverse and relatively unannotated
protein data—public databases containing millions of raw unaligned
protein sequences™ %,

Inspired by the success of deep-learning-based natural language
models trained on large text corpora that generate realistic text with
varied topics and sentiments™ **, we developed ProGen, a protein
language model trained on millions of raw protein sequences that
generates artificial proteins across multiple families and functions.
While prior work has shown that natural-language-inspired statis-
tical representations of proteins are useful for protein informatics
tasks such as stability prediction, remote homology detection and
secondary structure prediction' """, we show that thelatest advances

'Salesforce Research, Palo Alto, CA, USA. *Profluent Bio, San Francisco, CA, USA. *Department of Bioengineering and Therapeutic Sciences, University
of California, San Francisco, San Francisco, CA, USA. “Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
*Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA. ®Tierra Biosciences, San Leandro, CA, USA. "Molecular Biophysics
and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. *Stanford Synchrotron Radiation Lightsource, SLAC

- A, “Department of Biochemistry and Biophysics, University of California, San Francisco,

ki
fﬁ: \%\ U.S. DEPARTMENT OF equally: Ben Krause and Eric R. Greene. - e-mail: ali@madani.ai; nnaik@salesforce.com

EN E RG I |1099-1106 1099

Article https://doi.org/10.1038/s41587-022-01618-2
a .
Control tag(s) Model Generated english sentence Control tag(s) Model Generated protein sequence
| Voting for the presidential election has begun Immunoglobulin L+ DIQMTQSPASLS ... PKSFNRNEC
English | The Red Sox defeated the Yankees at Fenway Protein |~ MSNTELELLRQK ... KEKAGLELQ ';:Ef“‘""
language language
model

— This knife is excellent for slicing meat

f— This knife is poorly made, not sharp at all!

model {;‘ y
- YIEKYNAIAERHK ... RHKLNRFDG %

Phage lysozyme

b
I NIDFGFICELEGF ... ADLLESSMR {L.é’n%"’

c d e
’ X B ; .
f Universal | Universal protein sequence dataset Training: Negative
| protein sequence [T ARG log likelihood minimization ~ / \
9 dataset ! ,/ Natural proteins 4 £
.
RS IS 4/ x
Training lr i ‘ ’ ¥ £
! / - 2
- _ 4 ’t -7 g
/' Protein F - ’ 3
language ‘ ' I §
model A o ; Transformer
AN 4 280M sequences / ) decoder
c Lo § / 19K Pfam families 0= "\_,’ /"
Generation | Controltagfor == === =======----- -
protein family f A ! %R T 3
\ / i‘(, / o Feed forward block
AT m == . Ny / @& 8 & ag- |3
§ Artificial ) \ 56K sequences Control Aminc |8 PP F1d
| roteins of | ! 5 Pfam families : “J8| (e 00000
1 pro : R L 4 tag  acids 42 ulti-head self-attention,
i protein family f ! & T
N

Fig.1]| Artificial protein generation with conditional language modeling.
a, Conditional language models are deep neural networks that can generate
semantically and grammatically correct, yet novel and diverse natural language

text, steerable using input control tags that govern style, topic and other entities.

b,c, Analogous to natural language models, we develop ProGen, a conditional
protein language model (b) that generates diverse artificial protein sequences
across protein families based on input control tags (c). d, ProGen is trained using

[

alarge, universal protein sequence dataset of 280 million naturally evolved
proteins from thousands of families, of which five diverse lysozyme families are
experimentally characterized in this study. e, ProGenis a1.2-billion-parameter
neural network that is based on the Transformer architecture, which uses a self-
attention mechanism for modeling comprehensive residue-residue interactions.
ProGenis trained to generate artificial sequences by minimizing the loss over the
next amino acid prediction problem on the universal protein sequence dataset.
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Frontier Al Systems are Large-Scale Science



Al4S is emerging as “big science” in the
tradition of nuclear and high energy physics

1T parameters ~ 100 days
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Llama-3 Development Team (327 authors)
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Example of Organizational Effort for One FM

* AuroraGPT working groups:

* 01 Planning (over the horizon prototyping)

* 02 Data Organization, Preparation, Representation
* 03 Model Development and training (pre-training)
e 04 Evaluation (skills, trustworthiness, safety)

* 05 Post-training (fine tuning, alignment)

* 06 Inference and Deployment for Eval and Use

e 07 Distribution

e 08 Communication
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Training compute (FLOPs) of milestone Machine Learning systems over time https://arxiv.org/abs/2202.05924
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Figure 3: Trends in training compute of 102 milestone ML systems between 2010 and 2022. Notice the emergence of a possible
new trend of large-scale models around 2016. The trend in the remaining models stays the same before and after 2016.
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Closed-source vs. Open-weight models (Arena ELO, 22 Apr 24)

