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The Basic Argument for FASST



Global Techno-Economic Landscape 
1. AI is rapidly becoming the dominate driver/signal of techno-economic progress and 

competition in the next decade

2. AI is pervasive and is becoming ubiquitous across dozens of economically critical 
domains

3. Massive competition/positioning in AI between western democracies, semi-aligned 
petro-states and adversarial sino-russian players

4. AI provides state and non-state actors with the potential for non-linear progress in 
technological, economic and national security domains

5. US is the clear leader in commercial AI with dominate consumer facing systems

6. US government is under investing in non-commercial non-defense frontier AI 
systems development and adoption 

7. US government focus has been on mitigating AI risks rather than exploiting 
advantage through strategic investments in non-commercial AI capabilities



https://arxiv.org/pdf/2405.15828

AI Engagement across All Fields* is Exponential
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AI Engagement Across 20 Exemplar Fields



DOE’s Unique Position for AI Leadership

• Operates the most capable scientific computing 
systems and the world’s largest collection of 
advanced experimental facilities

• Responsible for US nuclear security through deep 
partnerships across government

• Largest producer of classified and unclassified 
scientific data in the world

• Strongest foundation combining physical, 
biological, environmental, energy, mathematical 
and computing sciences

• Largest scientific workforce in the free world

• Strong ties with private sector technology and 
energy organizations and stakeholders

experimental facilities and 

supercomputers



Why DOE Needs to Lead in AI?

1. Effective execution of DOE mission requires the best and most powerful scientific 
tools.  AI is becoming such a tool.

2. Private sector AI efforts alone will not address the deep scientific and national 
security requirements of DOE use cases.

3. Government efforts to regulate AI will require deep expertise in AI technologies 
and risks independent from the industry to be regulated  DOE can be a trusted 
neutral party to provide this expertise.

4. AI offers great opportunity and great risks, especially in global security.  Powerful AI 
systems in the hands of bad actors poses a new type of asymmetric threat that will 
need new ideas for risk management.

5. DOE has the technical ability to lead in AI and partner with other agencies to 
advance the use of transformational AI across the government.  No other agency is 
as well placed to do this.



DOE and Lab Planning Efforts 



DOE Has Been Gathering Wide Community Input 
(>1300 researchers)

Much accelerated in three years!

• Language Models (e.g. ChatGPT) released
• Artificial image generation took off
• AI folded a billion proteins
• AI hints at advancing mathematics
• AI automation of computer programming
• Explosion of new AI hardware
• AI accelerates HPC simulations
• Exascale machines start to arrive

2019 2022

2020 DOE Office of Science ASCR Advisory Committee report 
recommending major DOE AI4S program

Report posted here: 
https://www.anl.gov/ai-for-science-report 

https://www.anl.gov/ai-for-science-report


WH Executive Order on AI  (October 30, 2023)

AI for Science, Energy, and National Security. Consistent with DOE’s priorities in the May 2023 AI for 
Science, Energy, and Security report, DOE is tasked with expanding partnerships with industry, 
academia, other agencies, and international partners to utilize DOE’s computing capabilities and AI 
testsbeds to build foundation models that support new applications in science, energy, and national 
security, including community preparedness for climate-related risks, enable clean-energy deployment 
(including addressing delays in permitting reviews), and enhance grid reliability and resilience. 

DOE is also charged with issuing a public report “ enable the provision of clean, affordable, reliable, resilient, 
and secure electric power to all describing the potential for AI to improve planning, permitting, investment, 
and operations for electric grid infrastructure and to Americans.” DOE is also tasked as the lead agency, 
through the National Nuclear Security Administration, to reduce the risks at the intersection of AI and 
chemical, biological, radiological, and nuclear (CBRN) threats. DOE is required to develop testbeds and 
“tools to evaluate AI capabilities to generate outputs that may represent nuclear, nonproliferation, 
biological, chemical, critical infrastructure, and energy-security threats or hazards” and “develop model 
guardrails that reduce such risks.” 



Application of Artificial Intelligence Methods and Technologies to Nuclear Security Mission 

Areas: the demonstration and application of AI to the Nuclear Security Enterprise and high-

consequence applications will be accomplished by partnering with key stakeholders in the 

weapons design, production, and analysis community.

