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Executive Summary 

The Department of Energy (DOE) Oÿce of Science (SC) operates dozens of national science user facilities 
that span many di erent disciplines. These facilities include accelerators, colliders, supercomputers, light 
sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the 
atmosphere. In Fiscal Year 2014 over 33,000 researchers from academia, industry, and government labora-
tories, spanning all ffty states and the District of Columbia, utilized these unique facilities to perform new 
scientifc research. Each of these facilities generates vast amounts of scientifc data, and the rate, size, and 
complexity of this data is rapidly increasing, thanks to advances in technology. A growing concern, which 
motivates this workshop, is the likely signifcant adverse impact on science programs that will result with-
out signifcant advances in the capabilities needed to manage and gain knowledge from these collections of 
data. The purpose of this workshop, held 29 September 2015 through 1 October 2015 in Bethesda, MD, is 
to help the Advanced Scientifc Computing Research (ASCR) and research community better understand 
needs related to the management, analysis, and visualization of experimental and observational data (EOD) 
collected and generated by experimental and observational science projects (EOS) at Oÿce of Science user 
facilities. 

The science needs articulated in this report, along with the fndings, recommendations, and detailed dis-
cussion of issues, collectively are consistent with and show opportunity for cultivating a research, devel-
opment, and deployment path that takes steps towards realizing the vision articulated in the National 
Strategic Computing Initiative (NCSI) [1, 2] and the Big Data Research and Development Initiative [3, 4]. 
Specifcally, the science use cases reveal a trend towards the convergence of data and computing: data- and 
compute-centric needs and opportunities are increasingly intertwined, interrelated, and symbiotic. Ad-
vances in our ability to collect data in turn require advances in computational capabilities to understand, 
preserve, share and make optimal use of data, and can even favorably impact the quality and value of 
science we perform by improving the quality of data we collect. 

This workshop report consists of input from a set of representatives from DOE EOS facilities and re-
searchers in mathematics and computer science. The fndings, drawn from use cases that articulate science 
drivers, indicate acute and urgent needs. This report articulates a path forward for meeting those needs, a 
path that includes advances in mathematics, computer and data science, as well as advances in and the use 
of HPC computational and networking infrastructures. One major theme recurring in the use cases is that 
individual EOS projects are presently pursuing their own independent paths towards meeting data-centric 
challenges, which results in the duplication of e ort and increased costs across the entire program. EOS 
projects, and the EO community as a whole, would beneft immensely from a coordinated, program-wide 
e ort that targets fosters research, development, deployment, and sustainment of data-centric software 
tools and infrastructure for meeting needs in computing, data storage, curation, archival, and dissemina-
tion. 
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Findings and Recommendations 
Findings 

1. All EOS projects represented at this workshop struggle to keep up with the demands and oppor-
tunities that a food of data o ers. Data acquisition rates for individual EOS projects are rapidly 
approaching tens of petabytes per year (see §23), which sums to multiple exabytes per year across all 
EOS projects. This condition of rapidly growing data size, complexity, and diversity challenges and 
impacts all EOS projects represented at this workshop. The complexity of the data, new challenges 
in analytics and visualization, diÿculties in capturing suÿcient metadata, and ease-of-use problems 
are impediments to the use and adoption of many types of data-centric tools and infrastructure, ham-
pering the e ort to harness the wealth of data in the service of scientifc discovery. 

2. Meeting the challenges of the explosion of data from EOS projects requires computational plat-
forms, networking, and storage of greater capacity and lower latency, along with software in-
frastructure suited to their needs. However, existing HPC platforms and their software tools are 
designed and provisioned for high-concurrency HPC workloads, single-project data products, and 
comparatively simpler data needs. The result is a signifcant gap between the needs of EOS projects 
and the current state of the art in computational and software capabilities and resources. 

3. EOS projects increasingly rely on low-latency, fast-turnaround resource response to meet data-
centric needs. With time-sensitive responsiveness, experimental design and operation becomes more 
eÿcient as EO researchers are able to refne and guide experiment parameters to converge on better 
science results. Facility support for such timely, human-in-the-loop capabilities is currently ad hoc at 
best. 

4. Scientifc data is increasingly at risk of being unusable. Without adequate metadata, scientifc data 
has limited usefulness because its origins are undocumented and unknown, thereby limiting the abil-
ity to validate results or to make use of such data for other purposes. However, today the capture of 
this critical information often relies on manual, non-digital and non-sharable approaches, hindering 
scientifc discovery particularly in increasingly high-velocity, high-volume data environments. 

5. Collaboration and sharing of data, tools, and methodologies are central to modern EOS projects, 
yet there is insuÿcient infrastructure to facilitate such interactions. The obstacle is not simply 
data transfer, but rather a lack of widely used tools to produce and consume well-characterized data 
collections that include the desired level of annotation, metadata and provenance. The process of 
collaboration requires an ability to share software tools, source code, data models and formats and 
workfows that are reproducible. Beyond established collaborations, there is a clear need to share 
tools and approaches between groups and disciplines to minimize the unnecessary duplication of 
e ort. In most cases, existing tools are inadequate or too diÿcult to use. 

6. EOS projects are impeded due to signifcant “data lifecycle” needs that are largely unmet. While 
some stages in the data lifecycle are well supported, others are not. Data collected by observation 
or experiment, along with the software tools used for its analysis, have a potentially long lifespan 
and a potentially large set of consumers, but presently there are no solutions nor approaches within 
the DOE SC that are generally and broadly applicable for data curation, quality management, and 
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long-term distribution or dissemination. At the same time, data retention policies at SC computing 
facilities are not designed for long-term retention nor for widespread dissemination. 

7. EOS projects can beneft greatly from coordinated e orts to design, implement, deploy, and sus-
tain critical software tools for working with data that target EOS data needs and workfow pat-
terns. Software is a critical element for all EOS projects in all aspects of working with data and in 
meeting the challenges of increasing data size and technology complexity: it is used for collecting 
data, processing and analyzing data, for preparing data products, for automating complex multi-
stage operations that may span distributed resources. A recurring theme present in the use cases is 
that software design and development is most often an activity conducted within a particular EOS 
project or facility as each project focuses on meeting its own particular needs as quickly as possible. 
The results include increased overall cost for software development from redundancy of e ort, soft-
ware that exists “in isolation” from other EOS projects due to the absence of established practices 
for curation and dissemination, and software designs and implementations that may not be highly 
usable or suÿciently fexible to be adaptable to other EOS projects or emerging computational tech-
nologies. Software is “digital data” that needs to undergo the rigors of curation, in the same way as 
data from experimental and observational sciences, to facilitate long-term archival preservation and 
widespread dissemination. 

8. The highly specialized nature of skills and expertise in the data sciences and their application to 
EOS problems raises concerns about workforce training, development and retention. This concern 
is made more acute by the growing competition for data science specialists in all areas of commerce 
and industry. 

Recommendations 

1. Address the challenges posed by the growing size, increasing data rate, and complexity of data 
through concerted, dedicated and shared e orts. 

(a) Using a multidisciplinary approach, carry out research into new methods for mathematics, an-
alytics, visualization, collaboration, and data management that targets key data challenges in 
EOS; and coordinate these research activities with broader software tools and infrastructure to 
facilitate their deployment, sustainment, and use by EOS projects and facilities. 

(b) Adopt and integrate modern data storage and access technologies that both accommodate present 
and future data size and rate values, and that are suitable for use in key EOS data-centric pro-
cessing workfows. 

(c) Cultivate multidisciplinary teams and programs that focus on software solutions to data-centric 
challenges that are broadly applicable beyond a single EOS project. 

2. Evolve HPC computational facilities to include focus on the needs of the EOS community. 

(a) Identify and prioritize EOS-centric operational and resource needs for major HPC computational 
facilities and networking infrastructure. Reconsider facility metrics and priorities in response 
to the requirements of the EOS community. At the same time, study the hardware and software 
architectural implications of EOS data needs. 

(b) At HPC computational facilities, consider approaches for providing resources, along with suit-
able operational policies for their use, that are attuned to the needs of the EOS community. 

(c) Evaluate alternatives for providing to the EOS community long-term data storage and archival 
services that support advanced search and subset capabilities as well as mechanisms that enable 
stratifed and selective public distribution of data. 
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(d) Evaluate strategies for enabling EOS projects to take advantage of major HPC facilities to service 
data-centric workloads, including but not limited to computation with real-time or interactive 
response, data storage, archival, and dissemination. 

3. Develop solutions to meet EOS needs for fast-response, low-latency, high-throughput (time-critical), 
data-centric workloads. 

(a) Develop a systematic, end-to-end understanding of time-critical EOS needs that includes the 
appropriate metrics and that takes into account human-in-the-loop scenarios. 

(b) With an eye towards addressing the needs time-critical data-centric workloads, assess the ap-
plicability of factors like HPC architectures, HPC software infrastructure, programming models 
and runtime systems. 

(c) Develop a set of facility requirements, siting strategies, and appropriate use and operations poli-
cies aimed at meeting the needs of time-critical EOS workloads. 

(d) In support of time-critical use scenarios, cultivate and deploy new methods and practices, such 
as those that reduce data size or accelerate key computational stages in the processing pipeline. 

4. Improve the EOS productivity with new resilient solutions to automate data-intensive processing 
pipelines. 

(a) Develop a deeper understanding of the workfow usage commonalities and execution patterns 
in the EOS ecosystem that considers data generation, movement, processing, sharing, and dis-
semination. 

(b) Develop solutions for optimizing quantitative metrics, such as performance, reliability, scala-
bility and throughput, while addressing qualitative metrics, such as as learnability, usability, 
manageability and transparency. 

(c) Take steps to promote reusability and reproducibility of workfows and associated methods 
across EOS projects and HPC computational facilities. 

5. Develop a better understanding of EOS metadata needs and solutions, and develop and deploy 
software tools for meeting metadata needs of the EOS community. 

(a) Develop a systematic understanding of how data are to be used, present and future, across EOS 
projects, and focus metadata-facing R&D e orts accordingly. 

(b) Conduct research and development on the management and use of scientifc metadata to enable 
cross-community sharing, semantic understanding, and advanced methods for scientifc search. 

(c) Strive to achieve better integration and automation of metadata capture, and event and feature 
tagging, into scientifc workfows. 

(d) Develop tool sets for capturing, storing, and managing metadata that can be widely deployed. 

6. Expand capabilities for the collaboration and sharing of EOD and tools. 

(a) Develop a systematic understanding of EOS needs as they pertain to collaborations of science 
communities, particularly data sharing needs and practices. 

(b) Develop approaches that simplify and facilitate collaboration in general, and share data, soft-
ware, and workfows in particular. 

(c) Develop and deploy tools that are data- and metadata-driven to enable use without highly spe-
cialized expertise. 
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7. Identify and fll gaps in data lifecycle, reproducibility, and curation support. 

(a) Develop an understanding of broad needs and requirements, an assessment of technologies 
available for meeting those requirements, and the extent to which this set of needs and require-
ments are amenable to common solutions within and across institutions and disciplines. 

(b) Craft and implement an R&D, deployment, and sustainability road map for tools and opera-
tional procedures that are broadly applicable across EOS projects and user facilities that target 
EOS needs in data lifecycle, reproducibility, and curation. 

(c) Develop strategies for provisioning infrastructure for the long-term maintenance, preservation, 
and distribution of curated data and software. 

(d) Assess the possibility of provisioning centralized DOE-SC-wide facilities for data archival and 
retrieval, including mechanisms for usage-based cost recovery. 

8. Expand e orts aimed at understanding and flling gaps in the software ecosystem of EOS projects 
and user facilities. 

(a) Develop a systematic understanding of the broad and diverse data-centric software needs of EOS 
projects. 

(b) Cultivate software R&D projects focusing on EOS needs that follow best practices in software en-
gineering that include mechanisms for long-term software archival and curation, dissemination, 
support, and user training. 

(c) Emphasize design, development, and deployment, and sustainment of software that is highly 
usable, rapidly customizable, reusable, straightforward to deploy across scales ranging from 
major HPC facilities to desktop, laptop, or portable platforms, and that adopts best practices in 
software development, engineering, and maintenance. 

(d) Identify opportunities for a broader coordination of data-centric software for EOS that target key 
needs, such as software reuse and sharing across EOS user facilities and projects, and software 
curation and dissemination. 

(e) Identify and establish practices for software archival, curation, dissemination, and long-term 
support. 

9. Develop and nurture a data science workforce. 

(a) Prioritize the role of data science activities in multidisciplinary teams that endeavor to develop 
and deploy methods that target the data needs of the EOS community. 

(b) Recognize and reward the special skills and roles of this group within the research community, 
EOS projects, and funding agencies. 

(c) Provide career paths that reward and recognize research, development, deployment accomplish-
ments that have positive impact on EOS projects. 
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Amplifcation of Findings and Science 
Mission Drivers 

The Challenges of Exploding Data Size, Rate, Complexity and Diver-
sity 

Data size and rate of collection at science user facilities is growing at a rapid rate. Each of the EOS use cases 
in this report provides details about expected and anticipated growth in data rates. These individual tables 
are repeated in consolidated form in Appendix 23. Integrating across all these summaries of projected 
growth rates, we see a future where individual facilities, of which there are dozens, are each generating 
collections of data in the range of 1–50 PB per year. These projections suggest, when integrating across 
the entire program, that these science user facilities will be soon collectively acquiring exabytes of data per year. 
In the present, these projects are having diÿculty coping with the data they collect, and help is urgently 
needed now to be prepared for the future. 

All EOS projects represented at this workshop are having diÿculty in keeping up with the demands and 
opportunities that the food of data o ers. The complexity of the data, new challenges in analytics and 
visualization, diÿculties in capturing suÿcient metadata and ease-of-use problems are impediments to 
use and adoption of many types of data-centric tools and infrastructure, hampering the e ort to harness 
the wealth of data in the service of scientifc discovery. 

A key limitation today is our [in]ability to analyze and visualize the acquired data due 
to its volume, velocity and variety (§18.2.1). 

One of the primary drivers for increasing data size is the increase in the resolution of the instrument 
sensors. Data rate increases at existing beamlines will come from new and improved detectors, as well as 
from increases in fux and brightness due to upgrades in the storage ring, beamline optics, and end stations 
(§14.1.2, §18.2.2). For some projects, the growth rate is urgent; at the Advanced Photon Source (APS), they 
expect a growth on the order of one order of magnitude in the coming months, followed by another two 
to three orders of magnitude increase that will result from the APS upgrade, which will permit multiple 
techniques to be applied simultaneously to a single sample (§18.2.2). 

The data size and velocity problem is compounded when a given EOS community relies on multiple in-
struments, such as the Cosmic Frontier projects, which carry out sky surveys using multiple instruments. 
These are expected to produce data estimated to be on the order of hundreds of petabytes in size. These 
data will be made available to a community of researchers over a long period of time (§21.1). Survey data 
is very valuable with a very long shelf life and is mined and analyzed in a number of ways, depending on 
the science use case. 

7 



�

These data generation volumes extend beyond issues in processing and storage, but also in data transfer, 
particularly in experiments that rely on real-time feedback to the tool operator. This problem is compli-
cated even further by the fact that many of the experiments summarized may happen concurrently with 
parallel data fows coming from independent detectors (§17.1.2). 

Another challenge associated with increased data size and complexity is the need to better support data 
integration and data discovery through the collection and management of metadata and derived data prod-
ucts associated with experimental and simulation data (§19.1.5). 

An ongoing concern in EOS projects is that the data they collect is free from error, and that it focuses 
on the specifc science objective. Here, we see a clear convergence between computing and data, where 
computational methods can be brought to bear to ensure the best possible data are collected during an 
experiment. In some cases, errors occur during data acquisition. These errors can be mitigated/corrected 
after taking data through advanced algorithms that can model the dynamical e ects of the acquisition 
instrument to produce a data set with minimized error. (§18.2.1) 

A related concern is the loss of science and opportunities for science discovery due to data loss. One ex-
ample is the Cosmic Frontier projects where data loss can occur in studies of transients because of possible 
ineÿciencies in detection technology, classifcation algorithms, and lack of follow-up resources. Other is-
sues that prevent making use of the complete data set are technical issues such as lack of understanding of 
foregrounds, modeling the atmosphere, detector noise, etc. (§21.2.3). 

While coping with the increasing size and rate of data infows from experiments and observations is a 
challenge, there is a corresponding set of challenges at the other end of the data pipeline. EOS projects 
typically also produce “data products” that are derived from raw experimental or observational data, and 
in many cases, from the results of numerical calculations. Some data products are produced for individual 
users (§11.1.1, §14, §18), while other data products are intended to be used by entire communities (§21.2, 
§12.1) or as reference data sets (§20.1.1). For data products, having a clear record of information about the 
data (metadata) is essential in order for these data to be useful and usable, and there is clear need for a 
long-term plan for addressing the archival, curation, and dissemination of data products. 

EOS Projects’ Use of Large-Scale High Performance Computing Facili-
ties 

EOS projects’ use of tools and facilities, which are designed for HPC workloads, have realized varying de-
grees of success. Meeting the challenges of the explosion of data from EOS projects requires computational 
platforms, networking, and storage of greater capacity and lower latency, along with software infrastruc-
ture suited to their needs. However, existing HPC platforms and software tools are designed and provi-
sioned for high-concurrency HPC workloads, single-project data products, and comparatively simpler data 
needs. 

EOS projects look to large-scale HPC computing facilities to help serve workloads that can be characterized 
as: requiring fast turnaround for computing tasks, having processing pipelines that are distributed in 
nature and involve the movement of a signifcant amount of data, long-term storage of data and providing 
access to data to a potentially diverse set of stakeholders and consumers. 

The issue of fast turnaround is so signifcant that it receives its own section in these fndings. In brief, 
the issue is that EOS projects like beamlines require computational resources within minutes or perhaps 
seconds when data are available and cannot abide with the queued structure employed on leadership ma-
chines (§18.2.2). 

The EOS use cases in this report describe variants of data handling and processing activities that can be 
characterized as distributed computing models. The typical design pattern involves frst collecting data at 
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the instrument, performing some processing close to the instrument, moving data to a large-scale facility 
for more lengthy calculations and preparation of data products, then dissemination of data products. The 
way each project implements this pattern varies according to their needs and available resources. 

For example, the Deep Underground Neutrino Experiment (DUNE) experiment presently uses a combina-
tion of local, on-site computing and HPC facilities at Fermi National Accelerator Laboratory (FNAL), which 
also is expected to host a full replica of data recorded by the prototype instrument. DUNE plans to keep 
full data replicas elsewhere for redundancy, as well as to opportunistically leverage computing resources, 
including those outside of DOE. DUNE is targeting the design and development of project-wide software 
infrastructure that aims to maintain portable and accessible software that can be used at any particular in-
stitution and run transparently on modern Grid and/or cloud resources as part of a distributed processing 
data-centric workfow (§19.1.2). 

Procedures for moving data from place to place, including tools for automating re-
silient workfow for orchestrating distributed data-related operations are a bottleneck 
(§12.2). 

There is a clear need for community- or facility-centric data repositories for data archival, sharing; with 
substantial bandwidth to the stored data, and easy interface for interacting with the data analytics. This 
needs to be massively parallel, a combination of visualization and various analysis tools (§20.1.3). It is very 
likely that DOE facilities (both ASCR and HEP) will take on a signifcantly larger role in data archiving, 
transfer, and analysis. It is also possible that commercial cloud resources will become a major resource in 
these areas—although several outstanding questions remain (e.g., cost models, data archiving and transfer); 
this disruptive possibility needs to be continuously explored. The main new hardware trend of interest for 
DOE facilities—in the relatively near-term—is the evolution and integration of HPC systems within a data-
centric usage model (§21.3). 

The needs of a data sharing site are quite distinct from one designed to store or analyze data. Data sharing 
software must have robust features in searching for specifc data types and for evaluating their relationships 
to people, studies, scientifc felds and published results (§11.2). 

All of these factors are somewhat at odds with how platforms and software infrastructure are architected, 
as well as with operational policy: to service long-running, high-concurrency jobs. We examine these issues 
in more detail from an HPC facilities perspective (§6). 

Time-critical Data Needs 

Many projects have time-critical data needs. These projects require a low-latency, high-throughput re-
sponse from infrastructure for data movement, analysis and processing and storage. However, computing 
platforms available to these researchers are insuÿcient in capacity or turnaround. The lack of large and 
capable facilities tuned to EOS needs are common across many disciplines. 

Many EOS projects use, or hope to use, large-scale HPC platforms and high-speed networking to do real-
time processing of experiment data. The high-throughput, fast turnaround enables on-the-fy adjustment 
of experiment parameters while the experiment is in progress, thereby creating the possibility of maximiz-
ing scientifc results (§14.1.3, §16.1.2, §17.1.2, §18.2.1, §19.1.2, §19.2). 

At the very frst stages of the analysis workfow, scanning electron microscopy (SEM) projects are interested 
in collecting full detector response at the fastest meaningful rates in order to assess tool performance and 
adjust parameters on-the-fy. Additionally fast visualization schemes would be of use to monitor the sample 
and quality of the output signal (§17.1.2). 
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Predicting the optimal scanning parameters, such as detector exposure time, num-
ber and optimal angular position of the projections could optimize data collection 
schemes and ultimately provide better quality data. . . . Besides predicting the optimal 
scanning parameters, the analysis of the resulting data then becomes the next bottle-
neck preventing near-real-time error detection or experiment steering (§18.2.1). 