® Closed-source models
® Open-weight models
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DENSE LLM TRAINING ON A 720 Al EF" MACHINE (E.G. AURORA)
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Text Evaluation

887
B GPT-40 M GPT-AT [ GPT-4 (initial release 23-03-14) M Claude3Opus [ GeminiPro15

I GeminiUltra10 @ Llama3 400b

$H6H68 8A1
837
819 I
8680
834 831 &35
I 9[ I

100

81
BaG

BaT B0 oS 5 BT, 7
S 868 BTl BEO
83T
19 B4 B34 a1} BiS
o a0 g s
75 T4 5
= T1D
a7
60
5
518 STB
50 - :
25
5T
25 |
0 iAHIA ool
—_ — — — —
=

—

g g g g S S Llama 3 400B is
2 s z S 2 S
3 & E - < 5 close to GPT-40
-
Improved Reasoning - GPT-40 sets a new high-score of 88.7% on 0-shot COT MMLU (general Kee P tra inin g I
knowledge questions). All these evals were gathered with our new simple evals library. In... +
R —— https://www.reddit.com/r/LocalLLaMA/comments/1croyce/

'ENERGY openai_gptdo_eval_results_and_llama3400b/



Frontier Al
for Science Security and Technology



FASST Goals and Outcomes

* Ensure US (DOE) leads the world in technical capability for its
missions in Science, Energy and National Security

* Create, deploy and sustain world leading ”frontier” Al systems and
appllcatlons for DOE mission areas to provide advantage to US and
partners

* Increase productivity and capabilities of the DOE laboratories,
academic, agency and international partners

* Develop an Al-forward workforce for DOE
* Discovery Science — accelerate and improve effectiveness

* Energy Transition — accelerate, reduce risk, improve translation
* National Security — anticipate risk, mitigate risks, accelerate mission
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Frontier Al for Science, Security and Technology

Data Data aggregation, curation, representation, interfaces
And infrastructure

Platforms for Al, next generation hardware,

Compute path forward for Al, cloud partnerships,
Pathways to zettascale systems for Al
Models Foundation Models for Science, Security and Energy

Strategic multimodal FMs

Applications Adapting Models for DOE Missions (many many targets)




Key points on the FASST program

* Data — aggregating, cleaning, curating, transforming the many
100’s of petabytes of scientific data for Al training/testing, target
of 1000 Trillion tokens

* Platforms — investing to create new platforms for training and
Inference, investments to push 1000EF @100MW, deployment of
multiple Al frontier training platforms and many Al inference
optimized systems — distinct from general HPC

* Models — ramping up to train order dozen domain oriented FMs
each year to cover science, energy and national security

* Applications - downstream adaptation of models for 100’s-1000’s
of DOE use cases
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FASST Targets

Data effort must produce tokens on schedule or whole effort will be rate limited
on data preparation

* Labor andinference intensive = 100 T tokens in first few years
* Common data APIs are needed, but not waste time on unneeded sw/standards

To train ~10 Frontier FMs per year will require building out of significant Al
training resources to avoid cannibalizing LCFs

* Need 10x current Exascale Al flops in next few years = 200 Al EFs (a few sites)

Inference hardware capacity is critical
* Need to serve models/apps for development and production
* Will need thousands of inference servers = 200 Al EFs (deployed at ~10 sites)

Large increase in staff are needed across the FASST program

* Much of the work in building and deploying FMs and applications is “engineering” and a
project framework is needed to both manage to schedule and to integrate the hundreds of
activities = 2000 FTEs

Applications need to be deployed to get productivity boost

* Applications development should start now with open models and swap FMs as better ones
become available = 100 frontier Al based applications

* Modular architecture with plug-in APIs are needed to avoid silos
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Billions of [Tokens Training |Total Training Time Aurora Time
Parameters [(Trilliions) F/P/T Compute EF-Days (Days) (Hours) H oW ma ny m Od e '-S Of Wh at
10 10 6 6E+25 69 8 189 o
2+
= o — = o Current Exascale systems?
40 10 6 2.4E+26 278 32 758
40 20 6 4.8E+26 556 63 1515
40 40 6 9.6E+26 1111 126 3030 GPT4 was trained on 15T tokens
80 10 6 4.8E+26 556 63 1515
80 20 6 9.6E+26 1111 126 3030
80 40 6 1.92E+27 2229 253 6061 GPT5is training on X T tokens?
80 80 6 3.84E+27 4444 505 12121
60 160 6 7.68E+27 S UL e e Llama 3 is trained on 15T tokens
160 10 6 9.6E+26 1111 126 3030
160 20 6 1.92E+27 2222 253 6061
160 40 6 3.84E+27 4444 505 12121
160 80 6 7.68E+27 8889 1010 24242 Scientific FMs will need to be trained
160 160 6 1.536E+28 17778 2020 48485 on more and multimodal data
320 10 6 1.92E+27 2222 253 6061
320 20 6 3.84E+27 4444 505 12121
320 40 6 7.68E+27 8889 1010 24242 Non LLMs have different scaling
320 80 6 1.536E+28 17778 2020 48485
320 160 6 3.072E+28 35556 4040 96970
320 320 6 6.144E+28 71111 8081 193939
400 15 6 3.6E+27 4167 473 11364
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LLM Scaling Models are Quite Good