Foundational R&D in Machine Learning Methods and Technologies: the development of ML 

tools and techniques that enable successful application in sparse or limited data environments 

where model accuracy constraints are likely to be much tighter than in industry or academia. In 

addition, the methods that will be developed will need to scale to the substantial data 

environment associated with the simulation of complex nuclear physics phenomena.

Scalable and Performant Data Infrastructure: the availability of rich, curated data sets will be 

critical to the use of ML within ASC. Investment will be required to create a secure hardware 

and software infrastructure that connects users across the design and production agencies of 

the Nuclear Security Enterprise. Ensuring the environment is scalable into the future and 

provides sufficient performance to prevent model training and inference from becoming a 

bottleneck will be an essential component to a successful execution of this strategy.

Enabling the Data-Driven Workforce of the Future: ASC’s most important asset is its unique 

workforce of laboratory technical staff who provide expertise in a wide variety of technical 

areas, including physics, engineering, mathematics, and advanced computing. ASC will invest in 

training and developing a pipeline of additional staff to engage across projects and activities, 

with the goal of providing data analytics and complex data-driven modeling. Attracting and 

retaining the best workforce will likewise mean demonstrating that ASC is performing cutting-

edge research in AI methods and applying them to the nation’s most challenging problems. ASC 

will collaborate with industry, academia, and other U.S. agencies to leverage existing 

knowledge, experienced staff, and best practices. 



AI4E in 2023



May 8th SCSP AI Expo DOE Announcement
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We are not talking about your 
grandparents GOFAI



https://arxiv.org/pdf/2108.07258.pdf

Trend is towards fewer more universal models:
increasing emergence and homogenization





The 2022 workshops recognized

This trend and organized differently



AI4SES Organized on Six Conceptual Clusters

AI for advanced 
properties inference 
and inverse design

AI and robotics 
for autonomous 
discovery

AI-based surrogates 
for high-performance
computing

AI for software
engineering and
programming 

AI for prediction and 
control of complex 
engineered systems

Foundation models for 
scientific knowledge 
tasks 

Energy Storage

Proteins, Polymers, 

Stockpile modernization

Materials, Chemistry, Biology

Light-Sources, Neutrons 

Climate Ensembles

Exascale apps with surrogates

1000x faster => Zettascale now

Code Translation, Optimization

Quantum Compilation, QAlgs
Accelerators, Buildings, Cities

Reactors, Power Grid, Networks
Hypothesis Formation, Math

Theory and Modeling Synthesis, 

Report posted here: 
https://www.anl.gov/ai-for-science-report 

https://www.anl.gov/ai-for-science-report


LLMs and Foundation Models





Foundation Models — What are they?

• Large scale model trained on large 
datasets from many sources (text, papers, 
datasets, code, molecules, etc.)

• Additional training to improve the human 
interaction experience (e.g., ChatGPT-4o)

• Large models are remarkably flexible and 
exhibit emergent behaviors (capable of 
tasks not originally trained to do)

• Applications built on top

• There are multiple early efforts underway in 
DOE labs to create Foundation Models 
explicitly targeting scientific use cases

Trained on trillions of input ”tokens”

for many weeks on a large-scale computers

SOTA models (GPT-4) have about 

1.8 trillion parameters (~1% brainscale)

One Model ⟹ Many tasks

https://arxiv.org/pdf/2108.07258.pdf



Foundation Models for Science — Opportunities
• FMs can summarize and distill knowledge – extract 

information from million of papers into compact 
computing representation – PPI networks, materials 
compositions, code kernels, biological function, etc.

• FMs can synthesize – combine information from multiple 
sources – generate small programs for specific tasks – 
quantum computing programs using QISkit & Cirq, 
derivations for applied physics, code for visualization and 
animation, etc. 

• FMs can generate plans, solve logic problems and 
write experimental protocols for robots – powering self-
driving labs, generate strategies for problem solving, and 
planning for testing hypotheses

• FMs can generate hypotheses to be tested and 
perhaps eventually new theories for exploration – a 
full-time shared scientific assistant that learns from 
across all of science is possible

After experimenting with GPT-4 in our own research domains in materials chemistry, physics and quantum 

information, we find that ChatGPT-4 is knowledgeable, frequently wrong, and interesting to talk to. In other 

words, not unlike a college professor or a colleague. https://arxiv.org/pdf/2304.12208.pdf



https://arxiv.org/pdf/2108.07258.pdf

FOUNDATION MODEL



Google Gemini

Natively Multimodal – text, speech, images, video

https://blog.google/technology/ai/google-gemini-ai/

Integrated tokenizer

Specialized decoders



Science oriented LLMs 

and

Domain Foundation Models
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It is likely that many of 
the use cases we 
imagine can be driven 
directly or indirectly 
from sufficiently 
powerful Foundation 
Models but we should 
not limit our thinking to 
FMs