A recurring theme in these EOS projects is the potential for increasing the quality of science by being able 
to perform key data-intensive computations quickly so as to adjust experimental parameters on-the-fy. In 
some cases, these computations can be performed on platforms close to the experiment. In other cases, 
the computational power required exceeds that available locally, and these projects look to resources at 
HPC facilities. In turn, such a distributed, data-intensive workfow will also place demands on networking 
infrastructure for the fast movement of large volumes of data. 

The Risk of Unusable Data 

Scientifc data is increasingly at risk of being unusable, and, hence, at risk of being lost forever. Without 
adequate metadata, scientifc data has limited usefulness because its origins are undocumented and un-
known, thereby limiting the ability to validate results or to make use of such data for other purposes. How-
ever, today the capture of these critical information often relies on manual, non-digital and non-sharable 
approaches, hindering scientifc discovery particularly in increasingly high-velocity, high-volume data en-
vironments. 

In some projects, data-centric operations—management, analysis, movement, distribution—are the respon-
sibility of an individual user, with whatever limited knowledge and capability is available to them. As a 
result, only a fraction of collected data is every analyzed, and only a fraction of that data is ever published 
and made available for community-wide use (§17.1.1). 

One very real problem is that presently the data is almost never usable by anyone 
other than the original group that generated it. This problem must be solved if making 
data publicly available is intended to have any useful purpose (§11.1.1). 

One very real problem is that, at present, data is diÿcult to use by anyone other than the original group that 
generated it. This problem must be solved if making data publicly available is intended to have any useful 
purpose. In addition, much necessary metadata is never collected because of the lack of understanding of 
what is required for data sharing by the primary investigator and the lack of easy-to-use tools to capture 
it. The overall cost and complexity of metadata recording and consolidation is currently prohibitive, which 
is the primary reason it is rarely collected. Unfortunately, this means that the associated data cannot be 
easily discovered or reused (§11.1.1). Systematic collection of the metadata that describes the provenance 
of stored data is typically inadequate, limiting the integrity, traceability and reproducibility of research 
products. 

. . . relevant data should be made available to the scientifc community after some 
amount of time. But more than data preservation is required—proactive data cu-
ration is necessary for the data to be really useful. . . . The beneft of curation would 
be to reduce duplication of e ort in data creation, but also for the re-use of data for 
further high quality research. (§14.2) 
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There is interest in having access to data after the current research is published. Such access needs to ensure 
that enough metadata is stored so that the data can be analyzed appropriately. There is a need to capture 
the reason why certain aspects of an analysis or data transformation or reduction operation was performed 
(§16.1.2). This information, the metadata, needs to be archived with the data so that subsequent access is 
useful, and can be utilized by researchers beyond the group that acquired it originally (§16.2). 

Collaboration and Sharing are Activities Central to EOS Projects 

Collaboration and sharing of data, tools, and methodologies are central to modern EOS projects, yet there 
is insuÿcient infrastructure to facilitate such interactions. However, common tools and methodologies for 
sharing and collaboration in data-intensive sciences have not been widely developed, deployed, or adopted. 
The limit is generally not simply data transfer, but rather a lack of widely-used tools to produce and con-
sume well-characterized data collections that include the desired level of annotation, metadata and prove-
nance. Collaborations also require an ability to share software tools, source code, data models and formats 
and workfows that are reproducible. Beyond established collaborations, there is a clear need to share tools 
and approaches between groups and disciplines to minimize the unnecessary duplication of e ort. In most 
cases, existing tools are inadequate or too diÿcult to use. 

By their nature, the mission focus for EOS projects is to collect data, and to share it. This theme is present 
in all the use cases present in this report. The projects di er in some key ways: some projects’ immediate 
focus is on sharing data with a primary principal investigator (PI) or PI group (e.g., §11, §17, §14), while 
others focus on sharing data with larger communities (e.g., §21, §13). While making data accessible for 
download over the Internet lowers the barrier to accessibility for a potentially large number of consumers, 
doing so is only a small part of a larger landscape of collaboration and sharing. 

Understanding the process of how science is actually done, what information needs 
to be captured and where the data is generated are key issues that must be addressed 
to enable e ective data sharing (§11.2). 

One concept that is central to achieving the ability to share data and tools is the idea of community-centric, 
or “standard” data models and formats for both data and metadata. The climate community, for example, 
has realized a degree of success in sharing data as well as software tools for working with data, due to its 
use of a data model or format that has broad community support (§12.1, §13.1.3). This idea is identifed as 
a need or an impediment in several use cases (§21.4). 

The use cases provide several compelling reasons why collaboration and sharing is important. First, sharing 
software has the potential e ect of reducing costs, particularly of software development (§18.3). The idea is 
that redundancy of e ort—software development—is reduced when key methods and tools can be reused 
across di erent projects. Sharing data, particularly curated data, would be to reduce the duplication of 
e ort in data creation, as well as for data re-use for further high-quality research (§14.2). Another beneft 
would be that it could lead to more algorithms and software being made available to the community, as 
researchers write code that can be benchmarked and used against curated data. 

Current technologies are inadequate for sharing [. . . ] data between group members. 
The community needs a more fuid means for sharing data and working together 
(§11.2). 

The use cases identify several di erent ideas that are needs for or impediments to collaboration and shar-
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ing. One is that the issue of data and software sharing does not have program-wide visibility. As a re-
sult, progress in this space is ad hoc, with solutions for distributing data (§11.1.3) or software (§18.2.2) 
emerging on a per-facility or per-PI basis, with little or no coordination. The result is that there exist 
many di erent sources of data and software (duplication of e ort) and there is a high barrier to fnding 
data or software. Impediments that are most detrimental are related to the issues of data sharing and 
collaborating in large groups, methodological transparency, and dissemination and archival capabilities 
(§11.2). Data and/or software that is “custom” and not curated is unlikely to be widely used (§17.1.1). Bet-
ter methods—interfaces and software tools, infrastructure—are needed to search and subset data without 
having to download an entire data set (§13.1.4). 

Impediments that are most detrimental are related to the issues of data sharing and 
collaborating in large groups, methodological transparency, and dissemination and 
archival capabilities (§11.2). 

There is a deep interplay between the topic of collaboration, which is the subject of Section 1, and the 
related but orthogonal topics of the overall data lifecycle, the usability of data and the associated challenges 
of metadata/provenance capture and long-term data archival and curation, and EOS’s use of computing 
and data facilities. The interactions between these di erent focus areas is made more challenging by the 
rapid rate of growth in data size and the rate of data acquisition. Stated di erently, successes in these 
related areas are building blocks for success in the area of collaboration and sharing. 

The Data Lifecycle Needs in Environmental and Observational Science 
are Not Being Met 

EOS projects have “data lifecycle” needs that are signifcant, well defned, and that go well beyond what 
is provided by the current set of programs and projects in the ASCR computing facilities and research 
portfolio. EOD can have a long lifespan, yet there is no program-wide view or approach for the long-term 
curation, storage, and dissemination of such data; one EOS project indicated that it relies on whatever 
capabilities are provided by journals in association with publications as its solution to this problem. 

The term data lifecycle refers to all stages of data collection, movement, processing, analysis, management, 
curation, and sharing. Data collected by observation or experiment has a potentially long lifespan, and a 
potentially large set of consumers, but there presently is no solution or approach for data curation, quality 
management, and long-term distribution within DOE SC that is generally and broadly applicable. At the 
same time, data retention policies at SC computing facilities are not designed for long-term retention nor 
for widespread dissemination. 

. . . our only archival process right now is that provided by the published journal 
(§16.1.1). 

Two key motivations for retaining data sets for a long period of time are for having a reference data set for 
use in evaluating the e ectiveness of new methods over time, and for the opportunity for new discoveries 
not originally foreseen at the time the data was collected. Over the years, some data sets produced by sim-
ulation will emerge as a community reference. For such collections, which will be used by many di erent 
authors in refereed publications, reproducibility of these analyses will become another reason to keep the 
data, even when better and higher resolution alternatives become available (§20.1.3). In tomography, the 
resulting tomogram is of comparable size to the raw images, which are also usually retained for the pur-
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poses of comparing the results of di erent tomographic reconstruction algorithms (§18.2.2). Results from 
projects like sky surveys may initially be focused on a few key science missions, but over time, a diverse set 
of science activities can be carried out with substantial discovery potential (§21.2). 

Current strategies for managing (accessing, processing, and keeping track of) the large number of data 
products are awkward at best, requiring a combination of methods (§12.2). User facilities like the APS 
do not provide a centralized and robust long-term data archive, since this service is categorized as a user 
responsibility (§18.2.4). Most user facilities have no explicit method for long-term archival and curation, 
and this is identifed as an impediment (§21.4). In the future, science user facilities may be called upon to 
provide long-term storage and archival services (§18.2.4). One stop-gap approach for long-term archival 
is to rely on that provided by the journal where a given paper is published (§16.1.1). A welcome addition 
in the data universe would be a centralized DOE facility that provides a mechanism for data archival and 
retrieval, that could be provided as an option to users at cost (§18.3). 

Providing more access to the data, in a manner that can be used by more scientists, 
will improve eÿciency, increase the impact of the science, and result in more papers 
per experiment (§16.1.2). 

The issues related to data lifecycle management are broad, and cut across many di erent areas. We have 
identifed challenges and research needed in areas germane to this topic: the automation of processing 
stages and automated data movement in EOS (§7), data storage and retrieval (§8), metadata and provenance 
(§9), software engineering and infrastructure (§3), data curation (§10), collaboration (§1), and interaction 
with computing service facilities (§6). 

The Central Role of Software in EOS Projects 

Software is a critical element for all EOS projects in all aspects of working with data and in meeting the 
challenges of increasing data size and technology complexity. It is used for collecting data, processing and 
analyzing data, for preparing data products, and for automating complex multi-stage operations that may 
span distributed resources. 

An important outcome of this workshop is the recognition of common needs across all the science domains. 
While the computing needs of EOS projects vary from one project to the next, it is the case that all EOS 
projects need computing, data storage/dissemination, along with a sustainable software ecosystem that 
can evolve over time to accommodate its data-centric requirements. This fnding suggests that priority 
attention should be directed towards approaches that develop and support solutions that can be widely 
used by many EOS projects and facilities. 

The EOS use cases in this report describe variants of data handling and processing activities that can be 
characterized as distributed computing models. The typical design pattern involves frst collecting data at 
the instrument, performing some processing close to the instrument, moving data to a large-scale facility 
for more lengthy calculations and preparation of data products, then dissemination of data products. The 
way each project implements this pattern varies according to their needs and available resources. This 
theme is present in use cases from projects that collect or produce data from instruments (§11, §17, §21), 
sensors (§13), light sources (§14, §15, §18), neutron sources (§16), detectors (§19), and computations (§12, 
§20). 
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Each beamline operates with unique capabilities and an independent scientifc mis-
sion. . . . Computational needs and strategies may di er considerably across beam-
lines, but computation is required for nearly every aspect of the facility (§18). 

Software methods, such as advanced algorithms for analysis, play a key role in improving the quality of 
data collected during an experiment, thereby improving the eÿciency and quality of science. The issue 
of fast turnaround is so signifcant that it receives its own section in these fndings. In brief, the issue 
is that EOS projects like beamlines require computational resources within minutes or perhaps seconds 
when data are available and cannot abide with the queued structure employed on leadership machines 
(§18.2.2). 

Because of the central role that software plays in nearly all aspects of working with data, EOS projects are 
particularly vulnerable to ineÿciencies and increased costs that can result from software-related issues. 
For example, ineÿciencies in time result when data-centric pipelines and data movement activities must be 
executed manually rather than being automated and resilient (§12.2); ineÿciencies in cost can result when 
a customized software component is created for one user but is not readily customizable or applicable to 
other users in the same facility (§14.2, §18.2.2), or across other science facilities. 

The biggest challenge to the facility is how to create the scientifc software needed to 
run it: software for improving the experimental process; for implementing beamline 
data movement and reduction workfows; to perform preliminary quality assurance, 
visualization and reduction; for data analysis and interpretation; for automating 
analysis workfows and distribution to users (§18.2.2). 

The most serious impediment the APS encounters is a lack of a DOE-wide view 
of software needs across the BES mission. Since each lab has its own portfolio of 
responsibilities, it devotes resources to those goals (§18.3). 

Software technology also plays a key role in encapsulating complexity and as an enabling technology. EOS 
projects want and need to be able to make use of advances in computational architectures, such as using 
HPC platforms for performing data-centric operations on larger data and with a faster turnaround. How-
ever, developing software for those platforms is often beyond the reach of a typical scientist-developer who 
may not have HPC software development skills. When it comes to the development of HPC code, there are 
fewer tools that ease the process for scientist-software developers (as opposed to computational experts) to 
transition from prototype code to HPC production code (§18.3). The same idea extends to other areas of 
technology, such as creating data-centric pipelines that span distributed resources. 

Increasingly, both simulations and experimental data analysis are elements of integrated workfows, which 
should resiliently automate key components of the data-handling pipeline, from collection to processing, 
analysis, archival, and dissemination. Many contemporary EOS projects articulate the need to combine 
computing with the experiment in real time, so as adjust experimental parameters on-the-fy to obtain the 
best possible data and science result from the experiment. Meeting these challenges will require more 
powerful computing and networking infrastructure combined with a capable, robust and sustainable soft-
ware ecosystem focusing on EOS needs. The food of data available now and in the near future presents 
an opportunity that can be met only through concerted, coordinated, and sustained e orts to improve the 
software tools, methods, and facilities (computing, data) available to the EOS community. 

Software is “digital data” that needs to undergo the rigors of curation, in the same way as data from exper-
imental and observational sciences, to facilitate long-term archival preservation and widespread dissem-
ination. Like other forms of digital data, to be useful, software needs to have associated metadata along 
with documentation and examples of use. To be long-lived, it needs to be supported, maintained, and 
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disseminated, something that is often not a part of the cost model. Several use cases pointed to the desire 
to distribute software with data, to facilitate in the usability of data and to promote the repeatability of 
results as well as promote the use of reference data and methods (§16.1.1, §14.2, §16.1.2, §20.1.3). One 
use case pointed out their only avenue for doing so is to rely on the archival capabilities provided by the 
journal where results are published (§16.1.1). The issues and motivations related to software curation, 
preservation, and dissemination are similar to those for other types of scientifc data. 

Workforce Development and Retention 

Arguably, the single most precious resource we have in the sciences is our personnel. As such, the no-
tion of workforce development is an ongoing process for not only present sta , but also the sta of the 
future. 

A recurring theme in the science use cases is the value of multidisciplinary groups of researchers working 
together to solve data-centric challenges. In such teams, it is often useful for a computer scientist to have 
some background and knowledge of specifc science applications, and vice versa. Generally, those having 
such a dual background is the exception, and so some amount of professional training and development 
(boot camps, intensive courses) is required to help fll these kinds of gaps (§17.1.5). 

Workforce retention issues are multi-faceted and can be challenging to address. At least one use case calls 
out that there is a lack of an adequately trained workforce combined with inadequate or insuÿcient career 
paths for computationally-oriented scientists (§21.4). 

Related to career paths is the notion of compensation, rewards, and valuing the contributions of those work-
ing on data-centric challenges. Given that we are increasingly a data-driven society, it is no surprise that 
data scientists are in high demand in industry. It is diÿcult for government-sponsored research projects 
to compete for data scientist professionals when they are highly sought after by industry, who can o er 
substantial compensation packages to recruit and retain talent. At the workshop, there was signifcant 
anecdotal evidence of loss of data science researchers to industry, where they are highly compensated and 
their contributions highly valued. 
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Research Challenges: 1 

Collaboration 

Large-scale scientifc exploration in domains such as high-energy physics, fusion, materials, and climate 
involves large national- and international-scale collaborations, with considerable diversity in expertise, 
geographic location, and institutional aÿliation. Thus collaboration is an essential ingredient of the “Big 
Science” that often produces “Big Data” [5, 6]. Increasingly, it is fundamental also to the science that is the 
lifeblood of many DOE experimental facilities, as the experiments performed at those facilities produce 
more data and become more interdisciplinary. Collaboration extends throughput the life cycle of the data 
and software artifacts that frequently form the focus and output of collaborative work, and touches on 
essentially all aspects of communication, computation, and data analysis. 

Discussions during the workshop made it clear that as collaborations produce more data, existing data man-
agement, workfow management, and collaboration systems are hard pressed to keep pace. As discussed 
in previous DOE workshops on collaboration in science [7, 8, 9], R&D is needed to scale all aspects of the 
discovery process so that research can proceed rapidly and reliably despite bigger data, bigger teams, and 
more complex analyses. The 2011 report proposed, for example, an R&D program to create a deeply collab-
orative and collaboration-enhancing environment spanning the DOE laboratory system in which [7]: 

• All data, code, and documents system-wide would be accessible, discoverable, reusable, reproducible, 
and computable (subject, of course, to access control). 

• Those same information products would be linked by a distributed knowledge base that permits 
automated navigation of content and connections. 

• Advanced software and computational processes would be available on demand and used routinely 
by every researcher. 

• Collaboration would occur within spaces that people want to use even when they are not collaborat-
ing. 

• Intrinsic and proactive security mechanisms would encourage rather than discourage collaboration, 
while protecting against attacks. 

• These capabilities would be as intuitive, fexible, and collaborative as the best modern consumer 
software. Imagine if research data and software were as easily accessible as movies from Netfix and 
applications from an App Store. 

The needs for such capabilities have only grown in the subsequent fve years, and particularly for EOD, 
which place particularly challenging demands on collaboration technologies. We focus here on some as-
pects of these requirements that were emphasized at the September 2015 workshop that produced this 
report. 
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An important and repeated theme in this workshop was that EOD’s unique status as an observation of the 
natural world can allow it to have value, and fnd uses, at times, at locations, and in disciplines distant 
from its original creation. EOD are frequently used by many scientists beyond its original developers, 
including many non-experts, and for purposes other than those for which it was originally created. Thus, 
tools and technologies to support collaboration around EOD must pay careful attention to preserving and 
indeed cultivating the life cycle of both the data itself and the various artifacts involved in its creation and 
transformation. Those artifacts can include code, workfows, and visualizations. 

In the sections that follow, we frst list some key fndings concerning collaboration around EOD and then 
highlight new areas of R&D that need to be addressed by the DOE community to enable robust and e ective 
EOD-based discovery. 

1.1 Findings 

Importance of preservation. EOD is di erent than simulation data. Importantly, it cannot be regenerated. 
Its value often persists over time and it is frequently useful for people beyond its creator and for di erent 
purposes. As an observation of the natural world, it has a privileged truth value, and thus its accessibility 
and reliability are particularly important. 

Importance of provenance and lifecycle. The unique properties of EOD can allow it to serve as the root 
of broad, deep, and long-lived collaboration networks. Thus, the data, code, and workfows that underpin 
EOD need to be accurately preserved, linked, and annotated, so that future collaborators can learn and 
build o EOD. By recording how EOD was used, this information can support future science, provide a 
basis for reproducibility, and permit learning from experience. 

We must move from people fnding data to data fnding people/code/workfows. Exploding data volumes 
make current interaction and collaboration models based on people fnding data untenable. When anything 
gets too large, one needs automation. Automation can usefully be based on the observation of past patterns. 
When a new datum is produced, it should be linked automatically to the people, programs, and workfows 
that are likely to fnd it useful. 

EOS needs computing for control and steering in order to increase its overall value. Rapid response is 
needed for eÿcient instrument use, new computer-in-the-loop experimental modalities, and collaboration 
processes. 

EOS engages user communities for whom the ease of use is critical. There are experimentalists who 
prioritize performance and computational scientists who care about ease of use. But in general, more ex-
perimentalists care about the ease of use and more computational scientists care about performance. 

1.2 Data Lifecycle as a Basis for Collaboration 

Collaborations are often structured around data, as when two experimentalists want to compare results; 
an experimentalist and a modeler want to use data to test a model or vice versa; or a new downstream 
researcher wants to use data for a new purpose. Inevitably, such collaborations also involve code, as it is 
rare that data can be understood or applied without understanding, and often developing new, software. 
Data, code, and workfows cannot be e ectively reused, and will often not be shared, without detailed 
information about the process by which they are frst produced and then transformed over time. Such 
information is fundamental to collaboration: it provides data consumers with confdence in data’s origins 
and data producers with confdence that their contributions will be recognized. 
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State of the art 
The scientifc community has made much progress on methods for capturing and representing metadata 
and provenance information. However, we are still far from the situation in which data captured for one 
purpose can easily be reused for another. Even routine use of data for an intended purpose is far from 
straightforward. 

Challenges 
A frequent obstacle to e ective EOD use is the need to understand “hidden information”—specifcs of 
the codes or experimental apparatus used frst to produce data and then to reduce that data (typically by 
large factors) to the data that is published and shared with others. Thus, for example, we fnd people 
having to “phone the beamline scientist” for knowledge about data before using it. The problem is that 
important information about the intention of the algorithm, data, etc., is often not placed in the knowledge 
base. 