OpenAl codebase next word prediction

Bits per word
6.0

¢ e Observed
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5.0 gpt-4
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Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived
from our internal codebase. This is a convenient, large dataset of code tokens which is not contained in
the training set. We chose to look at loss because it tends to be less noisy than other measures across
different amounts of training compute. A power law fit to the smaller models (excluding GPT-4) is
shown as the dotted line; this fit accurately predicts GPT-4’s final loss. The x-axis is training compute
normalized so that GPT-4 is 1.
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DENSE LLM TRAINING ON A 720 Al EF" MACHINE (E.G. AURORA)
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DENSE LLM TRAINING ON A 20 Al EF" MACHINE (E.G. AURORA)D
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Five-year Sketch of Data Preparation for FMs

* Accelerators: 100 Trillion Tokens

* Biology: 35 Trillion Tokens

* Chemistry: 35 Trillion Tokens

* Climate: 90 Trillion Tokens

« Computer Science: 3 Trillion Tokens
» Cosmology: 100 Trillion Tokens

* Energy Systems: 63 Trillion Tokens
 Fusion Energy: 100 Trillion Tokens
* HPC codes: 12 Trillion Tokens

* Manufacturing: 100 Trillion Tokens
» Materials: 60 Trillion Tokens

« Mathematics: 42 Trillion Tokens

* Nuclear Physics: 80 Trillion Tokens
* Particle Physics: 80 Trillion Tokens
* Reactors: 100 Trillion Tokens

1000 Trillion Tokens over 5 years?

GPT4 trained on

~15T tokens

Llama3 trained on ~15T tokens

FY26: $100M, 10 Trillion Tokens - Begin with organizing and curating datasets in
text or narrative form for Al model training. Initial focus areas include:

¢ Mathematics: 2 Trillion Tokens

* Computer Science: 3 Trillion Tokens

* HPC codes: 2 Trillion Tokens

* Energy Systems: 3 Trillion Tokens

FY27: $150M, 50 Trillion Tokens - Expand data curation efforts to enhance Al
model training capabilities. Add datasets for:

* Biology: 10 Trillion Tokens

¢ Chemistry: 10 Trillion Tokens

* Materials: 10 Trillion Tokens

* Energy Systems: 10 Trillion Tokens

* HPC codes: 10 Trillion Tokens

FY28: $250M, 150 Trillion Tokens - Further enhance curated datasets to support a
broader range of Al applications, preparing for complex Al challenges. Include
data for:

* Particle Physics: 30 Trillion Tokens

* Nuclear Physics: 30 Trillion Tokens

* Climate: 40 Trillion Tokens

* Biology: 25 Trillion Tokens

¢ Chemistry: 25 Trillion Tokens

FY29: $300M, 300 Trillion Tokens - Sustain and expand dataset curation
and maintenance to support continuous Al model development.
Integrate datasets for:

¢ Fusion Energy: 50 Trillion Tokens

¢ Accelerators: 50 Trillion Tokens

e Materials: 50 Trillion Tokens

¢ Particle Physics: 50 Trillion Tokens

¢ Nuclear Physics: 50 Trillion Tokens

¢ Climate: 50 Trillion Tokens

FY30: $400M, 490 Trillion Tokens - Continuously manage and expand
curated datasets to enable the development of domain-specific models
and synthetic data applications. Finalize with datasets for:

* Cosmology: 100 Trillion Tokens

e Reactors: 100 Trillion Tokens

* Manufacturing: 100 Trillion Tokens

® Fusion Energy: 50 Trillion Tokens

» Accelerators: 50 Trillion Tokens

* Energy Systems: 50 Trillion Tokens

¢ Mathematics: 40 Trillion Tokens




Key FY26 Deliverables:

° 6 operational Al hubs

° 3 domain-specific foundation models trained on initial curated datasets
° 10 DOE Al FM applications developed and deployed

° Suite of curated datasets to enable further model development

° “20 Al EF” systems deployed

° Upgraded compute infrastructure to support model training

o Supporting 1,000 DOE active scientific/engineering users
Established partnerships to expand Al capabilities and workforce

Key FY27 Deliverables:

9 operational Al hubs (initial 6)

o Deploying 3 FMs from FY26
6 domain-specific foundation models trained on initial curated datasets
20 DOE Al FM applications developed and deployed
Suite of curated datasets to enable further model development
“100 Al EF” systems deployed
Upgraded compute infrastructure to support model training and
inference

o Supporting 2,000 DOE active scientific/engineering users
Established partnerships to expand Al capabilities and workforce

Key FY29 Deliverables:

12 fully operational Al hubs
o Deploying and supporting 10 world leading FMs from FY28
10 updated domain-specific foundation models trained on curated datasets and
synthetic data
40 DOE Al FM applications developed and deployed
Suite of curated datasets to enable further model development
o Partnerships with industry on synthetic data augmentation
“500 Al EF” systems deployed
Upgraded compute infrastructure to support model training and inference
o Supporting 10,000 DOE active scientific/engineering users
Mature partnerships to sustain Al capabilities and workforce

Key FY28 Deliverables:

12 operational Al hubs
o Deploying 6 FMs from FY27
8 domain-specific foundation models trained on initial curated datasets
30 DOE Al FM applications developed and deployed
Suite of curated datasets to enable further model development
o Add more science, energy and security topics
“200 Al EF” systems deployed
Upgraded compute infrastructure to support model training and
inference
o Supporting 5,000 DOE active scientific/engineering users
Expanded partnerships to expand Al capabilities and workforce

Key FY30 Deliverables:

12 fully operational Al hubs
o Deploying and supporting 10 world leading FMs from FY29
12 updated domain-specific foundation models trained on curated datasets and
synthetic data
60 DOE Al FM applications developed and deployed
“1000 Al EF” systems deployed
Suite of curated datasets to enable further model development
o Partnerships with industry on synthetic data augmentation
Upgraded compute infrastructure to support model training and inference
o Supporting 20,000 DOE active scientific/engineering users
Mature partnerships to sustain Al capabilities and workforce

The key elements are phased in incrementally each year, with 6
initial Al hubs and 3 foundation models in FY26, growing to 12
hubs and 12 mature FM models by FY30, and 60 FM based Al

applications. Investments in computing, data curation,
partnerships and other enabling capabilities also scale up
year-over-year in proportion to the overall budget growth.
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Frontier Al Systems and Risk

General Society Al Risks Global Security Al Risks

Disinformation and Deepfakes Autonomous and Swarm Weapons

Surveillance and Privacy Violations Biosecurity and Novel Agents

Social and Behavioral Engineering Nuclear Proliferation

Bias and Discrimination New Approaches to Chemical Weapons

Market Manipulation Accelerated Cyberwarfare
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The Al risk landscape could change quickly

There are > 600K LLM models in the wild
handful of big models

* Barrier ~6FLOPS per Token per Parameter

L(N,D) 2 E LI
P T BT Na T b

* Push towards small models HQ data

* Improving quality of data (data efficiency)
* Same capability with smaller models

* Push towards lower complexity
* Subquadratic scaling of attention like things
* Make big models cheaper to train
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The Era of 1-bit LLMs:
All Large Language Models are in 1.58 Bits

Shuming Ma* Hongyu Wang* Lingxiao Ma Lei Wang Wenhui Wang
Shaohan Huang LiDong Ruiping Wang Jilong Xue Furu Wei®
https://aka.ms/General Al

Abstract

Recent research, such as BitNet [WMD™ 23], is paving the way for a new era of 1-
bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant,
namely BitNet b1.58, in which every single parameter (or weight) of the LLM is
ternary {-1, 0, 1}. It matches the full-precision (i.e., FP16 or BF16) Transformer
LLM with the same model size and training tokens in terms of both perplexity
and end-task performance, while being significantly more cost-effective in terms
of latency, memory, throughput, and energy consumption. More profoundly, the
1.58-bit LLM defines a new scaling law and recipe for training new generations of
LLMs that are both high-performance and cost-effective. Furthermore, it enables
a new computation paradigm and opens the door for designing specific hardware
optimized for 1-bit LLMs.



Open Model Leaderboard
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Trustworthy and Responsible Al

* Alignment with human values and operational constraints Goals
* Compliance with known laws of physics and logic when required

Exhibit reproducible behavior and results

Robustness to noise and changes in operating environments

Respect privacy and are resistant to manipulation to reveal restricted info

Compliance with regulatory or policy requirements
 Can explain their reasoning and justify their conclusions

How to systematically compare behaviors between models? O
How to comprehensively assess the domain knowledge of models? pen
How to assess emergent behaviors or novel capabilities in science? QueSt|OnS

How to assess scientific knowledge synthesis capabilities?
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Thank You for Listening



Benchmarking and Evaluation are at the heart
of making progress in Al



Benchmarking and Evaluation is Needed for AI4SES
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Benchmarking and Evaluation is Needed for AI4SES

Coding Category ELO (Confidence Intervals via Bootstrapping)
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