Advanced AI systems 
often integrate many 
tools and technologies



Foundation Models Mapped Against

DOE Mission Areas



Clean Energy Systems Model: This model would focus on the physics, 
chemistry, and engineering principles underlying various renewable energy 
sources, hydrogen production, solar energy, wind energy, and storage 
technologies. It can be fine-tuned for specific energy systems, optimization of 
energy output, and efficiency improvements.

Smart Grid and Infrastructure Model: This model would encompass 
electrical engineering, network optimization, smart grid technologies, and 
energy systems management. It can be fine-tuned for specific applications 
like EV infrastructure planning, grid resilience strategies, and smart grid 
implementations.

Computational Intelligence Model: This model would integrate capabilities 
in high-performance computing, machine learning, quantum algorithms, 
computer science, mathematics, computer architecture, data science, 
advanced data analysis, applied mathematics, and parallel computing. It can 
be fine-tuned for applications in AI, complex simulations, and computational 
research.

Environmental Sciences Model: This model would focus on climate 
modeling, environmental impact assessments, atmospheric science, climate 
mitigation strategies, climate risk assessment, bio-geosphere interactions, 
climate engineering, and biological systems in the environment. It can be fine-
tuned for specific environmental applications and climate studies.

Materials and Chemical Sciences Model: This model would cover 
computational chemistry, materials discovery, molecular dynamics, 
manufacturing processes, inverse design of materials and systems, self-driving 
laboratories, and autonomous discovery. It can be fine-tuned for developing new 
materials, chemical processes, and manufacturing techniques for energy 
applications.

Nuclear Security Model: This model would integrate nuclear physics, 
engineering, security protocols, reactor technologies, nuclear fission, automated 
reactor design, and reactor control. It can be fine-tuned for nuclear energy 
applications, nonproliferation technologies, and national security measures.

High-Energy and Particle Physics Model: This model would focus on the 
principles of high-energy physics, nuclear reactions, particle physics, 
accelerators, and cosmology. It can be fine-tuned for applications in experimental 
physics, particle accelerators, and fundamental research in physics.

Biological Systems Model: This model would cover the study of biological 
systems, including genomics, synthetic biology, microbiology, environmental 
biology, engineering plants, medicine, protein design, self-driving laboratories, 
autonomous discovery, and microbial engineering. It can be fine-tuned for 
applications in environmental biology, plant engineering, biotechnology, and 
medical research.

Advanced Manufacturing Model: This model would focus on manufacturing 
technologies, including inverse design, process optimization, supply chain 
optimization, applied materials, precision manufacturing, self-driving 
laboratories, and autonomous discovery. It can be fine-tuned for specific 
applications in optimizing manufacturing processes and supply chains.

Knowledge Integration Model: This model would integrate scientific literature, 
codes, texts, and tutorials to support knowledge extraction, synthesis, and 
automated hypothesis generation. It aims to advance theory and experimental 
design, forming the core of a system that interacts with humans and manages 
interactions with other foundation models included in this list.

Carbon Management Model: This model would integrate knowledge on the 
physics and chemistry of capturing CO2, managing CO2 flows, carbon storage, 
conversion to fuels, and direct air capture. It aims to support the design and 
analysis of CO2 management systems and advance research into the 
fundamentals of carbon management.



Clean Energy Systems Model: This model would focus on the physics, 
chemistry, and engineering principles underlying various renewable energy 
sources, hydrogen production, solar energy, wind energy, and storage 
technologies. It can be fine-tuned for specific energy systems, optimization of 
energy output, and efficiency improvements.

Smart Grid and Infrastructure Model: This model would encompass 
electrical engineering, network optimization, smart grid technologies, and 
energy systems management. It can be fine-tuned for specific applications 
like EV infrastructure planning, grid resilience strategies, and smart grid 
implementations.

Computational Intelligence Model: This model would integrate capabilities 
in high-performance computing, machine learning, quantum algorithms, 
computer science, mathematics, computer architecture, data science, 
advanced data analysis, applied mathematics, and parallel computing. It can 
be fine-tuned for applications in AI, complex simulations, and computational 
research.