Another obstacle to EOD use is the obstacles that researchers frequently face when seeking to apply custom 
analyses. The process of making EOD available to the research community frequently involves sophisti-
cated computational pipelines to clean, reconstruct, and transform raw data. ARM (see §13) and EMSL 
(see §11), for example, operate sophisticated data reconstruction and analysis pipelines on data feeds from 
instruments. However, these pipelines are relatively static and necessarily focused on the most common or 
urgent needs. It would be desirable for individuals and groups to be able to defne and run new pipelines 
and queries: ideally, plugging them into existing frameworks rather than having to build new frameworks 
from scratch. Similarly, it should be easy for individuals and groups to share new analysis procedures and 
the derived data products that they generate. 

R&D needed 
Research which can come up with new methods to expose this information is necessary for larger scale 
collaboration. See also the discussions in Sections 9 and 10. 

1.3 Discovery Engines 

The data produced by a specialized scientifc instrument (or, in some cases, supercomputer) represents a 
unique and expensive resource of value to many researchers. As data volumes grow, it becomes impractical 
(or at least ineÿcient) for each researcher to download that data for local analysis. Thus, we see the emer-
gence of a new form of instrument: the storage, computing, data, and code required to allow community 
analysis of a large data set—a system for which we use the term “discovery engine.” Many individuals and 
groups may work on a single discovery engine over a period of months or years, asking di erent questions, 
and producing tens or thousands of publications. The community needs to have access to the data sets and 
the analysis and visualization tools, along with all of the provenance needed to interpret, reproduce, and 
extend results. 

State of the art 
Successful discovery engines have been developed within a few disciplines and projects: see, for example, 
the Sloan Digital Sky Survey’s SkyServer [10], the SEED system for microbial genomes [11, 12], the MG-
RAST metagenomics server [13], and the Open Numerical Laboratory described in Section 20. 

The Sloan Digital Sky Survey (SDSS),1 for example, has collected imaging data for more than 35% of the 
sky with photometric observations of ∼500 million objects and spectra for more than 3 million objects. 
Importantly, SDSS does not simply provide the community with access to raw data: the SkyServer2 provides 
a range of interfaces for querying and accessing the data, including the CasJobs interface [14] for running 

1http://www.sdss.org. 
2http://skyserver.sdss.org. 
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computationally intensive SQL queries. As of March 2016, use of SDSS data has resulted in more than 
5,800 refereed papers with greater than 45,000 citations. 

The SEED3 was frst established in 2004, at a time when large numbers of sequenced bacterial genomes 
were being produced, with the goal of producing superior annotations (e.g., labeling genes with their func-
tional role) for the frst 1,000 sequenced genomes. To this end, the SEED team pioneered a new approach 
to genomes annotation based on the annotation of subsystems by expert annotators across many genomes. 
Users upload genomes the system for automated analysis and annotation; genes are called by comparison 
to the knowledge maintained within the SEED system. As of 2013, more than 12,000 users worldwide had 
annotated more than 60,000 distinct genomes. The related MG-RAST (the Metagenomics Rapid Annota-
tion using Subsystem Technology) server,4 launched in 2007, has as of March 2016 processed 239,314 meta 
genomes totaling greater than100 trillion base pairs for more than 12,000 users. 

These usage data illustrate the impact that discovery engines can have on their communities. Importantly, 
the systems cited are all easily accessible by researchers with limited information technology experience 
and resources. They thus serve to both empower researchers who could not otherwise easily analyze data 
from new instruments, and as loci for collaboration around that data. 

Challenges 
The need for discovery engines arises in essentially every feld of DOE science in which data volumes have 
become large: climate, materials, biology, cosmology, and many others. But signifcant challenges must 
be overcome before discovery engines can be constructed and used on a more routine basis. Some are 
listed in Section 20. A major cross-cutting challenge is that such systems are currently labors of love for 
their developers, developed and sustained with limited resources and with sometimes ad-hoc solutions to 
technical challenges such as resource management, data representation and curation, and data sharing and 
privacy. 

R&D needed 
New methods and tools are needed to streamline the process by which such systems are developed and sus-
tained by individuals and collaborative groups, especially as growing data volumes and greater analytical 
complexity increase both demand for discovery engines and the costs associated with running them. 

Increased computational demands leads to a need for scalable provisioning and policy-driven resource 
allocation, so that limited computational resources can be allocated e ectively within and across large 
collaboration groups. Cloud computing platforms seem well-suited for hosting discovery engines, although 
interestingly none of the systems listed above is currently hosted on commercial cloud services. More 
work is required to understand the computer architectures best suited for di erent classes of a discovery 
engine. 

The power of a discovery engine derives from the quantity and quality of the data that it maintains. As 
new data is ingested and processed to generate new derived data, the discovery engine’s knowledge base 
continuously evolves. So too will the analysis tools used to perform such analyses. Methods are needed for 
capturing such processes, so that results can be extended and collaborators can look at the graph of results 
and see how results build upon other data. Existing methods for recording provenance (see §9) likely need 
to be extended to enable the provenance of each data element to be determined and reasoned about. 

Another important aspect of discovery is privacy. As collaborations grow, some information must inevitably 
be private for a certain period of time. (For example, the SEED and MG-RAST projects allow for private 
genomes and metagenomes.) Privacy policies need to be described so that di erent people in a collaboration 
can access more or less information as their roles change and data ages. 

Both raw and derived data maintained by discovery engines needs to be accessible as objects. Users need 
to be able to query these objects and download small chunks of information from the original data. Data 

3http://pubseed.theseed.org/. 
4http://metagenomics.anl.gov. 
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may be used improperly if context is missing. Thus, the intentions of the tools and the data need to be 
adequately described (e.g., with appropriate ontologies) so that the accuracy of results can be understood 
and controlled. 

1.4 Frictionless data movement and sharing 

Collaboration requires communication, and collaboration around data often requires data movement. Dis-
tributed collaborative teams frequently want to move data from source to discovery engine, to archival 
storage, and/or to local computers for local analysis. In other cases, they want to move work to data. Any-
thing that hinders easy, reliable, high-speed, and secure data exchange ultimately hinders collaboration 
and discovery. 

State of the art 
DOE investments in high-speed networks and data transfer technology have greatly accelerated data move-
ment speeds over the past decade. The Globus service, in particular, is deployed at all major ASCR facili-
ties and many experimental facilities (e.g., the APS; see §18) and is increasingly integrated into application 
work processes and data portals [15, 16]. However, many factors continue to hinder rapid data exchange, in-
cluding local network, computer system, and storage system architectures that throttle end-to-end speeds; 
incompatible or baroque security systems that get in the way of remote access; disorganized and/or uncat-
alogued data that cannot be easily discovered; and data in unfamiliar or complex formats that cannot easily 
be interpreted. 

Challenges 
Many challenges must be overcome if we are to achieve the data fuidity required for e ective collaboration 
around large EOD. The following are examples identifed during the workshop, with references to selected 
science projects in which they arose. 

• Performance: As data sets grow in size, performance is often the key enabler, as collaboration cannot 
proceed e ectively if delayed by long data transfer times. Near-real-time access can permit quali-
tatively di erent, more interactive and collaborative, discovery modalities. This requirement arose 
across most science domains represented at the workshop: for example, APS (see §18), ALS (see §14), 
Climate (see §12), and ARM (see §13). 

• Discovery: This is another major obstacle to e ective EOD use. Although there has been and contin-
ues to be much research in resource discovery, new research is needed to discover workfows, analysis 
and visualization code, papers, and data. 

R&D needed 
Workshop participants referred repeatedly to their desire for a “Dropbox for science,” a technology that 
would allow large EOD to be managed and shared much as Dropbox provides for smaller data today, 
with the location being transparent, sharing straightforward, and synchronization automatic. Workshop 
participants were quick to note, however, that they need something more than just “Dropbox on steroids”: 
they want technology that also provides for data indexing, discovery, and subsetting, for example, and that 
works e ectively on all computational resources, from the smallest to the largest. The realization of this 
goal, with all that it entails, can be a major focus for DOE research. 

Work is required to improve data transfer speeds, with a particular focus on end-to-end performance 
(e.g., from the detector to the computer) and to/from the many smaller sites at which DOE researchers 
work. 
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1.5 Usability 

EOD’s potential for broad application makes usability an important concern for data and for the software, 
workfows, and other resources used to transform, communicate, and manipulate that data. This theme 
arose repeatedly during workshop discussions. Usability was viewed as essential if researchers are to work 
e ectively (and collaboratively) in a world of complex data, software, resources, and services, EOD is fre-
quently used by researchers from other disciplines who may lack the computer skills possessed by the 
EOD’s original creators. This situation arises, for example, in the case of ARM data (see §13), which may 
be consumed either in its raw form or (more typically) via various derived products by atmospheric, envi-
ronmental, and other scientists. 

The importance of usability is also discussed in Section 3 in the context of HPC software. However, no 
specifc recommendations are made that speak to how to improve usability. 

State of the art 
User interface and human factor considerations have not traditionally played a big role in the design of ad-
vanced scientifc software, which indeed is often viewed as requiring considerable expertise. Some groups 
reported that they have engaged user experience (UX) experts in their R&D teams, with positive results. 
However, they also noted that obtaining and sustaining funding for such people is not easy. 

Challenges 
Usability needs to become a focus of science software and data systems if we are to expand the scale and 
scope of collaboration, within and across institutions and disciplines. 

Usability issues arise, in particular, when working with large and complex data, which is often diÿcult 
for communities outside the original creators to deal with. We need methods that allow users rapid access 
to simplifed data sets, while also helping them to access other, more complex upstream data by them-
selves. 

R&D needed 
The usability challenge is broad and will require a sustained e ort across a wide range of areas. We expand 
here on two that arose in discussions, drawing also upon material from previous reports [7]: 

• Identify management: The secure establishment of identity for di erent purposes and the manage-
ment of the multiple identities that any individual inevitably possesses are fundamentally diÿcult 
problems that result in challenging usability concerns. Given the complexity of DOE science, progress 
will require both research and e ort applied to development and deployment. 

• Cloud services: One reason for the poor usability of science software is its often bespoke nature. One 
answer to this problem is likely to be to get individual researchers, research teams, and laborato-
ries out of the business of installing and operating the software and other information technology 
(IT) used in their research. In the consumer and commercial IT, this is a common practice: all sorts 
of software, and in particular collaboration and data management software, is routinely outsourced 
to cloud providers. The successful realization of such outsourcing approaches will require answers 
to a range of challenging research questions. What are the critical processes that underpin modern 
research—the equivalents for small and medium research teams of payroll, accounting, and customer 
relationship management for small and medium businesses? What are the foundational elements on 
which we can build robust, secure, and scalable research data management and collaboration solu-
tions? How can these elements be integrated with supercomputer centers and other DOE facilities? 
How do we scale solutions to massive data, large teams, and high-throughput processes? What UX 
elements are important in research? (Companies such as Netfix, Google, Apple, and Amazon have 
pioneered approaches to consumer UX that have proved transformative in their usability. Will similar 
methods work for science?) 

22 



�

� �

Research Challenges: 2 

Mathematical Aspects of Data 
Analysis 

The mathematical formulations and numerical algorithms for the analysis tasks used by DOE’s facilities are 
as diverse as the science that these facilities enable. While these formulations and algorithms vary across 
the facilities and science applications, there are common features, as captured by the fndings below. 

• A common theme from all facility representatives at the EOD workshop was that data analysis is a 
major bottleneck to scientifc discovery, and increasingly so. 

• The current use of o -the-shelf methods for data analysis places deleterious limits on the fdelity, 
scale, and complexity of the analysis of experimental and observational data. Substantial opportuni-
ties exist for methods that account for the unique features of data analysis at DOE facilities, including 
the phenomena generating the data, the data acquisition, the storage and computational resources 
available for analysis, and the science questions driving the analysis. 

Below we expand on six key topics, each identifed by multiple use cases as being a critical need for sci-
entifc discovery. Although we highlight mathematical challenges, advances in these topics will require 
that related computer science challenges be addressed, as detailed in subsequent sections. In Section 2.7 
we summarize crosscutting research in mathematics and data analysis needed in support of these top-
ics. 

2.1 Multimodal Analysis 

Data acquisition frameworks in which data are acquired from di erent sources (e.g., di erent types of 
sensors, detectors, or simulations; under variable conditions; in multiple experiments) are often called 
multimodal. Analysis of multimodal data typically involves data fusion: deriving a single representation of 
the data obtained from multiple sources. The data fusion and integration process can introduce additional 
errors, as discussed in Section 2.6. 

Characterization of data fusion involves a transformation (often hierarchical) between observed parameters 
and a decision or inference. Research on multisensor data fusion predates the advent of the so-called big 
data era and has been applied largely in areas such as automated target recognition, surveillance, guidance, 
and control [17]. 

The majority of the EOD workshop participants from the various science domains reported on applications 
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involving multimodal data, including data from neutron and X-ray scattering (§16.1.1), hyperspectral data 
from scanning probe and electron microscopies (§17.1.2), and data from new modalities enabled by the 
Advanced Photon Source upgrade (§18.2.3). Since multimodal analysis includes problems where exper-
imental and observational data are combined with simulations, in many data assimilation use cases one 
form of data is used to improve understanding about another. 

Challenges 
The combination of multimodal data sources generates new degrees of freedom and thus requires more 
complex analysis than does exploiting each modality separately [18]. Incorporating data from multiple 
sources increases the volume and heterogeneity of the data being analyzed. Data from each new source 
brings its own level and type of accuracy. Furthermore, data from di erent sources can have complex 
interdependencies that must be accounted for in multimodal analysis. 

R&D needed 
Promising methods to address the cited challenges include matrix factorizations and tensor decomposition 
methods with constraints that are both convenient mathematically and physically plausible, pyramid-based 
data fusion schemes, nonlinear optimization for complex inverse problems, region-based fusion rules with 
statistical weighting, heterogeneous graphs [19], data and image registration techniques, and other heuris-
tics. New, adaptive sampling, adaptive data assimilation, and adaptive experimental design techniques could 
maximize the degree of complementary information borne from di erent modalities (e.g., to close the loop 
between the Atmospheric & Radiation Measurement (ARM) facility’s observational data and simulations; 
see §13.1.3). Methods for propagating information across scales can facilitate analysis of data covering dis-
parate spatial and temporal scales. Also needed are methods that rigorously account for interdependencies 
among the data, and mathematical strategies to deal with missing data. 

2.2 Uncertainty Quantifcation and Surrogates 

Understanding and accounting for the uncertainty and error from various sources are critical to making 
useful inferences from the data collected during experiments and observations. These sources range from 
experimental and measurement error to uncertainty in model inputs, as well as variation due to the selec-
tion of samples and the choice of the theoretical model used to predict the quantity of interest. 

The need for uncertainty quantifcation (UQ) is pervasive throughout climate applications (§12.1), as well 
as in high-energy physics (§21.4), to address questions such as “Did we see the Higgs boson?”, ”How fast 
is the universe expanding?”, and “What confdence do we have in climate predictions from a model using 
observed data that has been assimilated into the model?” 

Surrogate models are often used in UQ. These are simpler models, such as polynomials or neural networks, 
that are derived from data and models, and that can be used to provide predictions of the output values for 
a given input. 

Challenges 
Statistical techniques are often used to link the data to the inferences being sought [20, 21, 22]. However, 
this process can become challenging when the data is high-dimensional, large, and complex and represents 
multiple modalities. Building good surrogate models can be challenging in high-dimensional input spaces, 
when the amount of data available to build the model is small and the output is a complex function of 
the input. Furthermore, although Bayesian approaches are increasingly being adopted at DOE facilities, 
relatively little is understood about the sensitivity of these predictions to prior information (see, e.g., [23, 
24]). 

R&D needed 
Research and development is required in UQ techniques that will connect data to scientifc models for 
inference in data-intensive environments, where the variety, velocity, and veracity of the data are taken 
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into account in addition to mathematical and statistical considerations. Also needed is development of 
domain-specifc statistical estimators and surrogates with mathematical guarantees such as consistency and 
optimality. Moreover, techniques are needed that quantify the sensitivity of analyses to domain-specifc 
prior information. 

2.3 Mathematical and Statistical Techniques to Address Data Qual-
ity 

Understanding and improving data quality are important because the quality can a ect the error estimates 
associated with the data and the conclusions drawn from the data. Data quality is an especially important 
topic in cases such as the Environmental Molecular Sciences Laboratory (§11.2), where the complexity and 
heterogeneity of data, rather than the volume, represent the primary obstacle in obtaining deeper insights 
from the data. 

Signifcant improvements have been made in the quality of data collected by instruments, as well as in sig-
nal and image processing algorithms that reduce the noise in the data [25]. Extracting linear relationships 
based on noisy data has been studied especially when the noise satisfes various independence properties 
[26] or when a model of the noise can be recovered (for example, in the case of denoising digital images 
[27]). 

Challenges 
Despite these improvements, the quality of data from experiments and observations can often pose a chal-
lenge to analysis. The data may have missing values due to an inoperable sensor, be distorted because 
of convolution by the point spread function of the detector (as in astronomy images) or because of detec-
tor jitter and vibrations, or be corrupted by extraneous objects (such as insects in the feld of view of an 
imaging system used in atmospheric sciences). Furthermore, much of the experimental and observational 
data collected at DOE facilities exhibits structural correlations that violate standard noise-independence 
assumptions; depending on the type of analysis, these correlations can harm or ameliorate subsequent in-
ference. The imputation of missing data [28] can also be challenging, especially for multimodal data. 

R&D needed 
At many facilities, algorithms are needed that can process large volumes of imperfect data in a timely 
manner. Promising approaches include using metadata such as detector event logs to enhance data analysis. 
Also needed are imputation, denoising, and registration techniques that take into account the domain-
specifc characteristics of the data generation and acquisition processes (and inherited noise) in order to 
detect and account for specifc noise-creating events. Mathematical models of common sources of noise 
need to be developed that account for correlations among the data and sources of noise. In conjunction with 
these models, robust formulations of inverse problems are also needed to address data quality issues. 

2.4 Dimension Reduction 

Dimensionality reduction is viewed as a key technique at several DOE facilities. Needs in this area include 
dimension reduction with real-time feedback (§14.2), automating data reduction at the Spallation Neu-
tron Source (SNS) for subsequent analysis (§16.1.2), and fltering to extract the desired material properties 
in scanning probe microscopy (§17.1.4). A particular form of dimension reduction is for exploring and 
visualizing high-dimensional data sets, a topic addressed in Section 4.5. 

Challenges 
Dimension-reduction techniques have been developed from diverse viewpoints, including linear algebra, 
signal-processing, statistics, and complex systems [29, 30]. Although numerous methods exist for reducing 
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the dimensionality of large-scale data sets, the results of black-box “workhorse” methods such as principal 
component analysis (PCA) or independent component analysis (ICA) are unsatisfactory for many scientists, 
such as users of the Center for Nanophase Materials Sciences (see §17). The physical constraints must be 
respected by the dimension-reduction methods, and the results should be interpretable from a scientifc 
point of view. These aims are often accomplished by imposing additional structure on the output factor 
matrices (such as symmetry or non-negativity). Instead, PCA imposes artifcial constraints such as orthog-
onality, which is not necessarily dictated by the underlying physics. 

Although there exist dimension-reduction methods that can improve physical interpretability, such as non-
negative matrix factorization (NMF) [31, 32] and CUR decomposition [33], robust implementations of these 
methods that can handle various kinds of large-scale data, possibly with missing or noisy entries, are not 
yet available. In contrast to PCA, these methods are also more expensive and cannot guarantee a global 
optimum solution. Arguably, one can also introduce additional constraints to the formulations of PCA, 
ICA, NMF, and CUR algorithms (see, e.g., [34]); adding such constraints can also result in formulations 
with unique solutions. Unfortunately, dimension-reduction problems typically become more diÿcult to 
solve when constraints are introduced. 

Furthermore, by focusing on a two-dimensional (matrix) representation of data, the majority of dimension-
reduction methods in use today ignore higher-dimensional (tensor) structure. Obtaining compressed rep-
resentations of tensor data is an active area of research [35, 36]. Likewise, exploiting network/graph struc-
ture (e.g., as done by PageRank with great success in social and information networks [37, 38]) or other 
geometric representations [39] remains relatively unexplored for scientifc data. 

R&D needed 
Research is needed on constrained dimension-reduction methods that address unique or particularly chal-
lenging features of data at DOE facilities, and that enable ready interpretation of the reduced results. 
Methods should be able to handle large data sets with missing values without explicitly imputing them, 
which would otherwise create memory problems. Such methods should, for example, be able to di eren-
tiate between zero-valued entries and missing values that are potentially nonzero. Promising approaches 
could include using techniques similar to those found in sparse numerical linear algebra. Furthermore, 
algorithms are needed that can eÿciently incorporate constraints that directly enforce desired physical 
properties. Also needed are eÿcient algorithms and implementations that can operate on tensors (multi-
dimensional arrays) as eÿciently as they do on matrices. 

2.5 Streaming Data Analysis and Feature Tracking 

Streaming algorithms perform online processing of data streams that are too large to ft into memory at 
once [40]. Consequently, analysis has to be done as data are being collected, and the algorithms can access 
only a small window of data. 

Streaming data analysis shares features with in situ and in-transit methods. Current strategies to manage 
analyses eÿciently and handle storage constraints properly include in situ calculation, in which diagnostics 
are performed on the fy and only summaries of information are archived. Many facilities, such as the 
expected LCLS-II upgrade (§15.2), foresee high-throughput environments where such streaming analysis 
is critical. Streaming analysis can also be used as a quality flter, such as in the case of online monitoring in 
order to stop taking measurements when a sample goes bad (§15.1), and for quality assurance and real-time 
reconstruction adjustment for protoDUNE (§19.1.5). 