Environmental Sciences Model: This model would focus on climate 
modeling, environmental impact assessments, atmospheric science, climate 
mitigation strategies, climate risk assessment, bio-geosphere interactions, 
climate engineering, and biological systems in the environment. It can be fine-
tuned for specific environmental applications and climate studies.

Materials and Chemical Sciences Model: This model would cover 
computational chemistry, materials discovery, molecular dynamics, 
manufacturing processes, inverse design of materials and systems, self-driving 
laboratories, and autonomous discovery. It can be fine-tuned for developing new 
materials, chemical processes, and manufacturing techniques for energy 
applications.

Nuclear Security Model: This model would integrate nuclear physics, 
engineering, security protocols, reactor technologies, nuclear fission, automated 
reactor design, and reactor control. It can be fine-tuned for nuclear energy 
applications, nonproliferation technologies, and national security measures.

High-Energy and Particle Physics Model: This model would focus on the 
principles of high-energy physics, nuclear reactions, particle physics, 
accelerators, and cosmology. It can be fine-tuned for applications in experimental 
physics, particle accelerators, and fundamental research in physics.

Biological Systems Model: This model would cover the study of biological 
systems, including genomics, synthetic biology, microbiology, environmental 
biology, engineering plants, medicine, protein design, self-driving laboratories, 
autonomous discovery, and microbial engineering. It can be fine-tuned for 
applications in environmental biology, plant engineering, biotechnology, and 
medical research.

Advanced Manufacturing Model: This model would focus on manufacturing 
technologies, including inverse design, process optimization, supply chain 
optimization, applied materials, precision manufacturing, self-driving 
laboratories, and autonomous discovery. It can be fine-tuned for specific 
applications in optimizing manufacturing processes and supply chains.

Knowledge Integration Model: This model would integrate scientific literature, 
codes, texts, and tutorials to support knowledge extraction, synthesis, and 
automated hypothesis generation. It aims to advance theory and experimental 
design, forming the core of a system that interacts with humans and manages 
interactions with other foundation models included in this list.

Carbon Management Model: This model would integrate knowledge on the 
physics and chemistry of capturing CO2, managing CO2 flows, carbon storage, 
conversion to fuels, and direct air capture. It aims to support the design and 
analysis of CO2 management systems and advance research into the 
fundamentals of carbon management.



Foundation Models in High-Energy Physics



Molecular Foundation Model
“Distributional Graphormer”



MatterGen – Microsoft AI4Science – Materials 
Design with Stable Diffusion
https://arxiv.org/pdf/2312.03687.pdf



FM for Atomistic Materials Chemistry 

MACE-MP0

Trained from all the data
Form the Materials Project

Zeolites
MOFs

Cathodes
Catalysis

Nanoparticles
Amorphous Carbon

Ice and Water
Combustion

Ammonia/borane
Aqueous Interfaces

Batteries
Multicomponent Alloys





Transformers can Design Proteins

https://doi.org/10.1101/2021.07.18.452833; 







Frontier AI Systems are Large-Scale Science



AI4S is emerging as “big science” in the 
tradition of nuclear and high energy physics

The scale of needed human and computational resources 
is beginning to reshape leadership in science 
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Llama-3 Development Team (327 authors)

Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha
Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; 
Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; 
Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; 
Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; 
Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle 
Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-
Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban 
Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; 
Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga
Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; 
Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy 
Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; 
Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley
Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish
Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas 
Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh 
Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; 
Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; 
Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; 
Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ 
Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan 
Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun
Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; 
Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; 
Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney 
Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; 
Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; 
Zhengxing Chen; Zhenyu Yang; Zoe Papakipos

https://huggingface.co/meta-llama/Meta-Llama-3-8B



Example of Organizational Effort for One FM

• AuroraGPT working groups: 

• 01 Planning (over the horizon prototyping)

• 02 Data Organization, Preparation, Representation

• 03 Model Development and training (pre-training)

• 04 Evaluation (skills, trustworthiness, safety)

• 05 Post-training (fine tuning, alignment)

• 06 Inference and Deployment for Eval and Use

• 07 Distribution

• 08 Communication



EF second

EF day

EF second

EF day

https://arxiv.org/abs/2202.05924



1026 Ops reporting threshold from AI EO 

https://epochai.org/blog/who-is-leading-in-ai-an-analysis-of-industry-ai-research

10 EF for 100 days





Llama-3-70B

Llama-3-70B
Llama-3-400B



Llama 3 400B is 
close to GPT-4o

Keep training!!

https://www.reddit.com/r/LocalLLaMA/comments/1cr5yce/
openai_gpt4o_eval_results_and_llama3400b/



Frontier AI 
for Science Security and Technology



FASST Goals and Outcomes
• Ensure US (DOE) leads the world in technical capability for its 

missions in Science, Energy and National Security
• Create, deploy and sustain world leading ”frontier” AI systems and 

applications for DOE mission areas to provide advantage to US and 
partners

• Increase productivity and capabilities of the DOE laboratories, 
academic, agency and international partners

• Develop an AI-forward workforce for DOE

• Discovery Science – accelerate and improve effectiveness
• Energy Transition – accelerate, reduce risk, improve translation
• National Security – anticipate risk, mitigate risks, accelerate mission 



Adapting Models for DOE Missions (many many targets)

Data aggregation, curation, representation, interfaces
And infrastructure

Foundation Models for Science, Security and Energy
Strategic multimodal FMs 

Platforms for AI, next generation hardware , 
path forward for AI, cloud partnerships,
Pathways to zettascale systems for AI

Frontier AI for Science, Security and Technology 

Data

Compute

Models

Applications



Key points on the FASST program

• Data – aggregating, cleaning, curating, transforming the many 
100’s of petabytes of scientific data for AI training/testing, target 
of 1000 Trillion tokens

• Platforms – investing to create new platforms for training and 
inference, investments to push 1000EF @100MW, deployment of 
multiple AI frontier training platforms and many AI inference 
optimized systems – distinct from general HPC

• Models – ramping up to train order dozen domain oriented FMs 
each year to cover science, energy and national security

• Applications – downstream adaptation of models for 100’s-1000’s  
of DOE use cases 



FASST Targets
• Data effort must produce tokens on schedule or whole effort will be rate limited 

on data preparation
• Labor and inference intensive ⟹ 100 T tokens in first few years
• Common data APIs are needed, but not waste time on unneeded sw/standards

• To train ~10 Frontier FMs per year will require building out of significant AI 
training resources to avoid cannibalizing LCFs

• Need 10x current Exascale AI flops in next few years ⟹ 200 AI EFs (a few sites)
• Inference hardware capacity is critical 

• Need to serve models/apps for development and production
• Will need thousands of inference servers ⟹ 200 AI EFs (deployed at ~10 sites)

• Large increase in staff are needed across the FASST program
• Much of the work in building and deploying FMs and applications is “engineering” and a 

project framework is needed to both manage to schedule and to integrate the hundreds of 
activities ⟹ 2000 FTEs

• Applications need to be deployed to get productivity boost
• Applications development should start now with open models and swap FMs as better ones 

become available ⟹ 100 frontier AI based applications
• Modular architecture with plug-in APIs are needed to avoid silos



How many models of what
Scale can we train on our
Current Exascale systems?

GPT4 was trained on 15T tokens

GPT5 is training on X T tokens?

Llama 3 is trained on 15T tokens

Scientific FMs will need to be trained 
on more and multimodal data

Non LLMs have different scaling



https://arxiv.org/pdf/2303.08774

LLM Scaling Models are Quite Good







Five-year Sketch of Data Preparation for FMs

1000 Trillion Tokens over 5 years? 
  
GPT4 trained on     ~15T tokens 
Llama3 trained on ~15T tokens

• Accelerators: 100 Trillion Tokens

• Biology: 35 Trillion Tokens

• Chemistry: 35 Trillion Tokens

• Climate: 90 Trillion Tokens

• Computer Science: 3 Trillion Tokens

• Cosmology: 100 Trillion Tokens

• Energy Systems: 63 Trillion Tokens

• Fusion Energy: 100 Trillion Tokens

• HPC codes: 12 Trillion Tokens

• Manufacturing: 100 Trillion Tokens

• Materials: 60 Trillion Tokens

• Mathematics: 42 Trillion Tokens

• Nuclear Physics: 80 Trillion Tokens

• Particle Physics: 80 Trillion Tokens

• Reactors: 100 Trillion Tokens



Key FY26 Deliverables:
• 6 operational AI hubs
• 3 domain-specific foundation models trained on initial curated datasets
• 10 DOE AI FM applications developed and deployed
• Suite of curated datasets to enable further model development
• “20 AI EF” systems deployed
• Upgraded compute infrastructure to support model training

o Supporting 1,000 DOE active scientific/engineering users
• Established partnerships to expand AI capabilities and workforce