Feature tracking is a typical task in in situ analysis that targets the detection of key data attributes, often 
from high-resolution spatiotemporal data sets, continuously updating the resulting predictions. Examples 
of such tasks include tracking particles in the liquid argon time projection chamber (LATPC, §19.1.2) and 
tracking regions of interest in an extreme-scale simulation (§20.1.2). 
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Challenges 
Many popular data processing, fltering, and tracking methods maintain a “sketch” of the underlying 
stream in order to be able to approximately answer queries. For example, Bloom flters [41] are useful for 
approximate membership queries with applications in biology, whereas algorithms for counting distinct 
elements, fnding frequent items, and automatically fnding regions of interest are helpful in astrophysics 
(§20.2) and genomics. Sampling-based methods also rely on maintaining an approximation of the data. 
One challenge in all such methods is not to lose important information during the process. 

Furthermore, even for basic streaming operations (such as those performed during an experiment), typical 
facility users lack tools to reproduce these operations using slightly perturbed assumptions (§16.2). In or-
der to tackle the volume of data, streaming data analysis algorithms generally need to be distributed, ideally 
with minimal communication requirements so as not to disrupt the datafow. When used in conjunction 
with a simulation, in situ algorithms also must be faster than both the time required for a simulation time 
step and other streaming data sources from the physical experiment, or example. 

Although one can recognize and track patterns in point-cloud data sets, such as those traditionally encoun-
tered in cosmology [42], approaches generally assume that the entire data set can be accessed simultane-
ously or in particular blocks. Performing such tasks for streaming data can be a challenge, depending on the 
manner in which points arrive in the stream. Tracking methods can be invaluable for studying dynamic 
processes, such as when computing displacement felds from automatically distributed landmarks [43]. 
Most approaches, however, are highly specialized or sensitive to noise in the data, which can result in 
many local extrema in the tracking objective function. 

R&D needed 
Research is needed on streaming-data methods that ensure a higher recall in order to avoid missing rare 
events. These rare events can be especially valuable artifacts in the scientifc data collection process. Paral-
lel libraries that provide basic data structures (e.g., Bloom flters, size estimation, frequent item queries) in 
an eÿcient manner on large-scale clusters are needed for the widespread adoption of those data structures 
by domain scientists. Development is also needed of tracking methods tailored for DOE facilities. Also 
needed are advances in modeling formulations or deterministic and stochastic nonlinear search methods 
that can overcome the many local minima present in current tracking tasks. 

2.6 Data Acquisition 

Modeling and incorporating characteristics from the experimental and observational data acquisition pro-
cess are important in realizing the full value of the data. Both the process through which and environment 
within which data is acquired manifest themselves in measured data. For example, microscopes and sam-
ples can drift during longer measurements (§17), samples and detectors can heat up, and water can land 
on a sensor. DOE’s light sources are just one area with an increasing demand from instrument sta for 
feedback between data analysis and the data acquisition process (§16.1.2); and proper accounting of back-
ground and run conditions is critical to DUNE being able to detect supernova bursts (§19.2). 

Modeling the acquisition system is also a critical step toward performing optimal control. Control enables 
experiment steering, whether in conjunction with streaming analysis or simulation, a capability desired at 
many DOE facilities. 

Challenges 
When obvious, data that su ers from a change in environmental conditions (e.g., from rain or an unex-
pected occlusion) is often omitted from subsequent analysis. Particular forms of noise are often ignored; 
instead, techniques such as compressed sensing [44, 45] are employed as a general “robustifcation” prac-
tice. More recent techniques (such as when scan position errors are recovered in ptychography [46]) have 
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begun to exploit redundancy in noisy data in order to directly correct for e ects such as instrument jit-
ter. 

The noisiness of the data is particularly problematic when the data acquisition or fusion error is un-
known, hence precluding the algorithms from providing confdence bounds. Approximate query process-
ing (AQP) [47] can provide adequate answers to queries on noisy data by using sampling. The downside 
of AQP is that it requires k2 additional samples in order to reduce the approximation error by a factor of 
k. 

Combined data cleaning and sampling, whereby the knowledge obtained by data cleaning on the sampled 
part is used to improve the approximation error in the parts of the data that were not sampled, also has the 
potential to improve the answer quality [48]. However, the applicability of this approach to scientifc data 
sets is an open question. Moreover, specifc information about the data acquisition has been neglected thus 
far. 

R&D needed 
Current analyses would beneft from models that account for the acquisition process and environment in 
conjunction with the measured data and their use in data-based inference and reconstruction. Similarly, 
approaches that more accurately incorporate measurement statistics would particularly beneft areas that 
require shorter and shorter exposure times. 

Incorporating specifc knowledge about the acquisition process should improve “black-box” noise-reduction 
methods such as AQP; research is needed, however, to quantify the costs and benefts of incorporating var-
ious levels of information about the acquisition process. New mathematical abstractions could facilitate 
determining correct combinations of (acquisition-informed and generic) sampling and data cleaning for a 
particular instance of the data and analysis system. 

2.7 Crosscutting Mathematics and Analysis Areas 

Algorithms and approaches for addressing the six key topics discussed above share several common char-
acteristics. Crosscutting research in the mathematics and analysis areas listed below will beneft several of 
these topics. Advances in these areas can also increase the range of analysis problems that today’s methods 
can address, because such advances have the potential to make today’s methods more robust, faster, and 
scalable to larger data sets. 

Numerical simulations o er a “digital twin” to the physical phenomena and acquisition systems that un-
derlie experimental and observational data. Data and simulations enjoy a symbiotic relationship: 
measured data can inform a simulation (e.g., through calibration and boundary/initial conditions), 
and simulations can fll in gaps—temporal, spatial, or otherwise—in the data. Furthermore, just like 
experimental and observational data, simulations can produce results at varying levels of fdelity. 
Critical research areas include scalable, multi-resolution simulations; techniques for data assimila-
tion; and simulation-based design of experiments and experiment steering/control. 

Techniques from machine learning, optimization, and statistics can play an important role in analysis: 
they can be used to improve the quality of the data, to enable multimodal analysis, and to build ac-
curate surrogate models for UQ. Although these techniques have started making inroads into DOE 
applications, their application can sometimes be more an art than a science. In order to appropriately 
address the intricacies and subtleties associated with the use of these techniques so that the conclu-
sions drawn from the data can be trusted, a closer collaboration between DOE domain scientists and 
analysis experts is needed. 

Dynamics are an important factor in many of the processes that experimental and observational data 
seek to characterize. However, such dynamics are often one of the frst features ignored (or coarsely 
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approximated) when faced with imprecise and incomplete data. Time series analysis, incorporation 
of dynamic models, and simulations of dynamical systems can all play a role in illuminating history-
dependent and time-varying behavior in captured data. 

Approximate methods are required when getting exact answers to analytical questions is too expensive. 
Moreover, when the data is noisy or incomplete, the concept of exactness is itself blurred. To get 
real-time answers to analytical queries, one has to resort to fast approximation methods. Versions of 
analysis algorithms that span the space of tradeo s between speed and accuracy need to be developed 
to facilitate application on massive scientifc data sets under di erent time constraints. Wherever 
possible, these algorithms should come with error bounds on the quality of the approximation. 

Automation and abstractions of key analysis tasks can result in a better allocation of “humans in the loop” 
and thereby accelerate scientifc discovery. A key hurdle to achieving this is formulating mathemati-
cal abstractions of the analysis process and/or underlying scientifc phenomena. In particular, there 
is a need to formalize and quantify metrics that are currently qualitative (see §14.2, for example). 
Stochastic and statistical models, for example, can o er a formalism to notions of a “grey area” in 
many analysis tasks. 

Performance and scalability are often a leading impediment specifc to analyzing scientifc data sets. 
While many data analysis toolkits exist in popular languages such as Python and R, their serial and 
interpreted nature makes them unusable on large data sets. The need for high-performance, parallel 
toolkits arose repeatedly at the workshop. In particular, domain scientists do not want to be required 
to stay abreast of the latest developments in HPC programming; instead, they would like to get higher 
performance from their very high-level languages. This allows them to think in terms of equations 
and mathematics, as opposed to programming concepts such as distributed objects. 
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Research Challenges: 3 

Software Engineering and Software 
Infrastructure 

Software is now one of the primary drivers in scientifc research, being used at all stages of the process from 
data collection/generation, simulation, analysis, visualization, storage, and sharing. This increasingly im-
portant role means that we as a community must elevate the importance of software engineering and soft-
ware infrastructure management. Here, we do not only refer to the traditional computer science defnitions 
of software engineering, but we also embrace the extensions to deal with the extreme-scale science missions 
of cutting-edge and future DOE projects. Managing massive parallelism, scalable runtime engineering, and 
end-to-end workfow testing/validation, among many others, are all topics of importance for software en-
gineering for DOE experimental, observational, and simulation science that go beyond traditional notions 
of testing and code validation. Scientifc research will be accelerated by establishing best practices, cre-
ating sustainable communities around software, and rewarding the development of widely used software 
infrastructure just as we reward the publication of widely cited and impactful research. 

Some previous e orts in this direction have faltered by focusing on a single, master system that all practi-
tioners were supposed to (but did not) embrace. Instead, we must consider the best ways that the commu-
nity can be served and encourage software reuse where practical without attempting to force such one-size 
fts all generic solutions. Scientifc investigation is inherently diverse in its intent; software must have 
similar fexibility and customizability. Data size and complexity are increasing, as are the expectations of 
data preservation, reproducibility, and sharing of complete results. This means that it is our responsibility 
to establish, nurture and maintain sustainable software infrastructure using the best software engineering 
practices in order to accelerate the pace of discovery. 

3.1 Findings 

Software is playing a critical role in the acquisition, visualization, and processing of data. As such, it an 
essential part of the repertoire of scientifc methods requiring established best practices to ensure high-
quality and reproducibility. Moreover, as the essential facilitator between data and knowledge, software 
must be designed to support rapid customization, producing scientifc tools that are easy to deploy and 
use. 

• The curation and consolidation of software will lead to better scientifc tools, requiring less invest-
ment and resulting in faster development times. Curation also necessitates building e ective dissem-
ination sites, so that prospective users can rapidly fnd and acquire relevant software. 
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• Due to the increasing size and complexity of software, portable, high-performance computing tools 
must be developed to serve the broader research community. These development e orts must also 
consider software accessibility, making sure that these tools are usable in a variety of environments 
including, web, desktop, and HPC systems. In addition, data produced by the scientifc community 
is becoming increasingly diverse and complex. This will require innovation in ways solutions are 
delivered to and shared across the community. 

• Software must be refactored and designed for usability, reuse and customization. Such refactoring 
e orts also produce reproducible, higher quality systems. This approach supports domain-specifc 
tools that are easier to access, use and deploy to specialized communities. 

• In addition to data curation, we must consider software curation to enable both the longevity of data 
management and analysis but also facilitate the on-boarding of students and new research collabora-
tors. 

• Building strong communities supportive of essential software systems helps address the the long-
term sustainability challenge. Communities must mix experts from computer science as well as do-
main experts and users. 

3.2 Performance and Portability 

State of the art 
The state of the art in software performance and portability varies greatly across the experimental and 
observational data case studies. For example, the APS facility (§18) currently does not o er signifcant 
on-site computing or software resources. As a result, most software development is siloed into individual 
user’s research groups, and the resulting software targets whatever local hardware is available, including 
local desktop-class machines. In contrast, the EMSL facility (§11) maintains its own software and HPC 
facilities for fully automated sample analysis. In between these extremes are many of the other cases, 
including the climate simulation and analysis (§13), which has pulled together a federated collection of 
tools developed by the larger DOE HPC community. 

The experimental and observation data communities depend on a broad range of analysis software, includ-
ing homegrown one-o solutions, complicated software frameworks such as Root, open-source community 
maintained frameworks such as Python and commercial software such Matlab and IDL. This diversity 
makes it especially challenging to leverage changes in hardware for improved performance while provid-
ing portability across multiple emerging architectures. There has been some attempts such as Numba for 
Python [49] and GPULib for IDL [50] but none of them achieved the wide usage and broad functionality 
needed by the community. The DOE visualization community has been developing VTK-m [51] with the 
aim of achieving performance and portability for many common HPC visualization tasks. Interoperability 
across many of these frameworks is either non-existent or in a very early state, making it currently very 
challenging to develop end-to-end solutions. 

Challenges 
Several of the facilities report exponential increases in the amount of data that future equipment will 
collect. Most case studies report an at least ten-fold increase in data within the next 10 years, and the APS 
(§18) expects their detector collection rate to out strip Moore’s Law. This causes software issues both for 
managing the increased ingress of data, as well as the scaling issues with analyzing and interpreting the 
larger data sets. 

Updating the software infrastructure to keep pace with the exponential data growth will be a challenge, one 
confated by changing computer architectures as speed improvements have almost halted while core counts 
continue to increase. Keeping pace will require adopting new and/or additional computing resources, 
which will bring with them new software challenges. Transitioning from desktop-based serial processing 
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of data, as is still common in many of the use cases, will require both scaling up and scaling out. Scaling 
up is needed in order to make use of increasingly powerful heterogeneous processing environments that 
include accelerators like GPUs or Xeon Phis. Scaling out is needed in order to better make use of the 
parallel (HPC) and distributed (cloud) hardware investments DOE has made or is already planning. These 
changes cannot be made as bespoke, stovepipe-by-stovepipe rewrites to parallelize personal codes if the 
research community is to make full use of the expanding data. 

There is a general need for HPC software to be portable. Some science collaborations, such as DUNE 
(§19), already directly address the need to migrate from dedicated compute resources built and managed 
at the local facility to leveraging shared resources at the DOE Leadership Class Facilities. As such the 
experimental facilities will have far less control over the construction of the hardware and will need to 
adapt the software accordingly. As the computer architecture can vary greatly across DOE facilities and 
between current and future generations, not to mention the variation in resource access for di erent parts 
of the research team, it is a high priority to manage code development so that it is portable and easily 
refactorable for future systems. Additionally, some science projects or facilities, such as scanning probe 
and electron microscopies (§17) and DUNE (§19), specifcally call out the need to leverage di erent types 
of computing ecosystems that vary from traditional HPC systems to cloud computing resources. 

Another challenge facing the experimental and observational data communities stem from the fact that the 
software in use is very diverse and much of it is homegrown using a large variety of frameworks. Much of 
this software is no longer maintained by their original authors—often graduate students who moved on to 
other things. It is unclear who is responsible of porting all of these analysis codes even if portability and 
performance objectives are met in newly developed software frameworks. 

R&D needed 
Many of the challenges facing experimental and observational data are shared with simulation and HPC 
research and development. However, care in evaluation and development of the existing HPC solutions so 
that they can deal with the distinctive features of experimental and observational data is critical. Robust-
ness in the face of varying data quality, management of large vs. small updates, the relative importance 
of I/O, and other factors must be explored to transition existing solutions to broader adoption with com-
munity engagement. For portability, a great deal of progress has been made in designing HPC software 
that can run across many of the computer architectures that are expected to be used for experimental and 
observational data [52, 53, 54]. This existing work can be leveraged either by directly using the software 
or indirectly through software patterns learned from research. This consolidation of research and develop-
ment can be benefcial to all those involved as is demonstrated with climate and simulation analysis (see 
§12.1). 

There is also a deep need to develop processes that facilitate the creation of performant and future-proof 
software from the ground-up. Much of the analysis software targeting experimental and observational data 
is developed by graduate students and post-docs with limited experience in software engineering practices 
as well as a limited view of the long-term viability of the software they are developing. Furthermore, 
the adoption of proper practices and software frameworks is highly dependent on community outreach, 
community development and training. Therefore, holistic practices for sustainable, performant, portable 
and usable software need to be developed. 

3.3 Usability and Accessibility 

We believe usability and accessibility are important topics for enabling discovery from experimental data 
at DOE facilities. Usability, defned here as making software that users from novices to experts can use 
easily to interact with their data, is important because DOE facilities bring in new users at a high rate. 
Unlike DOE’s simulation activities, where experts are trained over a period of years, DOE’s facilities will 
sometimes work with users for a short period, and so the software they o er what must be both easy 
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enough to pick up quickly and powerful enough to do the customized analysis for their data. Accessibility, 
defned here as making data as well as necessary software available where scientists need to use it, is also 
important because DOE facilities have a wide range of users. Science teams may be composed of a variety 
of specialties, some of whom are strongly tied to the facility scientists but others of which may not be. 
All of these users have needs for access to community software for analysis and for tools to allow them to 
discover the community best practices and capabilities. Ideally these tools need to take a layered approach 
where simple uses can be learned quickly, and custom workfows can be automated or adapted to specifc 
research studies. 

State of the art 

• Wide range usability. Some analysts consider Python as highly usable whereas certain science teams 
are used to graphical tools for analysis. 

• Web interfaces and dashboards o er accessibility, depending on the nature of the security restrictions 
that are applied to the network. Some web-based tools are considered to be highly usable, while 
others have a reputation for being diÿcult to navigate and use. 

• Adoption of many advanced algorithms (machine learning, image segmentation and registration etc.) 
into usable forms is currently poor. 

• Accessibility of software is often limited to core science teams and sometimes only while on site (see 
§18 and §14). Communities that are not closely associated with the experiments develop their own 
infrastructure for analysis. 

Challenges 

• High-performance and usable software has been a challenge to achieve. The need to provide opti-
mizations for high performance have a natural tendency to make the software specialized towards 
a particular, advanced community of users. Even if the code has the ability to cover many di erent 
scenarios with high performance, the parameters that a user must set to achieve that performance 
require a substantial additional investment of time, severely limiting the usability. 

• Software specialized for experiments are often hard to fnd and learn. Since the analysis and data 
management software frequently has optimizations for science-specifc or even particular instrument-
specifc requirements (the speed of data acquisition, specialized denoising, etc.), it is not uncommon 
that a user must locate a particular expert and his or her favorite analytics packages in order to get 
optimal use of the data. 

• Accessibility also includes elements such as licensing, the right to reuse, extend, and share improvements— 
particularly for more commodity instruments. 

R&D needed There is a need to better investigate the concerns and day-to-day usage patterns of a range 
of user types, from novices to domain specialists to instrument scientists. Quantifcation of the usability 
and accessibility of software is necessary for evaluation, diagnostic purposes, and constraints to future 
development processes. This necessarily requires developing metrics which capture the users’ computing 
experience. Moreover the metrics must vary depending on the relative experience of the user (e.g., novice 
vs. expert). 

Recommendations and best practices must take into account multiple levels of accessibility from basic ac-
cess to software, through to the rights/access to reuse, extend, and share improved versions of the software. 
Software reuse can only be optimally achieved through the use of permissive open source licenses that en-
courage reuse, providing permission to share improvements and extensions. Ideally, this will facilitate the 
extension of software infrastructure beyond single institutions, promoting shared infrastructure through 
greater accessibility. 
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3.4 Building Software Stakeholders: Adoption, Refactoring, Reuse, and 
Community Resources 

State of the art 
Many software packages for the capture, analysis, visualization, and archiving of experimental and obser-
vational data end up being highly customized to the specifc instrument and a specifc investigator. Some 
of this is due to vendor proprietary software and formats used for the capture of the information, but much 
of it has to do with the ad-hoc nature of the creation of the software environment. There are some com-
munities which have developed core packages, such as ROOT for high energy physics, but that is unusual. 
Many facilities and investigators have built their own environments to satisfy immediate needs for their 
science, but lacked the time, money or expertise to capitalize on those investments to share the results of 
their personal investment more broadly. This serves as a very high barrier for new users, or those who seek 
to develop new experimental capabilities at existing facilities. In addition to the previously discussed is-
sues around the usability, portability, and performance of software, there is also a need to develop specifc 
capabilities for developing and managing the community’s engagement with a shared software environ-
ment. Much of that is currently done through human-driven processes (regular teleconferences, special 
conference sessions or birds-of-a-feather sessions on particular tools), but community support for tools to 
aid these processes is relatively underdeveloped currently. 

Challenges 
The highly varied nature of each experimental apparatus or line of investigation makes it very diÿcult to 
consider a single unifed system (workfow, visualization, or otherwise) which might address all concerns, 
even within a relatively tight experimental community. Previous experiences with unifed software envi-
ronments have left experimentalists with software that was diÿcult to confgure to the specifc needs for 
their investigation. There is a desire for libraries and languages that can be easily manipulated or included 
by the investigator, rather than full environments. Conversely, engaging the experimental community 
from the computer science side can be diÿcult, as it can be diÿcult to come to a common terminology. 
The line between an individual investigator’s needs, community requirements, and fundamental computer 
science R&D can be diÿcult to construct without specifc investments to enable that exploration. Because 
simulation-driven data requirements are frequently easier to translate into a computer science framework, 
many of the tools and developments have been aimed at dealing with data management and analysis from 
those sorts of sources, rather than experimental and observational ones. 

Experimentalists have become accustomed to stringing together multiple tools in order to accomplish their 
goals, and this leads to workfows that are error prone and complex. Funding has often focused on ac-
quiring new experimental equipment with software often being an afterthought or left to the equipment 
vendors. The size and complexity of their data analysis is increasing, and these ad-hoc solutions are failing 
to scale. Furthermore, as reproducibility, data sharing, and peer review are increasingly important soft-
ware tools are needed that provide facilities to save and share analysis pipelines that aid in replication, 
collaborative analysis, and wider sharing and publication of these artifacts. 

R&D needed 
Some research and development topics are as follows: 

• Science-driven or software engineering approaches for refactoring existing solutions to be more widely 
usable. 

• Community development infrastructure and support that enables experimental and observational 
scientists to meet, codesign solutions with computer science researchers, and e ectively disseminate 
expertise throughout the community. 

• Support e ective methods for community outreach and engagement with other initiatives to ensure 
timely exposure and adoption of new technologies and best practices. 
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• Development of shared, scalable base-language capabilities (like SciPy does for uniprocessor analysis) 
with advanced features. 

• Tools and environments to bridge new users into the data analysis, visualization, and management 
expectations of the facility. 

• Development of data formats using best practices, with open specifcations, and support from equip-
ment vendors/translation capabilities from proprietary formats. 

3.5 Sustainability 

Challenges related to the development, deployment, and maintenance of reusable software for science are 
becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability 
of software upon which their works are built [55]. In particular, software quality requires formal software 
processes that ensure reproducibility and address concerns of verifcation and validation. Planning for 
software sustainability from the beginning will be particularly important if DOE plans to invest signifcant 
resources to the development of a software infrastructure for experimental and observational data man-
agement and analysis. Software sustainability will also be important to support data curation. Some of the 
data sets generated by the DOE community are expected to have a very long lifespan (more than years). 
Since this data is becoming larger and more complex and will require sophisticated software tools to make 
sense of it, it will be expected that such software has at least a comparable lifespan. “Packages will never 
see their full potential without user outreach, written guides, and worked-through examples/tutorials. As 
soon as maintenance and development of a package ceases, rigor mortis will soon set in” (see §18). 

State of the art 
The state of software sustainability varies widely based on the science domain, nature of the software 
and the particular experiment. For example, software for the management of data and workfows at the 
facilities is usually maintained and sometimes developed by the facilities. This type of software is usually 
maintained and improved over longer periods. On the other hand, in several scientifc domains, software 
for data analysis is the responsibility of individual experiments or data analysis teams, usually consisting of 
small groups of scientists. These groups commonly use o -the-shelf open-source and commercial software 
components to put together an analysis infrastructure and this infrastructure has a limited lifespan, often 
that of the experiment itself. Additionally, while modern software processes have been adopted by some 
systems, in general there is large variation in their adoption and practice across the DOE. 

Challenges 
There are several major challenges to achieving the sustainability for data analysis software targeted at 
EOS: 

• Science teams have a mission to do research not to maintain software long term. Funding cycles and 
the science mission for teams that produce a particular data set are usually shorter than the lifespan 
of the data set itself. This often means that maintenance of the software required for the analysis of 
the data ends before the data stops being useful. 

• Teams are focused on their own science mission and coordination needed to create larger communities 
around software is hard for them. The challenges here include staÿng and funding. Science teams 
are often overwhelmed by the need to prepare and run their experiment and do not have spare cycles 
for additional work that can make software sustainable. 

• It is challenging to go to the next steps needed for sustainability which includes: documentation, 
testing, bug tracking, triage, maintaining message boards, outreach, etc. The software and hardware 
infrastructure required for these is often available but not necessarily easily confgured and main-
tained by the science teams. 
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• Teams often lack expertise in advanced programming models, software engineering practices, devel-
opment of portable solutions that can scale. The diversity of teams must be improved, establishing 
career tracks that encourage software engineers and domain specialists to work closely on scientifc 
software, engaging with vendors or computer scientists in order to take advantage of new approaches, 
architectures, cloud and HPC resources. 

• Additional time is required to generalize and harden solutions so that they can be reused, or to opti-
mize their implementation for a number of use cases and/or hardware architectures. In addition it is 
diÿcult to obtain the funding for maintenance, refactoring, and/or modernization of software. 

R&D needed 

• Identify success stories for software sustainability. Both self-sustaining and externally guided/funded. 
There are various models for successful software sustainability. These need to be identifed and stud-
ied by the science teams and software engineering experts to build a portfolio of templates that can 
be applied to DOE needs. One size does not ft all here. 

• Develop and/or make available software infrastructure to help with processes necessary for sustain-
ability. Documentation, testing, bug tracking, community message boards etc. Making it easy to 
establish processes that help community building and quality management are essential in software 
sustainability. These processes lower the barrier to contribute to the development and maintenance 
of software, helping the creation of self-sustaining software communities. 

• Develop metrics to diagnose and evaluate the health of software systems, with particular emphasis 
on identifying systemic defciencies a ecting the long-term sustainability of the software. 

• Design scalable software processes that grow in sophistication as the size, complexity, and perceived 
value of software increases. The goal is to provide simple, easy-to-implement processes for smaller 
projects, which can be naturally extended as the user community and software system grows. 

• Provide training and outreach on ways to build sustaining communities. It will be up to research 
teams that are building on existing software infrastructure to provide specialized data management 
and analysis capabilities to build in sustainability enabling processes from the beginning of the 
project. Initially, encouraging teams to opt-in to such processes and later providing training will 
be key to success. 

• Develop processes to integrate software sustainability practices to new and emerging projects. In 
addition to community-based e orts towards software sustainability, it is important to encourage 
these practices when setting up new projects through programmatic processes. This may be similar 
to the way the National Science Foundation requires data plans in their projects for example. 
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Research Challenges: 4 

Visual Data Exploration and Analysis 

In this chapter, we provide a summary of the discussions surrounding the topics of visual data exploration 
and analysis (VDA). Algorithms, methods and tools in this domain have been reliably developed for suc-
cessive generations of HPC platforms, so there is a strong foundation on which to build solutions for EOS 
needs. We note, however that as our case studies point out, each domain has specifc challenges across its 
data workfows. Thus, successful VDA methods for EOS require both foundational and domain-specifc 
R&D. 

VDA is broadly used in two modes: interactive VDA, in which a scientist is actively querying, analyzing 
and visualizing data; and non-interactive VDA, in which computing is relied upon to drive data operations 
and create data products. We note that these modes have di erent thresholds for performance, latency 
and response, so both modes will require investment for EOS. A scientist sitting at a computer, waiting for 
query results or the rendering of a visualization, has a much smaller tolerance for delay than a computer 
running in batch mode. This human-in-the-loop interactivity, critical to enabling scientists to explore their 
data, will continue to challenge data workfows designed in ways that non-interactive VDA will not. 

Finally, we note that a particular challenge for EOD VDA is the combination of experimental and observa-
tional data with simulated data in large ensembles of results. Each type of data has unique requirements, 
but combining and exploring them in concert—as a data ensemble for a specifc domain—is a challenge 
unto itself. 

4.1 Findings 

• The design of visualization and analysis interactions, algorithms and methods with a human in the 
loop is a key element of successful scientifc discovery. 

• The integrated data exploration of experimental and simulation results present a new area of R&D, 
and it is critical to create novel algorithms, tools and methods to address this. 

• The lack of domain-specifc scalable visualization and analysis is a roadblock to science. 

4.2 Scalability of Visualization and Analysis via Parallelism 

Developing visualization and analysis approaches that scale with the size of available computing systems 
relies on solving two problems: decomposing existing serial algorithms into parallel tasks and mapping 
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that decomposition onto emerging architectures. Representatives from all three programs—BES, HEP, and 
BER—expressed the need to solve both problems. 

State of the art 
For example, Fermilab’s ROOT data analysis framework [56] began in 1996 and still consists of several 
serial legacy algorithms that need to be redesigned to take advantage of shared- and distributed-memory 
computing resources. The Atmospheric Radiation Measurement (ARM) climate research facility processes 
data streams in serial mode and adds value to them to derive new data [57]. Synchrotron light sources 
likewise need to apply machine learning algorithms such as segmentation to images captured at beamlines. 
Early research in parallel segmentation for X-ray imaging has begun,1 but it is applied to only one beamline 
out of over 100 at BES light source facilities. To date, no publicly available large-scale image processing 
capability exists. 

Such algorithms must also be developed with an awareness of the machines on which they will run so that 
they can take advantage of emerging hardware such as many-core CPUs, GPUs, and nonvolatile memory 
(NVM). Otherwise, extreme-scale architectural characteristics such as high concurrency and heterogeneity 
will not improve performance, but will simply complicate the usability and portability. Few successful ex-
amples exist using architectural awareness to improve performance. Halo fnding in cosmological data has 
been ported to GPUs on Oak Ridge’s Titan machine [58]. Ptychographic reconstruction is now accelerated 
for several beamlines at the APS [59, 60, 61]. In the ACME project, several algorithms are in the process of 
being accelerated using GPUs [62]. These are individual success stories, but the majority of data-intensive 
codes used by experimental and observational facilities, while portable, are not designed or tuned to take 
advantage of the specifc characteristics of emerging hardware. 

Challenges 
Developing scalable algorithms for processing experimental and observational data on emerging architec-
tures presents several research challenges. 

• Data dependencies. Parallel algorithms are limited by sections of the algorithm that must be serial-
ized because of data dependencies. That is to say, not everything fts into a MapReduce [63] model 
where mappers and reducers are easy to identify. Particularly diÿcult to parallelize are algorithms 
whose data dependencies vary over time, and thus are not truly data parallel. Task-based fne-grain 
programming models [52] are one approach that shows promise, but for the most part, these pro-
gramming models are still in their infancy and have not been tested on observational or experimental 
data-intensive tasks. 

• Communication. Not all data analysis tasks are embarrassingly parallel. In fact, most require inter-
process communication. While much work exists to develop design patterns for communication in 
analyzing simulation data [64], most of those patterns assume that, while not local to a processor, all 
data are available somewhere in the system simultaneously. 

• Mapping a problem decomposition to heterogeneous hardware. Today, the problem decomposition and 
resource assignment steps in a parallel algorithm are statically defned when the algorithm is writ-
ten. In general, the mapping is not dynamic or portable across di erent hardware confgurations 
consisting of accelerators such as GPUs or Xeon Phi coprocessors. Libraries that abstract several dif-
ferent back-end devices from the programmer [54] can help, but again, they have not been tested in a 
streaming context. 

• Reducing data movement. The high cost of data movement and the nearly constant I/O bandwidth 
projected for the next several generations of HPC hardware dictate that more visualization and anal-
ysis tasks be performed in situ. However, the computing resources collocated with an experimental 
apparatus may not be on the scale of supercomputers. How to compute or reduce data in situ us-

1Unpublished research at the Lawrence Berkeley National Laboratory’s Computational Research and the Advanced Light Source 
divisions by O’Neil, Morozov, and Parkinson. 
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ing limited resources needs to be redefned, requiring new algorithms that operate in parallel but 
out-of-core [65]. Approximate algorithms may also be needed. 

R&D needed 
The above challenges can be met with a targeted investment in research and development of parallel al-
gorithm development specifcally for experimental and observational data. The following R&D e orts are 
needed. 

• Applying parallel programming design patterns (out of core, task-based) to streaming data. 

• Developing approximate (e.g., linear, sublinear sampling) parallel algorithms for high-volume, high-
velocity, observational data that can have noise or measurement errors. 

• Exploiting while abstracting hardware heterogeneity in parallel algorithms for computation and com-
munication, and applying accelerated algorithms at a larger scale. 

4.3 Data Ensembles and Uncertainty 

A typical workfow data set for many use cases in this document contains data from instruments as well as 
data from simulations. Typically these include multiple runs of both types of data, and we call the collec-
tion of these data an ensemble. Ensembles of data require di erent algorithms, tools, and user interactions 
than a single run or experiment, and we note that as workfows become more complex, ensembles become 
the norm, instead of the exception. Closely linked with ensemble analysis is data uncertainty and vari-
ability, as workfows expand to include data about uncertainty which must be propagated throughout the 
entire workfow. Our workfows, algorithms and tools must be extended to work on collections of data sets 
that will include heterogeneous data, diverse spatio-temporal scales, sparse and missing data, and high 
dimensional data. 

State of the art 
The ALS case study (§14) notes that many “tools focus on single data sets of low dimension, so these data 
ensembles and high-dimensional data provide a particular challenge. New visualization methods must use 
novel visual encoding, interactive tools for dealing with higher dimensional data, and automatic algorithms 
to identify salient variables across ensembles or for dimension reduction with real-time feedback.” Thus, 
ensembles and uncertainty are already part of these workfows, but current tools are not able to do the 
job today. The Open Numerical Laboratories (ONL) case study (§20) states that in order to perform UQ, 
tools and algorithms are needed to perform ensemble access to a potentially large number of simulations. In 
this mode, operations (such as averaging and comparison) can be performed on data from simulations with 
identical physics but di erent conditions or underlying components (such as random number generation 
methods). 

In order to promote the integration of uncertainty in our workfows, we note the following science drivers. 

• Synthetic diagnostics: fring sensors into simulation data to compare with experimental data; 

• Techniques for data assimilation; 

• Uncertainty visualization: understanding uncertainty—through mathematical modeling as well as 
through the visualization of the uncertainty—is a research area in its own right; 

• Visualizing and analyzing variability: closely related to uncertainty, this concept refects the amount 
of variation in a collection of data; and 

• As part of understanding ensembles, tools and workfows must support the exploration of large pa-
rameter spaces that defne the simulations, instruments, and other factors impacting the science. 

Challenges 
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• Visual comparison: tools must span the spatial and temporal resolutions between data from exper-
iments, sensors and computational models, and deal with representing data of di erent spatial and 
temporal scales. Along with this comes the challenge of how to e ectively analyze and visualize the 
two in combination. 

• Visualization of ensembles of data, combining tightly integrated e orts in data management, access 
and visualization. 

• All facilities are collecting complex sets of data from both experiments and simulations. Making data 
curation, access, and analysis a seamless process from collection to analysis is critical to all science 
areas. It is important to note that ensembles and uncertainty impact the entire workfow, as critical 
data must be propagated through the system and algorithms, capabilities and tools must all promote 
interaction with these uncertain sets of data. 

• The BER ACME project frequently runs ensembles with “varying initial conditions, or internal model 
parameters to explore model internal variability, sensitivity to initial conditions, sensitivity of model 
response to process or parameter variations.” These are “a class of uncertainty quantifcation for 
simulations of days to decades,” and are critical to understanding the behavior of the complex climate 
system (see §12.1.3). 

R&D needed 
We note that ensemble analysis must be a tightly integrated e ort between the disciplines of data work-
fow, data management and visualization. This should include research in human-computer interactions, 
human-data interactions, UQ, high-dimensional data visualization and analysis. Research topics areas in-
clude: 

• Visual representations of di erent scales and dimensions (in both space and time) in a useful and 
intuitive way. 

• Multi-disciplinary teams to create the tools which combine statisticians, mathematicians, large-scale 
software experts and domain scientists. 

• Eÿcient methods to impact simulations with a data feedback loop. Methods for in situ as well as 
batch execution are needed. 

• For the BER ACME project, current strategies for managing (accessing, processing, and tracking) the 
large number of simulations (including ensembles of simulations used in UQ) are awkward, requiring 
a combination of manual intervention, to stratify di erent classes of simulations, and automated tools 
to track and analyze the consequences of systematic variations in parameter settings. 

4.4 Data Reduction Algorithms Via Data Scalability 

Data scalability encompasses data reduction, reconstruction, and compression of experimental measure-
ments. All of the programs have acknowledged needs within this area. For instance, neutron scattering 
events may be summed into multiple pixels. X-ray science’s data relies on tomographic reconstruction, and 
atmospheric radiation data streams need to be compressed until the raw data can be processed. 

State of the art 
The current state of the art includes tools developed by individual scientists through laboratory-supported 
tools [66] to tools supported within the community such as Pandora and Wire Cell for Liquid Argon (LAr) 
Detectors (DUNE LArTPC), and Bellerophon Environment for Analysis of Materials (BEAM), SPOT Suite, 
from the ALS. These tools may be used for all aspects of the data analysis process not just during the initial 
acquisitions phase. 
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Challenges 
Developing algorithms for reducing, reconstructing, and compressing experimental measurements for new 
architectures presents several research challenges. 

For instance, within the APS experimental data reduction is usually done either on beamline workstations 
or on a central cluster with nodes confgured for and dedicated to specifc APS beamlines, thus ensuring 
that hardware is always available on demand. Moving the computations to leadership class machines is 
problematic because of the latency as beamlines require computational resources within minutes or seconds 
and cannot abide with the queues employed on such machines. 

Another challenge facing several programs is keeping data events as long as possible and only switching to 
reductions when needed (HEP and BER). This requires data compression, instead of reduction. 

R&D needed 
The above challenges, like other data intensive applications, would beneft from an increase in parallelism. 
This is especially true of those that make use of tomographic reconstruction which could utilize GPU tech-
nology. Specifc areas would include: 

• The application of GPU technology to the data acquisition and reconstruction stage. 

• The development of scheduling algorithms for large HPC machines that allow for burst usage of 
streaming experimental data. 

• The application of parallel algorithms to streaming experimental data. 

• The research into techniques for variable binning and feature-based reduction. 

4.5 Visualization and Exploration of High Dimensional Data 

Many scientifc applications routinely produce data sets that contain a large number of variables. Together 
with the spatial location and time associated with each data point, the total number of dimensions for a data 
set can be very high. This creates a great challenge to scientifc data understanding because not only the size 
of data increases linearly, the complexity of data often grows exponentially as the number of dimensions 
increase. Furthermore, since our ability in spatial reasoning is limited to three-dimensions or even lower, 
visualizing high-dimensional data cannot be done easily. To address this issue, dimensionality reduction 
techniques are often used. However, for a specifc feature of interest in a data set, the correlations between 
the variables, and the interplay between those variables’ space and time properties are very complex, often 
unknown to the scientists. As a result, the e ective understanding of high-dimensional scientifc data sets 
remains to be an unsolved problem. 

State of the art 
There are a number of visualization techniques for high dimensional data, and these break into three main 
categories. There are views and plots, such as parallel coordinate plots [67] and scatter plot matrices. Sec-
ond, there are dimensionality reduction techniques such as multi-dimensional scaling (MDS) and principle 
component analysis (PCA). Third, interfaces have been developed that promote the interaction with mul-
tiple coordinated views of the same data. These include both general tools such as Tableau, which can 
present many views of data, and domain or task-specifc tools such as Prism [68], which is designed for 
task-specifc data. 

Challenges 

• It is diÿcult to extract the factors that contribute to the presence of a certain feature. It is even more 
challenging to understand the causality among the variables that contribute to a feature even if they 
are known. 
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• Because humans can only naturally perceive objects in lower dimensional space, visualization of high-
dimensional data is often done by either visualizing one variable at a time, or juxtaposing multiple 
visualizations side by side. 

• Encoding multiple variables in a picture through di erent encoding channels, mixing and matching 
the variables are mostly done through trial-and-error or based on prior knowledge. 

R&D needed 

• Develop novel visual encoding schemes for high-dimensional data so that a large number variables 
can be clearly visualized in one or a few images. 

• There is also a need to develop interactive tools for exploring high-dimensional data space. To avoid 
trial and error and maximize the eÿciency for data selection, automatic algorithms for identifying 
salient variables and values, and the relationship between them are very much needed. 

• Design and develop interactive tools for dimensionality reduction with real-time feedback to the user 
so that an informed decision in the reduction can be made. 

4.6 Interactive Data Exploration 

For EOS, interactive data exploration will be of critical importance, focusing on the ways in which comput-
ing can impact and improve the way we interact with the complex data that result from experiments and 
simulations. This includes methods and algorithms for combining multiple data sources, query and search 
of large data collections, and the tools and algorithms needed to analyze them. 

The rate of growth of measured data from powerful instruments and simulations is growing at a staggering 
rate, placing us in a world inundated with data, but oftentimes short on information and insight. 

State of the art 
Interactive visualization and analysis has been a focus of the scientifc visualization and analysis commu-
nity from its inception, resulting in a number of successful and widely adopted tools (e.g., ParaView, VisIt 
and Ensight) for wrangling with large scientifc data. 

To date, we have relied on interaction mechanisms with computers to dictate how we as humans interact 
with technology, and by default, data. However, this separation between human and data is making it 
diÿcult and time consuming for scientists and researchers to perform timely query and interrogation of 
increasingly larger data sets. A new paradigm, human data interaction, has been introduced by Haddadi, 
Mortier, McAuley and Crowcroft [69] to describe this area of research. The work has thus far been primar-
ily adapted to social sciences and crowd sourcing applications, but we believe the concept of placing the 
human at the center of the scientifc reasoning process has merit and much of the initial work could inform 
R&D in the scientifc analysis community. 

Challenges 

• Due to a variety of system constraints that are expected to continue in the coming decade (I/O 
bottlenecks, memory allocations between simulation and analysis, etc.), there is a critical need for 
“[a]lternate strategies for analysis, including use of in-situ diagnostics and strategies for data com-
pression” (§12.2). In Situ analysis is rapidly becoming a critical part of our analysis tool set, but novel 
strategies that address domain-specifc opportunities for compression and optimized analysis are still 
a challenge. 

• In particular, the BER ACME project notes that “[c]urrent strategies for managing ... the large number 
of simulations (including ensembles of simulations used in UQ) ... require ‘manual intervention’ [as 
well as] the use of automated tools” (§12.2). 
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• The BER ACME project notes that “data distribution is a bottleneck to climate science today that 
signifcantly impedes scientifc progress” (§12.2). The ARM facility warns that “perhaps [approxi-
mately] 90% of data will soon fall into the category of only accessible for small case studies by ex-
perts” (§13.1.1). Thus, access to data access by collaborators across complex workfows is a high pri-
ority challenge. Integrated tools and interaction paradigms that simplify data access and distribution 
will impact all areas of science. 