Key FY27 Deliverables:
• 9 operational AI hubs (initial 6)

o Deploying 3 FMs from FY26
• 6 domain-specific foundation models trained on initial curated datasets
• 20 DOE AI FM applications developed and deployed
• Suite of curated datasets to enable further model development
• “100 AI EF” systems deployed
• Upgraded compute infrastructure to support model training and 

inference
o Supporting 2,000 DOE active scientific/engineering users

• Established partnerships to expand AI capabilities and workforce

Key FY29 Deliverables:
• 12 fully operational AI hubs 

o Deploying and supporting 10 world leading FMs from FY28
• 10 updated domain-specific foundation models trained on curated datasets and 

synthetic data
• 40 DOE AI FM applications developed and deployed
• Suite of curated datasets to enable further model development

o Partnerships with industry on synthetic data augmentation
• “500 AI EF” systems deployed
• Upgraded compute infrastructure to support model training and inference

o Supporting 10,000 DOE active scientific/engineering users
• Mature partnerships to sustain AI capabilities and workforce

Key FY30 Deliverables:
• 12 fully operational AI hubs 

o Deploying and supporting 10 world leading FMs from FY29
• 12 updated domain-specific foundation models trained on curated datasets and 

synthetic data
• 60 DOE AI FM applications developed and deployed
• “1000 AI EF” systems deployed
• Suite of curated datasets to enable further model development

o Partnerships with industry on synthetic data augmentation
• Upgraded compute infrastructure to support model training and inference

o Supporting 20,000 DOE active scientific/engineering users
• Mature partnerships to sustain AI capabilities and workforce

The key elements are phased in incrementally each year, with 6 
initial AI hubs and 3 foundation models in FY26, growing to 12 
hubs and 12 mature FM models by FY30, and 60 FM based AI 
applications. Investments in computing, data curation, 
partnerships and other enabling capabilities also scale up 
year-over-year in proportion to the overall budget growth.

Key FY28 Deliverables:
• 12 operational AI hubs 

o Deploying 6 FMs from FY27
• 8 domain-specific foundation models trained on initial curated datasets
• 30 DOE AI FM applications developed and deployed
• Suite of curated datasets to enable further model development

o Add more science, energy and security topics
• “200 AI EF” systems deployed
• Upgraded compute infrastructure to support model training and 

inference
o Supporting 5,000 DOE active scientific/engineering users

• Expanded partnerships to expand AI capabilities and workforce



Frontier AI 
for Science Security and Technology



Risk Discussion Backup



Frontier AI Systems and Risk

General Society AI Risks

• Disinformation and Deepfakes

• Surveillance and Privacy Violations

• Social and Behavioral Engineering

• Bias and Discrimination

• Market Manipulation

Global Security AI Risks

• Autonomous and Swarm Weapons

• Biosecurity and Novel Agents

• Nuclear Proliferation 

• New Approaches to Chemical Weapons 

• Accelerated Cyberwarfare 



The AI risk landscape could change quickly
• There are > 600K LLM models in the wild 

handful of big models
• Barrier ~ 6FLOPS per Token per Parameter

• Push towards small models HQ data
• Improving quality of data (data efficiency)
• Same capability with smaller models

• Push towards lower complexity 
• Subquadratic scaling of attention like things
• Make big models cheaper to train



Open Model Leaderboard



Trustworthy and Responsible AI

• Alignment with human values and operational constraints 
• Compliance with known laws of physics and logic when required
• Exhibit reproducible behavior and results
• Robustness to noise and changes in operating environments
• Respect privacy and are resistant to manipulation to reveal restricted info
• Compliance with regulatory or policy requirements
• Can explain their reasoning and justify their conclusions

• How to systematically compare behaviors between models?
• How to comprehensively assess the domain knowledge of models?
• How to assess emergent behaviors or novel capabilities in science?
• How to assess scientific knowledge synthesis capabilities?

Goals

Open

Questions



Thank You for Listening



Benchmarking and Evaluation are at the heart 
of making progress in AI



Sam Altman on x.com May 13th, 2024 

Benchmarking and Evaluation is Needed for AI4SES 



Sam Altman on x.com May 13th, 2024 

Benchmarking and Evaluation is Needed for AI4SES 
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