• Workfows may consist of many complex instruments, and their sheer complexity and problems, 
with increasing access to the scientists, is a diÿcult task. As noted by the ARM facility, these “are 
challenging to operate and produce large and complex data streams. Thus, many of these data streams 
remain unmined resources, and are quickly becoming the largest fraction of [the] data by volume” 
(§13.1.1). 

• Better methods for integrating observational model data through improved retrievals and instrument 
simulations. 

R&D needed 
E ective VDA for EOD will require centering the design of interactions and methods with the human in 
the loop. While it is tempting to think about using similar interaction metaphors as those used in human 
computer interaction, a cursory examination reveals that in practice the metaphors will need to be exam-
ined closely and carefully thought out. In fact, the human (interaction, interrogation, query, reasoning) is 
placed at the center of the feedback loop and in between data and technology, requiring us to rethink our 
traditional visualization pipeline and feedback mechanism. 

VDA for EOD includes the combination of data (from many sources) and the algorithms to analyze them. 
This will necessarily require the visualization community to re-examine how these sources are intercon-
nected and perhaps adopt a more plug-in infrastructure for new and emerging data sources. With the hu-
man at the center of the reasoning and feedback loop, we must examine how interactivity can be achieved 
and scaled as the scale of the computing infrastructure scales and as the number of data sources scales. 
We have traditionally thought of reasoning loops having a single source of data that is consumed and then 
analyzed. However, we are seeing an increasing number of problems that require multiple heterogeneous 
data sources analytics support. 

With that in mind, we have identifed the following areas of R&D: 

• New metaphors for interacting with data, 

• Virtual experiments, 

• Remote steering and operations of experiments, 

• Query of the data and features within the data, 

• Visualization linked to analysis and provenance, 

• The co-design of sampling, compression and analysis pipelines for specifc domains, and 

• A task-driven development of data workfows that preserve scientifc data and increase interactivity 
and collaboration. 
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Research Challenges: 5 

Operating Systems, Runtime, and 
Architecture 

In this chapter, we provide a summary of the discussions surrounding the topics of system software and 
HPC architecture. Today’s system software stack was designed for supporting an environment in which su-
percomputer centers were largely cycle shops used by small numbers of highly specialized scientists. More-
over, HPC architecture is transitioning from an era in which performance improvements were achieved by 
simple frequency scaling to a much more complex environment. We have identifed four broad categories of 
challenges: First, the infux of big data analytics requirements implies fundamental di erences in the usage 
model from an all-in-one cycle shop to a geographically distributed large-scale virtual computing center 
spanning multiple systems. Second, there is an emerging need for time sensitive computing. Third, EOS 
projects now require an expanded role of supercomputers. Fourth, the rapidly evolving HPC architectural 
landscape is bringing about notable changes. 

Below we summarize our workshop fndings, discuss the four contributing factors in more detail with an 
emphasis on the challenges they present, and provide our view of needed research and development. 

5.1 Findings 

The following points summarize the fndings for operating systems, runtime and architecture research 
challenges surrounding EOS projects. 

• The HPC ecosystem has become distinct from that found on more pervasive systems. HPC lacks 
adequate programming languages and programming environments to accommodate the needs of EOS 
scientists in a straightforward manner. 

• Multi-system and multi-step workfows to accomplish big data analytics is not supported well by 
current system software stacks. For instance, the abstraction mechanisms available to EOS scientists 
to refect their multi-system requirements are insuÿcient. This results in inadequate specifcations 
between EOS scientists, workfow tools, and ultimately the system software. Moreover, workfows 
do not adequately incorporate emerging needs such as managing energy consumed or dynamically 
managing tradeo s for energy and resilience. 

• Today’s batch-oriented framework is too infexible to support ad hoc requests by EOS researchers; fur-
thermore, the single-center scope of much of the software limits big data workfows. EOS researchers 
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require the ability to augment special allocations such as high energy beam time with computed re-
sults that optimize experimental setups, but such usages are very sensitive to turnaround times of 
compute resources. 

• Expanded supercomputer usage to buttress EOS projects is resulting in signifcant system software 
hurdles to eÿciently employing HPC in support of DOE user facilities, particularly for novice users 
which are an important part of each community. 

• HPC architectural changes have placed important new considerations on software. Recent shifts to-
wards reduced memory capacity have far-reaching implications for applications, and emerging tech-
nologies will likely provide further shifts in recommended software approaches. 

5.2 Making HPC Programming Languages and Programming Environ-
ments More Accessible 

State of the Art 
HPC environments place special requirements on programming languages and programming environ-
ments. For instance, the large processor counts found in leadership class machines compel certain char-
acteristics in a programming language as well as a programming environment. Similar constraints arise 
from HPC’s special needs in power eÿciency and support for specialized hardware. As a result, the HPC 
ecosystem has become distinct from that found on more pervasive systems. 

High-level languages and interactive tools with a user-productivity focus (e.g., Python, MatLab, UV-CDAT, 
Horace, Dave-Mslice and so forth) are commonly used by EOS researchers on workstations and depart-
mental systems (see §12, §15, §16, §18). These languages and tools are used for rapid prototyping and 
interactive analysis; there is a desire to utilize them, only with scaled up data, on HPC platforms. How-
ever, most of these tools and languages have inherent design characteristics that prevent the high degree of 
scalability required for eÿciently mapping to HPC platforms (e.g., they may be single-threaded or make 
extensive use of dynamic libraries). As a result, there is a productivity gap for HPC. The following quote 
taken from Section 18 describes the situation: 

Many scientists are very comfortable translating their data analysis concepts to com-
puter code, but are most comfortable and productive doing so in an interpreted lan-
guage environment like Python, Matlab or R, but not in Java or C++. At present, 
signifcant e ort from HPC experts is needed to adapt such codes to make e ective 
use of even the multi-core processors found. 

The desire, therefore, is to do rapid prototyping and interactive analysis on expressive languages and tools, 
but at scale. There has been work (although limited) to address this. 

One approach currently being pursued is the general-purpose language updated for HPC. An example is 
the Lua or Terra programming environment which o ers some of expressiveness of python, but without 
the baggage (the only external dependencies are a C compiler and 10,000 lines of code). This approach lets 
you do direct compiled code calls (which permits the performance of natively compiled and link directly 
to programming models like the Message Passing Interface (hereafter, MPI)), yet retains support for many 
of the desirable features of a scripting language [70], [71]. 

Another approach is domain specifc languages (DSL). Examples of DSLs that have gained some traction 
in HPC include Scout (a DSL that targets e ective use of GPUs developed at LANL) and Liszt (a DSL for 
solving partial di erential equations on meshes developed at Stanford) [72], [73]. 
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Challenges 
New languages and tools face a chicken-and-egg problem at their beginning. Without suÿcient support, 
researchers are reluctant to spend the time learning them. However, without suÿcient user-base, new 
products are unlikely to garner the necessary support. 

The languages and tools themselves face signifcant technical hurdles in achieving a technology that maps 
well to the HPC platforms of interest, provide suÿcient expressiveness to be of interest to EOS researchers, 
and yield performance comparable to the best competitive technology. 

Moreover, programming languages and tools touch upon two somewhat separate communities: the EOS 
research community and the HPC facilities community. Any successful approach must be mindful of both 
communities. 

R&D needed 

• Signifcant work is needed to bridge the gap between the expressiveness and ease-of-use of rapidly 
developing languages and tools, and the available languages and tools that map to the exascale sys-
tems. 

• Methodologies to orchestrate computation across many di erent platforms (methodologies that allow 
optimal execution of workfows across di erent facilities and resources) are needed. 

• Programming environments that integrate traditional analysis with simulation within the same en-
vironment are desired. Of particular interest would be language abstractions that allow just-in-time 
compilation for performance portability across facilities (if the job is ran at NERSC, do it one way, if 
on a di erent type of machine at the OLCF, refactor as needed there). 

5.3 Enabling Resource Discovery, Marshaling, and Provisioning within 
Computing Centers 

Spurred by the increased storage capacities and new policies which require that government sponsored 
research be made openly available, data re-use and curation for future uses is undergoing a dramatic shift. 
The resulting data-centric focus is leading to increased interest in big data analytics as noted by the Envi-
ronmental Molecular Sciences Laboratory, Advanced Light Source studies, and Scanning Probe and Elec-
tron Microscopies (see §11, §14, §17). 

Unfortunately, today’s system software stack for supercomputers lacks the ability to automatically manage, 
schedule, and provision resources at di erent (tunable) levels of granularity. We would beneft from a 
metaphor or abstraction to convey our requirements, and ideally the new abstraction would be suÿciently 
expressive to convey all aspects for any range of systems or steps (i.e., any range of automation): we will 
refer to this idea as “automation via abstraction.” This automation via abstraction is being driven by the 
needs of the domain scientists to achieve their end scientifc result without being bogged down by the 
gymnastics of computer science to get there. Di erent aspects of the automation of importance to the 
domain scientists include scheduling and provisioning, data movement, workfow, and visualization. (From 
a computer science perspective, while the focus of automation via abstraction would be to deliver ease of 
use and performance automatically, this space would also enable the opportunity for computer scientists 
to automate and optimize along other dimensions of interest to DOE facilities, e.g., storage capacity, power, 
and energy consumption.) 

As the landscape of HPC architecture adapts to new factors like power, energy and resilience, disruptive 
technologies are over turning our conventional notions for HPC software design [74]. Moreover, the goals, 
quantity, sizes, time scales, and diversity of workfows and respective software stacks make the description 
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of hardware and software requirements challenging. Many of the workfows appear to share common 
templates, but the parameters for resource requirements vary over several orders of magnitude. 

State of the art 
The relevant software systems are independent of each other and do not coordinate well. For example, 
domain scientists often write scripts to “glue together” di erent software (as part of an ad hoc workfow) or 
have to rewrite their code to take advantage of emerging technologies, e.g., GPU, burst bu ers, etc. 

Although the community has various tools and capabilities for performance modeling of software, these 
capabilities have not been applied widely to scientifc workfows for experimental data presented at the 
workshop. Many of scientifc facilities have models of their workfows, but these models have di erent 
representations and levels of detail. 

Challenges 
The automation of any one of the following dimensions–scheduling and provisioning, data movement, 
workfows, or visualization–would be a monumental task. Doing so at varying levels of granularity only 
compounds the problem. The goal is to develop programming abstractions and runtime systems that can 
enable data discovery and data sharing between components of end-to-end workfows that integrate ob-
servations and simulations. The EOS community needs to help identify the appropriate abstraction inter-
faces. 

The community needs to identify a common representation for modeling and profling these workfows. 

R&D needed 

• Research is needed to develop system software abstractions, interfaces and mechanisms capable of 
supporting the advanced requirements stemming from big data analytics. In addition to the ab-
stractions and interfaces, new enforcement mechanisms in system software may prove to be very 
benefcial. 

• Research is needed to identify or create a common modeling representation that is capable of covering 
the majority of science use cases. 

• The community will also need to create models of these workfows by investigating and profling the 
existing workfows. 

5.4 Time Sensitive Computing 

We defne time sensitive computing as the ability to obtain a specifc type of resource through on-demand 
execution or through guarantees that a computation will fnish by a certain deadline. This is driven by the 
desire to exercise critical experiment parameters during an infexible access window in scenarios where 
computation is used to support an ongoing experiment, or when it is used to run a computational exper-
iment’, or fnally when computation is used in evacuation and planning scenarios (see “Rise of the robot 
astronomers,” “Real-time detection and rapid multi-wavelength follow-up observations of a highly sub-
luminous type ii-p supernova from the Palomar transient factory survey” [75, 76] and §12, §13, §20). 
The requirement for time-sensitive computation may require HPC resources or may rely on non-compute 
resources such as I/O bandwidth. The time-sensitive computation may represent either analysis or simu-
lation (as, for instance, in the “digital twin” and “computational experiment” examples). Note that time-
sensitive computation may represent the need for an end-to-end integrated system that allows scientists 
to, for example, get weather data from instruments (and negotiate with those instruments), then analyze it, 
then transfer to Network Weather Service (NWS) within a certain deadline (§13). This implies the need for 
resource management methods including (a) preemption of a large parallel job in a “clean” way; (b) devel-
oping techniques for by deadline execution, i.e., true real-time execution, by improving predictability and 
modeling; and (c) focusing on response time when scheduling (e.g., such response time may be obtained 
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by targeting a result with lower accuracy or resolution). Finally, providing a controlled response time may 
involve the coordination of multiple resources including not just compute, but also storage facilities and 
potentially wide-area networks. 

State of the art 
Most scientifc HPC data centers adopt a batch-scheduling model where a job can linger in the queue for 
an indeterminate period of time. Outside of small clusters dedicated to experiment support time sensitive 
computing is not available on DOE facilities. 

Challenges 
Existing schedulers and resource managers need to be extended to combine time-sensitive and batch schedul-
ing modes in ways that both support the time-sensitive constraints and provide good utilization. Incentives 
need to be developed to support such extensions. 

R&D needed 

• Develop the ability to provide a true deadline capability in system software and interfaces. 

• Develop improved supporting ability to coordinate storage facilities and potentially wide-area net-
works. 

• Develop the ability to incorporate more sophisticated scheduling decisions based on extensible factors 
(e.g., power consumption, resource usage, and multi-step optimization). 

5.5 Minimizing Barriers to EOS Use of Evolving Architectures 

All science disciplines are experiencing rapid changes in the methods, machines, and infrastructure used 
for experiments. The multiple case studies detailed in the latter portion of this report give ample doc-
umentation of how leading scientifc instruments and facilities are becoming more complex and more 
specialized. As leading-edge machines used for experiments become more complex and more costly, the 
competition for access heightens and the pressure to make the most of a given machine allocation becomes 
more intense. In fact, even slight improvements in machine setup and operational methods can have far-
reaching implications for the scientists using the machines. As a result, using supercomputers in concert 
with real-time experiments to improve the e ectiveness of specialized facilities and machines is moving 
from a luxury to a necessity. Moreover, because the nature of research often dictates that graduate stu-
dents or junior researchers are actually the hands-on people during much of the experiment, the use of 
supercomputers must present a shallow learning-curve for maximum e ectiveness. 

Evolving architectures present special diÿculties to EOS projects that rely on legacy software. The need to 
facilitate the adaptation (or porting) of applications to a variety of platforms can result in the costly need 
to re-write software. 

Several science case studies have identifed the need to plan for and use emerging technologies in their 
workfows such as object-based storage, NVM burst bu ers, and heterogeneous computing. These tech-
nologies could provide critical performance improvements in EOS scenarios, but they must be balanced 
against the costs of software development and other needs for the use case. 

State of the art 
Relevant libraries and software packages are specialized and some even proprietary. At the present time, 
these libraries and software packages cannot be expected to run across the supercomputing platforms of 
interest now and into the future. For example, high energy physics codes use CUDA to program the GPUs 
that massively accelerate their codes. However, CUDA codes only run on NVIDIA GPUs. Other strategies 
to adjust for rapidly changing computer architectures may involve the use of virtualization and containers 
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to run on multiple platforms. However, there still exists the need for a portable declarative language so 
that free code does not have to be rewritten as HPC architectures change. 

Many di erent science cases are investigating the use of emerging technologies (e.g., object-based storage, 
NVM burst bu ers, and heterogeneous computing) that are specifc to their workfow. Currently, however, 
there exists no coordinated e ort to explore and adopt these technologies across the EOS community. 

Challenges 
The EOS community needs to identify opportunities for emerging technologies in their existing workfows 
across science cases, which may be very challenging given the diversity and scale of workfows. 

R&D needed 

• Develop mechanisms that improve the supercomputing support for EOS projects. Make the facili-
ties easy to use for inexperienced graduate students and junior researchers who may be involved in 
running experiments. 

• Investigate emerging technologies with a high potential to impact these workfows. For example, 
provide domain scientists with suÿcient information so that they can decipher opportunities for 
emerging technologies in EOS workfows. 

• Develop the ability to cooperate simulations and EOS projects. 

5.6 HPC Architectures 

Many of these new capabilities for experimental data are set in a time of rapid change for HPC computer 
architectures and software [74, 77, 78, 79]. First, architectures are growing more complex in response to 
the constraints of power, cost, and reliability. Second, system software, programming models, and runtime 
systems are changing to accommodate these architectural changes. In particular, the I/O subsystems for 
HPC architectures are changing rapidly to accommodate the plateauing bandwidth to external resources 
like flesystems and networks. 

In particular, constraints on main memory capacity and external I/O of future extreme-scale systems have 
several important implications for experimental data workloads. Most importantly, a limited main memory 
capacity throws the system architecture out of balance, impacting other system parameters and eÿcien-
cies. That is, in most experimental data applications, a smaller main memory per node reduces the amount 
of computation a node can execute without internode communication, increases the frequency of commu-
nication, and reduces the sizes of the respective messages communicated. All of these factors are known 
to lower application eÿciencies; this relatively small memory capacity will be eÿcient for only the most 
computationally intense workloads. 

Moreover, a critical trend over the past decade has been the removal of hard-disk drives from the node 
designs of large-scale supercomputers. Virtually none of today’s large scale systems have mechanical hard 
disks physically present in the node, limiting working data set size to the size of the DRAM main memory. 
Typically, contemporary systems forward all parallel I/O requests over the interconnection network to 
specialized nodes that connect directly to a storage area network, typically using Infniband links and 
commodity storage targets to retrieve or store the data as requested by the application. In some systems, 
a small amount of main memory can be reserved as a RAM Disk for the operating system and application 
use. An important consequence of this confguration is that these systems cannot support any demand 
paging of virtual memory as is typical in most other computing systems. As such, HPC applications are 
designed so that all application data explicitly fts well within the size of main memory capacity, while 
allowing space for other system functionality, such as those needed for the operating system and message 
passing runtime systems. 
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System attributes NERSC  
Now 

OLCF 
Now 

ALCF  
Now NERSC Upgrade OLCF Upgrade ALCF Upgrades 

Name 
Planned Installation Edison TITAN MIRA Cori 

2016 
Summit 

2017-2018 
Theta 
2016 

Aurora 
2018-2019 

System peak (PF) 2.6 27  10 > 30 150 >8.5 180  

Peak Power (MW) 2 9 4.8 < 3.7  10   1.7 13 

Total system memory 357 TB 710TB 768TB 

~1 PB DDR4 + 
High Bandwidth 

Memory 
(HBM)+1.5PB 

persistent memory  

> 1.74 PB 
DDR4 + HBM + 

2.8 PB 
persistent 
memory 

>480 TB DDR4 + 
High Bandwidth 
Memory (HBM) 

> 7 PB High 
Bandwidth On-

Package Memory 
Local Memory and 
Persistent Memory 

Node performance 
(TF) 0.460  1.452   0.204  > 3 > 40 > 3 > 17 times Mira 

Node processors Intel Ivy 
Bridge  

AMD 
Opteron    
Nvidia 
Kepler   

64-bit 
PowerPC 

A2 

Intel Knights 
Landing  many 

core CPUs  
Intel Haswell CPU 

in data partition 

Multiple IBM 
Power9 CPUs 

& 
multiple Nvidia 
Voltas GPUS  

Intel Knights 
Landing Xeon Phi 
many core CPUs 

 

Knights Hill Xeon 
Phi many core 

CPUs   

System size (nodes) 5,600 
nodes 

18,688 
nodes 49,152 

9,300 nodes 
1,900 nodes in 
data partition 

~3,500 nodes >2,500 nodes >50,000 nodes 

System Interconnect  Aries Gemini 5D Torus Aries Dual Rail EDR-
IB   Aries 

2nd Generation Intel 
Omni-Path 
Architecture 

File System 

7.6 PB 
168 

GB/s, 
Lustre® 

32 PB 
1 TB/s, 
Lustre® 

26 PB 
300 GB/s 
GPFS™ 

28 PB 
744 GB/s  
Lustre® 

120 PB 
1 TB/s 

GPFS™ 

10PB, 210 GB/s 
Lustre initial 

150 PB 
1 TB/s 
Lustre® 

 ASCR  Computing Upgrades At a Glance 

ASCAC December 9, 2015 24 

Table 5.1: Contemporary ASCR HPC architectures. Source: Dr. Steve Binkley, ASCAC Meeting, Dec 9, 
2015. 

In this regard, recent trends in the research, development, and manufacturing of NVM technologies pro-
vide optimism that these technologies can be used to reverse this trend toward very small main memory 
capacities in these future systems. Research in new devices, such as Phase Change RAM (PCRAM) and 
resistive RAM (ReRAM), and innovative integration strategies could provide alternative memory designs 
that will have a broad impact on future extreme-scale architectures and applications. 
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Research Challenges: 6 

Service Facilities 

The Oÿce of Science supports its scientifc research with a collection of “service” facilities that provide 
computing and networking services for the science community. However, each science community or dis-
cipline has di erent workfows, analysis, and simulation requirements. How can these service facilities 
improve their ability to support science? 

6.1 Findings 

There are a collection of problems in technology, policy, and operating procedures that impede the use 
of SC supercomputer facilities by the data-intensive or experiment-based science communities. The two 
primary issues that need to be dealt with are the current policies and the fundamental design technology 
of supercomputing systems. The technology and operating issues can probably be addressed. Some of 
the policy issues have persisted for decades and would take concerted and focused work by DOE SC to be 
changed. 

There was a general agreement that having access to supercomputer-class facilities would greatly enhance 
the development and use of next-generation instruments. These new instruments are expected to need 
high-performance computational capabilities only episodically and thus it seems more practical to use 
existing supercomputing centers rather than to build specialized systems. Unfortunately, the current ar-
chitecture and operations of supercomputers were not designed with the needs of experiments in mind, 
and domain scientists need increasing levels of support to use emerging storage, workfow, and compute 
architectures to process increasing amounts of data. 

Many of the case studies identifed supercomputer usage problems related to data ingest, retention, data 
management, I/O from external storage and coordinating instrument access to supercomputers. This re-
fects the current batch-oriented, highly parallelized, maximal foating point operations per second focus of 
these systems. If supercomputing systems are to make a signifcant impact on the processing, analysis and 
visualization of large scale instrument data sets, they will need to implement new designs specialized for 
data processing, in which data can be rapidly ingested, processed and fed back to researchers. Alternately 
new hybrid systems could be designed that can accommodate both traditional and new users. 

The issues related to policies include access to computational resources in a persistent community envi-
ronment, and problems with heterogeneous user environments across centers. In particular, the lack of a 
common authentication scheme allowing single sign-on across centers was seen as a signifcant problem in 
the community use of supercomputing centers. 
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6.2 Accommodating High-performance Storage and Data Needs at Su-
percomputing Facilities 

A recurrent theme from both the experiments and parts of the simulation community was that the super-
computing centers need to provide much more online storage whose retention policy can be determined 
by the users: for (real-time) collection, archiving, and the redistribution of data from instruments; for al-
lowing community access to very large curated databases for query and download, and for the selection of 
data for supercomputer simulation runs; and for keeping enough data available to do multi-model com-
parisons. 

State of the art 
Data systems at HPC centers generally fall into two categories: 1) expensive, highly parallelized flesystems 
that are optimized for streaming large volumes of data on and o compute nodes at maximum transfer 
rates, and 2) large-capacity archive systems that are optimized for storing large amounts of data at a min-
imum cost and are able to move data on and o the aforementioned flesystems at useful rates. Neither 
was designed for quick random access of data that remains resident for long periods of time, and both have 
poor performance characteristics for random access or high numbers of I/O operations per second. 

The state of the art for streaming data to high-speed storage from supercomputers consists of various disk 
arrays, or increasingly NVRAM-based systems, that are accessible to the compute nodes over a local high-
speed network. This storage is designed to be accessed by jobs running on supercomputers and is typically 
confgured as form of ephemeral (“scratch”) storage. That is, users can put fles into this storage but there 
is no guarantee that the fles will remain beyond the lifetime of the job that is actively using them. This is 
typically implemented by various “purge” policies that ensure that executing jobs can stage all of the fles 
that they need for execution. 

The longer term storage is generally enabled via “project” flesystems and archived to tape stores (such 
as HPSS), but fles located in this archival storage have to be staged to high-speed storage (e.g., on disk) 
for performant access by supercomputer jobs. Managing the location and movement of data through this 
hierarchy is generally left to the user, and is typically done with di erent tools at di erent centers. 

Support is limited in current parallel flesystems (such as GPFS and Lustre) for fast searching of fle meta-
data, or the attaching of user-defned metadata for extracting specifc subsets of data. Limited use can, and 
has, been made of the GPFS policy-engine and Lustre’s Robinhood system [80], but this has not allowed 
for tracking across flesystems at a supercomputing center. None of these flesystems o ers robust data 
management features. 

More comprehensive data-management systems have been developed that include iRODS [81] and SRM 
[82, 83]. The former has achieved quite a widespread adoption while the LHC community heavily uses the 
latter. However, these solutions are generally quite “heavyweight” for both users and administrators and 
restrict the ways in which fles can be accessed, requiring it to be through the data-management service 
(for example, PanDA [84]). 

Challenges 

• Current DOE supercomputing centers were not designed for the real-time analysis of experimental 
data and would require signifcant modifcations if they were to take on this role. For example, up 
to terabit-per-second access would be needed for some facilities to store and process experimental 
data streams in real-time and do online data analysis. This is currently beyond current technical 
capabilities. 

Data centers providing resources for data intensive computing could help o�oad experiment facil-
ities like LCLS that are not currently able to build and operate large-scale computing and storage 
systems. However, the design and confguration of these centers would need to change to meet that 
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specifc need. As mentioned in Section 15.4, for example, general support for LCLS-II o�ine analysis 
alone would require approximately 100 PB of tape storage, a dedicated 20–100 PB of disk storage 
and a processing farm in 0.2–1 petaFLOP range with an aggregate throughput to the storage above 
10 GB/s per PB. 

Other key requirements are the ability for users to manage their data through the science facility (e.g., 
LCLS) tools and workfows and, ideally, to be able to use that facilities user-account (or a federated 
account) when accessing the data. 

• HPC can be thought of as an experimental instrument in its own right. Soon the largest simulations 
will exceed several petabytes and such simulations will allow direct comparison with experiments. 

– There is insuÿcient tertiary storage cache to allow eÿcient running of such jobs. 

– There are insuÿcient lightweight data management tools to allow the migration of data from 
larger pools of storage for running jobs or for further user analysis. 

– There is a need for tools to process and resample data so that the output of experiments can be 
directly compared to simulations. 

– There is a need for tools to expose data to a wider science community to do experiments through 
analysis and queries of data. This might mean running experiments in situ (on the supercom-
puter with local data accessed during execution) or it might involve the migration of data to 
other flesystems or o site. 

• Today’s supercomputers are not designed for analyzing large data sets. For large-scale data analysis 
there are I/O choke points resulting in I/O time exceeding analysis time, which causes problems with 
scheduling. That is, there is a major mismatch between compute power and accessible storage. This 
relates to the progressive scaling of both computing and storage capacity: it is diÿcult to design a 
computing center in a way that experiments can point their data streams at a supercomputer center 
and require storage and scalable analysis on the data. 

• There are insuÿcient mechanisms at facilities to share or disseminate data to satisfy DOE guidance 
and mandates. In addition, there are insuÿcient data policies that clearly defne which data sets need 
to be shared and disseminated. 

R&D needed 
Lightweight, easy-to-maintain and high performing solutions for the challenges noted above must be de-
ployed at facilities, covering such areas as listed below. The R&D required to develop new technologies in 
this area is largely covered in Section 8. However facilities also have a role in deploying and confguring 
both existing and new technologies to meet these community needs. Areas include: 

• Mechanisms to defne per-user policies and automate data movement between di erent tiers of stor-
age or di erent storage systems. 

• Improved flesystems that are optimized for both metadata access and large-scale data I/O. 

• Methods for surveying the contents of the storage system for tracking a science project’s usage and 
fle locations. 

• Methods for enabling user-defned metadata. 

• Methods for querying or performing analysis on data in situ on supercomputing flesystems. 

• Methods for optimizing performance of I/O systems that scale well. 
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6.3 Supercomputer Centers for Real-time Analysis of Instrument Data 
Streams 

The ability to use supercomputers in experimental science is becoming a critical need. Instruments are 
getting more sophisticated and expensive, and this makes increasing the productivity of the instrument 
more urgent. Further, the amount of data coming out of modern instruments is vastly more than the 
previous generation of instruments, and that data is frequently much more diÿcult to analyze. This means 
that many instruments are operated “blind” unless a quick analysis of the data can give the scientist insight 
into how the experiment is progressing. The need for fast analysis of complex data using complex models 
frequently requires supercomputing capabilities. 

However, the total real time feedback needed for such computation is typically relatively small compared to 
the lengthy process of setting up and operating the experiments. This implies that a highly capable system 
that is shared—like a supercomputer—can best fll this need as it is not economical to build a dedicated 
system for this purpose. However, jobs on supercomputers are typically scheduled far in advance and 
providing rapid, episodic access to instrument data is not usually practical. Thus, either new approaches 
to scheduling or di erent supercomputer architectures need to be developed. 

State of the art 
There are a few emerging examples of using supercomputer analysis of instrument data streams in real-
time. Recently, near-real-time data from the Center for Nanophase Materials Science has been analyzed 
on OLCF’s Titan supercomputer [85] by pipelining analysis frst in ORNL’s CADES data analytics environ-
ment. In a more store-and-forward approach, data from the ATLAS experiment has been analyzed in an 
opportunistic manner on Titan and NERSC. In these modes of execution, data streaming from the instru-
ments are transferred to a staging area “adjacent” to the supercomputer, and innovative mechanisms are 
used to run the job. This method of staged or pipelined execution has been necessary because of both the 
manner in which experimental facilities collect their data, and the way in which data is made available to 
queued execution jobs on the supercomputer. 

Recently NERSC has setup a “real-time” queue on its new Cori supercomputer to begin to address the 
real-time analysis needs. It relies on a small number of dedicated compute nodes to o er responsiveness, 
but also allows jobs to take priority on other resources once those are flled. It is also possible to pre-
empt ‘killable’ jobs on these other resources. However this is built on the existing features of the Simple 
Linux Utility for Resource Management (SLURM) batch system and new technologies may be required to 
be responsive at large scale while maintaining the eÿcient use of resources. 

Challenges 
The main challenge of using supercomputers to analyze instrument data in real time is that there is cur-
rently no e ective mechanism to do preemptive scheduling of this type of work. Even if jobs could be 
co-scheduled, there may be I/O limitations in importing large-scale data streams for processing. 

Beamline instruments, for example, need to provide feedback to experimenters as to how their measure-
ments are proceeding while the experiment is in progress. Being able to spot a minor problem in the 
experiment early can spell the di erence between a successful outcome and a wasted week of beamtime, 
scientist time, and associated travel costs. Unfortunately, having to do on-the-fy analysis via a supercom-
puter queue means that measurements would be conducted “in the dark” because the job will not complete 
before the experiment does. Experimental scientists need computer systems that provide fast throughput 
and rapid access. Delays on the scale of hours can not be tolerated in this type of work. 

To date, supercomputing user facilities have not been utilized to any signifcant level in the routine oper-
ations of beamlines, such as the APS. The key to changing this is in establishing mechanisms that allow 
beamline computing to run concurrently with the long-running batch jobs that represent the main work-
load for these large machines. The most e ective beamline computing should be scaled to use the largest 
amount of resources that can be deployed e ectively to provide a result to a user within minutes, if not 
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seconds, of the completion of the measurement. This means that the ideal use cases (when parallelization 
is possible) will employ large numbers of processors for short periods, with potentially long delays be-
tween tasks while the next set of data are collected. By design, these computations will optimally use only 
a small fraction of a facility’s total capacity. Thus, a system dedicated to experiments alone is not practical 
(economically or operationally) making shared use of such a computing resource a high priority. How to 
schedule such jobs or have them run concurrently with batch jobs is a major challenge. 

In addition to the scheduling considerations, there are programming language and resource allocation ob-
stacles in establishing seamless workfows across diverse hardware and software systems that span obser-
vational instruments, and analytics resources. These systems often don’t have e ective middleware that can 
interoperate and allow a functional end-to-end overlay. The lack of a sensing and messaging middleware 
that can be deployed programmatically is a continuing challenge. 

R&D needed 
The R&D needed includes: 

• A better understanding of preemptive and real-time (hard and soft) reservation and scheduling mech-
anisms, and their interaction with the interconnect and flesystems. 

• Designing data pipelines that straddle acquisition, transfer, staging, and ingest into the computing 
platforms. This needs to be constructed in way that closes the feedback loop—back to the instrument. 

• Creating “frst-class” workfow constructs that can be intuitively stood up and deployed as needed 
from observation instruments to supercomputing resources. 

6.4 Federated Uses of Computing, Science and Network Facilities 

There are emerging problems where simultaneous, or nearly simultaneous, use of multiple supercomputers 
is necessary. This could be enabled by federating a set of service facilities. 

State of the art 
Distributed computing resources have been used in federated ways for particular science projects and in-
dustry for some time. Some examples include the Earth System Grid Federation, the Worldwide LHC 
Computing Grid and commercial clouds such as Amazon EC2 or the Google Compute Engine. Recently 
the LHC community has also explored a more fexible use of compute resources, including cloud and super-
computers, as well as a more transparent use of storage resources, through dynamic federations [86, 87]. 
However, there is little general-purpose tooling that allows for the federated use of the supercomputing 
facilities. 

One barrier to such use is a lack of common job control language across the supercomputing centers. 
Another is di erences in the operating system environment. This later issue has begun to be addressed 
by the increasing use of container technologies (such as Docker [88]) that might possibly be a common 
capability across the centers. For example, ACLF has an active project for testing Docker containers [89] 
and CADES has the “Cosmology INCITE project” [90]. 

Furthermore, NERSC is using a Docker-like tool developed in-house called “Shifter” [91] which is now en-
abling code developed at science facilities such as the LCLS and LHC experiments to be run directly on large 
NERSC machines, in a di erent OS environment than the base system, with minimal modifcation. 

How the commercial cloud computing capabilities may complement or supplant certain supercomputer 
center services is a growing question. While commercial o erings are generally cost-prohibitive because 
of the technical needs for the highest performance and largest-scale data movement, certain public cloud 
o erings are practical for some applications such as burst-driven utility computing. The supercomputer 
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center of the future might consider hybrid strategies to o er the best complementary computing capabili-
ties and a higher-level coordination with the private and public computing ecosystem. 

Challenges 
It would ultimately be desirable to be able to use the ASCR computing facilities with the same workfows 
running on all three and passing data back and forth during execution. However, the lack of a common 
language to defne the job pipeline operations across centers makes moving jobs diÿcult. There is also 
no mechanism for co-scheduling jobs running at di erent facilities that need to interact during execution, 
and a lack of federated storage. Thus, it is not currently possible to use the ASCR centers in this way. 
Currently many experimental groups do make use of di erent systems, but it is manual and labor intensive. 
Challenges include: 

• Incompatible access control requiring, for example, di erent security keys at di erent sites increases 
the barrier to using multiple supercomputing systems in a workfow. 

• The lack of a federated approach to data storage and analysis resources across supercomputing cen-
ters and participating sites adds complexity and ineÿciency to multi-center use. 

• The lack of fault tolerance in computing centers compared to that found in cloud resources. 

• Di ering operating systems and environments require the recompilation and, in some cases, di erent 
software to run at multiple sites. 

R&D needed 
The following areas of development could help scientists make use of multiple centers: 

• Policy decisions or suitable technologies to allow scientists to use diverse resources with credentials 
from their science facility. 

• Mechanisms for creating, establishing and scheduling workfows across computing centers. 

• Mechanisms and deployment of technologies that allow for federation of storage resources at di erent 
facilities. 

• Mechanisms of inherent failure tolerance in federated supercomputing centers. Certain experiments 
would beneft from high-availability supercomputing and data-processing. A federated and failover 
approach would address that need. 

• Container technology available on large compute systems at supercomputing facilities. These should 
also be compatible systems, allowing use of common containers and repositories. 

6.5 High-speed Data Movement Between Geographically Distributed 
Systems 

State of the art 
The ability to move very large volumes of data at high transmission speeds between geographically dis-
tributed systems relies on several capabilities: 1) a sophisticated network tailored for large-scale data fows 
for transport, 2) an infrastructure located at the sites (usually a national laboratory and DOE facilities such 
as the leadership computing facilities) built to deal with the ingress and egress of large data fows, and 3) 
the appropriate data transfer tools for large-scale data volumes. 

Wide-area network transport 
The wide-area network (WAN) must have the transport capability, both in terms of the transport speed and 
capacity to handle petabyte-scale data between the science facilities and scientists. DOE’s Energy Sciences 
Network (ESnet) is the wide-area network that provides these capabilities for scientifc research across 
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the United States and internationally into Europe. ESnet’s network infrastructure consists of an optical 
system capable of 40x100Gbps channels, and a routed infrastructure consisting of one to two 100Gbps 
across ESnet. Most of the SC Labs have optical fber access to ESnet with at least a 100Gbps link and the 
potential to provision more 100Gbps connections. A handful of large U.S. universities also have 100Gbps 
connections in places where ESnet can connect to them (e.g., Chicago, New York, Washington, DC, Atlanta, 
Sunnyvale, and Seattle). 
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Figure 6.1: ESnet backbone network connects the U.S. science complex nationally and internationally. 
ESnet’s 100Gbps, U.S.-wide infrastructure extends into Europe at 340Gbps to serve the U.S. high energy 
physics community and other science communities who need high-bandwidth, reliable connections to the 
science facilities, instruments and data repositories abroad. 

Wide-area and local-area network coupling 
A second required capability is that of an e ective coupling between the facility’s local-area network (LAN) 
and the WAN to allow for high-speed data transfer. An e ective coupling is virtually never present in a tra-
ditionally architected campus network. To overcome this and enable high-speed data movement requires 
unimpeded access to the WAN network from the systems that have the data. This, in turn, requires a suit-
able network architecture, routers and switches capable of driving WAN connections at high speeds, and 
data systems that can moved the data out through a network interface at the required speeds. 

A number of DOE national laboratories and universities utilize the Science DMZ [92] concept to address 
the coupling between WAN and LAN connectivity for large-scale research data. The Science DMZ is a local-
area, or institution-based, network architecture that places systems, such as servers, close to the boundary 
of a LAN and WAN. These servers, also called data transfer nodes (DTNs), are specifcally confgured to run 
scalable, high-speed data transfer software (i.e., GridFTP, Globus or bbcp) and are secured through access 
control lists (as opposed to frewalls) to obtain the necessary data transfer performance for data ranging 
from hundreds of gigabytes to petabytes. Storage for the data transfer nodes are either locally found on the 
server (multiple hard drives) or the servers are mounted to a massive parallel fle system. 

The Science DMZ model increases data transfer performance by simplifying the infrastructure used to 
support the data movement, using the appropriate data transfer tools on dedicated systems, and employing 
appropriate security technologies which provide security without compromising performance.1 

Data transfer tools 
The servers, or DTNs, in the Science DMZ environment must use appropriate tools for high data through-

1http://fasterdata.es.net/science-dmz/science-dmz-security/. 
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Figure 6.2: A basic Science DMZ architecture. Data travels from the wide-area network (shown in green) 
through the border router and through a Science DMZ switch which implements the appropriate security 
policies for the sites.Attached to the Science DMZ switch or router is a server tuned for wide-area data 
transfers (usually running a set of transfer tools like GridFTP, Globus, bbcp, FDT, etc). Storage for the 
transferred data is either located on the server or mounted to a parallel flesystem (such as GPFS or Lustre). 

put.2 

DTNs are system implementations that have dedicated hardware and software that are tuned for high-data 
throughput. For example, a well-tuned data transfer node can achieve transfer rates up to 39.5 Gbps for a 
memory-to-memory transfer with 4 x 10 Gigabit Ethernet network interface cards, and 9.2 Gbps (1.2 GB/s) 
for disk-to-disk transfers. 

Another example of a state-of-the-art, high-throughput data transfer tool is Caltech’s FDT (Fast Data Trans-
fer). FDT manages a collection of attached storage devices (disks, solid-state drives, etc.) through inde-
pendent CPU threads and multiple, parallel TCP streams. This approach has demonstrated international 
distance data transfers at 60 Gbps [93, 94]. FDT has been integrated with the LHC CMS data movement 
tool, PhEDEx. 

In summary, high-speed, high-volume data movement is now achievable over distances of 10,000 km and 
more if the systems, sites, and networks are correctly designed and managed. 

Science community-centric networking 
Science communities that make use of highly distributed data analysis and management approaches, such 
as the LHC, have found that a semi-private network environment has considerable advantages. Such semi-
private networks allow for more uniform security policies, which, in turn, make it easier to implement and 
operate Science-DMZ-like approaches to high-speed data transfer. 

The LHCONE3 (LHC Open Network Environment) private network has evolved over several years to pro-
vide such an environment to the most of the LHC Tier 1 data centers and large Tier 2 analysis centers. These 
centers are in operation at scientifc institutions across Europe, North and South America, and Asia. 

2Several data transfer tools are described at http://fasterdata.es.net/data-transfer-tools/. 
3LHCONE was developed by an international consortium of research and education networks. ESnet has played a leadership role in 

this collaboration and providing the L3VPN services in support of the LHCONE. More information is available at http://lhcone.net. 
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The approach uses a Layer-3 (L3) VPN (virtual private network) that is an overlay on the general research 
and education (R&E) networks. The L3 VPN is implemented using Virtual Routing and Forwarding (VRF). 
The VRFs are private routing instances that are set up in the R&E provider networks (e.g., ESnet, Inter-
net2, etc). The VRFs manage routing for a highly restricted part of the Internet address space that is only 
accessible to the participating institutions. 

In the global LHC community this has proved quite successful at easing the operation of the distributed 
data centers. The Belle-II experiment at the High Energy Accelerator Research Organization (KEK) in 
Japan, and its data analysis and management community are now also using LHCONE. 

Other instances of such overlays are now being used by several other science collaborations, and still others 
are considering such an approach. 

Challenges 

• Current data rates are insuÿcient for planned facilities. For example, SLAC’s current 100Gbps link 
to NERSC via ESnet is used to o�oad part of the LCLS science data processing. Current LCLS data 
acquisition rates are up to 50Gbps. One hundred gigabits-per-second to NERSC will not be enough 
for LCLS-II, and terabit capabilities will be required if LCLS relies on NERSC for processing LCLS 
data. 

In addition, although the overall average capacity of the wide-area network may be high compared to 
the projected usage, this does not address potential “hot spots”—network congestion around high-use 
facilities like NERSC which can develop unpredictabilities based on disparate experimental facility 
usage. 

• Fast data transfers need to be improved between various scientifc users and the scientifc user facilities— 
especially the HPC centers like ALCF, NERSC and OLCF. 

• Also for smaller, more diverse scientifc facilities, computing resources need to process large data 
sets or need ways to transfer large data to institutional computing resources. For example, increas-
ingly, with larger radar data sets and especially new high-resolution modeling output, users will need 
mechanisms to transfer large amounts of data to the computing resources where they can do analysis. 
5–10 PB/year in a few large data streams is expected. 

• There are communities with considerable growing needs that may have not been factored in to current 
planning. For example, the Community Earth System Model (CESM) ACME will need to distribute 
data to collaborators around the world. The current projection shows their distributed data archive 
reaching multi-petabytes by or before 2020. In the past ESnet has observed that the WAN network 
traÿc generated by a community is directly proportional to the size of the distributed data archive. 
Based on this we can expect climate to be generating around 100Gbps network traÿc in the next 
few years. Given that the data is used in simulations that are run at the supercomputer centers, 
this implies that a substantial increase in traÿc local to the supercomputer centers could occur in the 
noted timeframe. This must be taken into account in planning the supercomputer center connectivity 
to avoid congestion. 

R&D needed 

• Manual and auto-tuning settings are available but more specifc tuning is needed so that the system 
is dynamically responsive to di erent end pairs at di erent locations. 

• Storage system performance is also a signifcant bottleneck when trying to increase the end-to-end 
performance for data transfers and science collaborators. 

• The LCLS requirement of moving 1 Tbps from SLAC to NERSC in the 2020 timeframe appears to be 
consistent with the anticipated advances in wide-area network equipment, and, with careful atten-
tion, probably also with systems capable of moving such a network stream to disk at NERSC. 
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– This is likely a case where a Science DMZ approach of some sort is needed. Consulting with 
ESnet engineers can identify any issues not currently addressed by the standard architecture, 
and work to update the architecture to refect these. 
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Research Challenges: 7 

Scientifc Data Management: 
Workfow 

Scientifc workfows have become a cornerstone for scientifc discoveries since it captures the fow of com-
putation and related data dependencies. The term workfow is used broadly in the context of experimental 
and observational data to refer to a) a complete cycle of scientifc discovery, b) the process fows that ex-
ecute over distributed resources, and/or c) the computational pipeline that runs on HPC systems. These 
workfows in the EOD system results in complex data processing pathways that are managed today with ad-
hoc tools and scripts. Increased data volumes and rates, the dynamic nature of the data-driven workfows, 
the complexity of the processing pipelines in EOD coupled with the increasing complexity of the compu-
tational and networking landscape poses serious concerns for the EOS community. The EOS community is 
at the risk of not being able manage and process the large volumes of data that are being generated at the 
experimental and observational facilities. There is a critical need for new technologies that enables automation 
of the dynamic, real-time data-driven pipelines, supports data sharing and facilitates knowledge transfer of the 
processing pipelines while ensuring performance, resilience and reproducibility. 

The EOD workshop identifed many short-term and long-term needs in workfows that need to be ad-
dressed by future R&D. The workfow discussion in this workshop was focused specifcally on EOD. A 
previous workshop, “The Future of Scientifc Workfows” [95], looked at broader scope of workfows from 
both the simulation as well as experimental side. There was a diversity in the workfows represented at 
the workshop; however, common patterns were discernible in the requirements that need to be addressed 
with additional research and development activities. Three major themes emerged from the discussions 
at the workshop. First, workfows provide a powerful construct that can be used as a vehicle of knowl-
edge transfer of data and process that is extremely important in EOD pipelines. Second, while there is a 
diversity of needs there are a few common patterns that can be identifed across workfows. Additionally, 
workfows provide a vehicle to provide the optimization and steering needed in the EOD and HPC envi-
ronments for qualitative metrics such as learnability, usability, manageability and transparency as well as 
for quantitative metrics for performance, reliability and scalability. Workfows need to work seamlessly for 
user needs that requires us to solve a number of research challenges at the boundaries of workfows with 
data, resource, operating system and programming environments. In this chapter, we discuss the three 
themes in the context of current state of art, challenges and R&D needed in greater detail. 
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7.1 Identifying Usage Commonalities and Workfow “Execution” Pat-
terns 

There are many di erent types of workfows and usage models in the EOD ecosystem. The workfows span 
di erent functionality including data collection, assimilation, sharing and comparison with modeling and 
simulation. Previous work considers workfow execution patterns based on the control-fow of execution 
and size of workfows [96, 97]. Early patterns of commonalities emerged in the discussion at the work-
shop. However, a deep-down study of commonalities and di erences across the EOD workfows will be 
necessary to identify future R&D areas. We need to consider dimensions of time, size and context of use 
to identify workfow and execution patterns. The patterns will in turn provide hints and impact workfow 
automation, metadata and provenance. For example, in-situ analysis might require more automation but 
the data collected might not have signifcant metadata to be associated with it. On the other end of the 
spectrum, archived data workfows might need lesser automation since it requires human intervention and 
more metadata which would make it useful for access in the future (§20). 

State of the art 
Workfow tools have been developed to represent and run scientifc processes in a distributed grid and 
HPC environments (e.g., see research by Kepler [98, 99], Taverna [100], Pegasus [101], Triana [102], Ti-
gres [103, 104]). These tools allow users to compose and interact with workfows, provides seamless access 
to distributed data, resources and web services. Previous work has provided a taxonomy for scientifc work-
fow systems that classify systems based on design, scheduling, fault tolerance and data movement [105] 
and characterized a collection of scientifc batch-pipelined workloads on processing, memory, and I/O 
demands, and the sharing characteristics of the workloads [106]. Previous work has also studied charac-
teristics of complex scientifc workfows and represented a qualitative classifcation model to capture the 
features of a workfow [97]. 

Challenges 
Scientifc workfows and workfow tools have been used for over a decade. However, the focus of current 
technologies has been largely on distributed and HPC simulation workfows and focuses on capturing the 
computational elements of the scientifc process. There is a limited understanding of EOD workfows and 
the complex relationships between the people, processing, data and resources. 

R&D needed 
The workshop provided a forum to discuss some of the commonalities and di erences in workfows in EOS. 
Additional work is needed to understand these workfows in depth through deeper user engagement and 
user research methods. We identify a number of research topics in this space. 

• Developing a classifcation for experimental and observational data and process workfows. We 
need to build a common understanding of the “data” workfows and understand its context of use 
and derive commonalities and understand the di erences. The lifecycle of data and the processing 
of data needs to be captured. EOD projects (§) have a wide variety of workfow needs to manage the 
data generation, movement, sharing and analyses. User capabilities and needs from the workfow 
tool in each of these stages is di erent. Many of the projects identifed (§21 and §12) that while 
they had teams that were dedicated to running production workfows, they still had many unmet 
workfow needs. For example, the teams reported diÿculties with running and managing processing 
and data at scale. Additionally, participants noted the lack of tools for analyses workfows. There 
is wide variety of needs from supporting developers and support sta to run workfows to end-user 
interfaces to supporting scientists who need tools to develop and iterate their pipelines. The workfow 
needs for EOD workfows are more diverse and critical than traditional simulation workfows on HPC 
systems. Thus, it is unclear if there is a one-size-fts-all solution for all classes of EOD workfows. 
However, clear patterns of commonalities emerged in the workshop discussions that will serve as the 
basis for further development of algorithm, methods and infrastructure to support the needs of EOD 
workfows. There is a need to develop a classifcation of the needs and understand where existing 
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workfow tools capabilities can be used and identify gaps where new R&D is needed to support EOD 
workfows. 

• Develop tools to support optimized scalable and reliable workfow execution patterns in EOS. 
Identifying the patterns of execution in EOD workfows provides a unique opportunity to research 
and develop workfow constructs and execution patterns that capture the needs of the user and meet 
the required eÿciency levels. For example, ad-hoc interactive data analyses workfows can be setup to 
seamlessly execute through queues with lesser wait times. Automated production workfows on the 
other hand might require higher reliability rates. Today, workfow tools are considered to be complex 
and attempt to provide a general solution for a wide range of solutions. Workfow classifcation with 
supporting tools provides a unique opportunity to create an ecosystem customized to specifc user 
needs that scales to projected data sizes and provides the ability to ensure reliable execution. 

• Identify and develop algorithms, methods and infrastructure that allows similar process and 
workfow for observation and simulation data. Once the classes of workfows are identifed, ad-
ditional work is necessary to identify and develop corresponding algorithms, methods and infras-
tructure. One such class of workfow needs that was apparent across the use cases at the workshop, 
was the need to allow users to transition between simulation data and experimental data in their 
processes and workfows. Support for a seamless transition between the two sources of data will 
require innovation at multiple levels of the software stack including common algorithms, methods 
and infrastructure (additional details in §2 and §4. Specifcally, workfow infrastructure will need 
additional support to capture and handle the commonalities and di erences in the data, process and 
resource requirements while providing a seamless view for the end user. Workfows will need to 
capture and use relevant metadata and provenance that would aid in capturing the di erences and 
commonalities in the process. 

7.2 Workfows to Capture Lifecycle of Process and Data, Facilitating 
Knowledge Transfer 

The scientifc use cases identify the need to capture the lifecycle of data and associated provenance across 
di erent stages and enable users with various skill levels to be able to access and process the data and 
associated knowledge. Workfows provide a convenient vehicle to both capture and enable knowledge 
transfer across individuals and groups. 

State of the art 
Workfows have been used for representing the computational process on HPC and distributed resources 
[107]. Workfow provenance [108, 109, 110, 111, 112, 113] has been used as a way to capture and track 
lineage information (more discussion in §9). Domain specifc workspaces have been developed to share 
workfows [114, 115] and communities have developed workfow repositories [116, 117]. However, work-
fow and knowledge transfer in scientifc communities largely happens in ad-hoc ways. Previous work has 
not focused specifcally on using workfows to facilitate knowledge transfer. 

Challenges 
EOS communities recognize the need to capture the lifecycle and associated provenance and facilitate 
knowledge transfer across various participants of the ecosystem. EOD workfows have specifc challenges 
that need to be addressed in the workfow capture process—workfow representation has to be beyond 
organizational and facility boundaries and needs to capture the process beyond the computation. 

R&D needed 
Today, scientifc workfows are used to capture the computing processes and data dependencies. During 
execution, workfows often capture the provenance and metadata associated with execution. However, 
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as we explore the use of workfows to capture the lifecycle of process and data, and facilitate knowledge 
transfer, there are a number of research challenges that need to be addressed. 

• Identifying and developing the mechanics to capture the lifecycle for EOD workfows. There are 
a number of open research challenges when it comes to using workfows as a knowledge transfer ve-
hicle. First, we need to identify what crucial elements of the end-to-end processing that consists of 
the people, resource and data that crosses organizational and facility boundaries. It is also necessary 
to consider other dimensions like time. Next, appropriate constructs to capture these elements need 
to be determined. For example, are directed acyclic graphs, relational graphs or databases appro-
priate interfaces to capture the lifecycle of the data and processing? How do these constructs then 
support data operations (e.g., archiving) or function (e.g., data dissemination). It will also need to 
be identifed how well these workfows can provide to capture provenance and metadata annotation 
and reputation support for the events in the ecosystem (additional discussion in §9). The constructs 
need to be validated and optimized for queries resulting from identifed use cases for both usability 
as well as eÿciency. 

• Enable sharing across users, organizations and collaborations. There is a need to go beyond think-
ing of sharing workfows as a way to share the tools and infrastructure—instead some projects require 
sharing the knowledge of the process and data. There are research questions that need to be addressed 
to identify the modalities of sharing across users, organizations and collaborations where workfows 
can be used as a vehicle of knowledge transfer. How can workfows be used for training and sharing? 
What needs to be captured in workfows to support sharing of knowledge? Can workfows enable cre-
ating community catalog of software libraries and processes for workfow composition and mapping 
data? 

• Support the goals of experimental and observational collaborations for learnability, usability, 
manageability and transparency. As workfows are used for knowledge transfer, they need to meet 
the goals of the collaborations for learnability, usability, manageability and transparency. Collabora-
tions want users to be able to quickly get to the data and learn about the data and processing and go 
from quick canned analyses to their own analyses. The workfows that are shared in a collaboration 
must be easy to use and manage on a variety of platforms and supercomputing centers. Workfows 
need to provide the right level of transparency—hide the complexities of the infrastructure but allow 
the user to customize it for its own needs. To enable workfows to meet these goals, research will 
be needed in workfow technologies with a focus on human computer interaction in context. We will 
need to develop appropriate interpretations of these metrics and develop techniques to evaluate these 
user goals are being met. 

7.3 Optimizing Performance, Meeting Real-time Goals and Steering 
Instruments 

Workfows provide a way to capture the dependencies between the data and capture the entire lifecycle. 
Thus, workfows are a convenient vehicle for the optimization and steering of processes to meet both qual-
itative and quantitative needs. We expand on some of the challenges and R&D opportunities identifed in 
the previous workfows workshop report [95]. 

State of the art 
The amount of data generated at scientifc facilities and associated instruments has resulted in the use of 
HPC centers for their computational requirements. For example, recent improvements in detector resolu-
tion and speed have resulted in unprecedented data rates at the Oÿce of Science’s Basic Energy Sciences’ 
national light source and neutron source facilities [118]. The data is transferred to HPC centers and pro-
cessed for both real-time analyses as well as fne-grained analyses. In the Palomar Transient Factory, data 
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taken with the camera are transferred to automated pipelines at NERSC using ESnet [119]. 

EOD workfow tools and infrastructure have been developed for specifc use cases (§21 and §12). The 
workfow system provides data access, management and analysis capabilities. The workfows are managed 
based on the automation needs (e.g., near real-time processing) and user-triggered actions. Typically, they 
also provide extensive monitoring of the distributed workfows for system operators, resource providers, 
and end users. 

Challenges 
EOD workfows need to seamlessly incorporate the scientifc instrument, network, storage, and compute 
resources to provide the scientist real-time access to the data and processing. Data analysis should match 
the rates at which data is generated. Scientists should be able to inspect results and make near-real-time 
decisions to modify the analysis or control the instrument. There are a number of challenges in coordi-
nating the resources and data to result in the coordinated eÿcient execution and dissemination of data. 
For example, this will require the coordinated reservation of a diverse set of resources such as an instru-
ment end-station, local storage infrastructure, wide-area network bandwidth, remote storage, and remote 
compute, that is not possible today. 

R&D needed 
Scientifc workfows provide a unique opportunity to meet user needs and system level requirements. Users 
need seamless access to data and resources to process the data. System usage needs to be optimized for ef-
fciency. There are a number of challenges at the boundaries of workfows, data, resource management and 
underlying programming models and operating systems that need to be investigated further (additional 
discussion in §8 and §6). We provide a summary of the topics that were discussed in the context of the 
workshop. 

• Provide seamless movement between experiment environment and computational environment. 
The EOD workfow should incorporate seamlessly the instrument, the HPC center, network allowing 
the scientist to move back and forth between the experiment and computational environments. While 
there are a number of technical issues that will need to be addressed at the facilities (e.g., single 
sign-on, authorization), science use cases identifed the workfow as being the vehicle they see as 
addressing these needs. It will be necessary to investigate how the end-to-end workfow can be used 
to represent the interaction between the environments, facilitate the human in the loop and track the 
transitions and related provenance (related discussion in §9). 

EOD workfows often harness resources at one or more computational facilities. The coupled experiment-
computation system provides a rich source of opportunities and challenges for workfow technologies 
that need to be addressed. These experimental workfows focus on organizing, moving, analyzing, 
sharing, and tracking large quantities of data. Additional research is needed to allow for data-driven 
processing, the ability to track and search data products, integrate experiment data with other knowl-
edge sources (related discussion in §1). 

• Facilitating data sharing through workfows. Data is central to EOD workfows. EOD workfows 
are triggered by the data generated at the instruments and facilities and produce a number of data 
products during the processing. These workfows face various challenges when it comes to managing 
a shared data space for their groups or community of users. Various users at the workshop identifed 
the need to have shared storage spaces (akin to fle sharing services like Dropbox, Box) that can be 
used during workfow execution. Previous work [120, 121] has investigated data spaces in the context 
of in-situ and simulation workfows; experimental and observational data has di erent characteristics 
including data generation and sharing semantics. 

• Develop methods and algorithms to meet the performance goals (e.g., real-time needs), reliabil-
ity, and scalability of EOD workfows. EOD workfows have a number of quality-of-service require-
ments. It is important to investigate predictive performance, resource provisioning, and real-time 
aware scheduling in the context of workfows in conjunction with the facilities’ policies. It is also 
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important to investigate how real-time resources can be scheduled and instruments are incorporated 
in the workfows to allow users to interact dynamically and adaptively with their instruments and 
computation. Resource management systems and schedulers, and HPC systems will need to be re-
designed to allow for interactive, dynamic, data and event-driven and real-time workloads to be able 
to get the quality of service desired. 
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Research Challenges: 8 

Scientifc Data Management: Storage 

Data volume, velocity and variety are growing across nearly all experimental and observational data science 
domains. The scientifc community must therefore leverage fast, scalable, cost e ective, and fexible storage 
solutions in order to keep pace. Addressing these challenges will not only require collaborations between 
the computer science and scientifc communities, but a long-term engagement to ensure that computer 
science solutions continue to be viable over time. 

8.1 Findings 

EOS projects produce growing volumes of diverse and irreplaceable data. Experimental data must be 
ingested or bu ered immediately to avoid the loss of key scientifc observations. Once the data is ingested, 
it may have a long (or even indefnite) useful lifetime, which amplifes the need for careful stewardship 
and indexing. 

EOS data is frequently stored and processed on systems that were optimized for other purposes. For 
example, EOD data is often stored and processed at HPC facilities. This arrangement is cost e ective, but 
it forces EOD data access and analysis to conform to interfaces, semantics, and quality of service guaran-
tees that have been optimized for entirely di erent workloads such as batch parallel computing applica-
tions. 

Emerging storage technologies have the potential to improve eÿciency. Examples include non-volatile 
random-access memory (NVRAM) storage devices, cloud storage, and deeper memory and storage hierar-
chies for large-scale systems. We must lower the barrier for adapting new technologies so that they can be 
more quickly and broadly used by the community. 

Data access latency is an impediment to scientifc productivity. Data becomes less valuable if it cannot 
be written or retrieved in a timely manner. This is particularly true for distributed collaborations in which 
scientists utilize data captured at a remote facility. 

EOS often depends upon the combination of observational data and simulations. We cannot consider 
these two topics in isolation; many scientifc workfows rely upon the sharing of data between experimental 
sources and computerized simulations. 
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8.2 Immediate storage requirements and challenges 

This section describes the present and near-term barriers to scientifc productivity for experimental and 
observational data management and storage. These issues are closely related to the challenges and R&D 
needs of service facilities (see §6.2 1). 

8.2.1 Storage and data processing models 

Experimental and observational data is often stored on large-scale parallel fle systems at computing or 
data facilities, but these fle systems are not optimized for the ingest or processing of such data. Scientifc 
storage system procurement is instead driven by batch parallel workload requirements and legacy interface 
compatibility; as a result there are few (if any) mechanisms to di erentiate services or policies for streaming 
data and analysis workloads. There is an opportunity to make better use of available resources using 
data models, runtime services, and processing mechanisms that more closely match the needs of the EOD 
community. 

State of the art 
While some facilities have developed a storage model that is optimized specifcally for analysis of experi-
mental and observational data (for example, the dCache system used by Deutsches Elektronen-Synchrotron 
(DESY) and Fermi National Accelerator Laboratory (FNAL), Figure 19.2), most facilities leverage parallel 
fle systems that were designed primarily for HPC use. Existing parallel fle systems provide a single coher-
ent namespace with uniform semantics, reliability, and interfaces for all users. Experimental and observa-
tional data workfows are mapped onto this environment alongside conventional HPC applications. 

In the computer science community, it has been demonstrated that big data applications and Internet ser-
vices are most likely to adopt and productize alternative programming and storage models and seman-
tics (e.g., Spark, Hadoop, S3, Cassandra, Accumulo, etc.) that are more closely tailored to specifc use 
cases. 

Challenges 
Di erent science use cases could be comprehensively optimized by deploying a specialized storage system 
for each use case. This deployment strategy is impractical due to the complexity and management cost, 
however. There is a fundamental tension between the desire to present specialized services and the reality 
of providing cost-e ective management as illustrated in Figure 8.1. 

Experimental and observational science is also characterized by strong quality of service requirements that 
are not evident in batch HPC or Internet service domains. Data streamed from one-of-a-kind scientifc 
instruments must be stored and processed in a timely manner or else irreplaceable scientifc data will be 
lost. 

R&D needed 

• Identifcation of simpler data models (e.g., object storage in conjunction with science-specifc index-
ing) that can meet EOD requirements with lower overhead than conventional fle system abstractions. 

• Design of pluggable/customizable data models and services that can leverage shared storage re-
sources for streamlined administration yet present di erentiated services and data models for EOD 
use cases. 

• Eÿcient support for uncoordinated, serial workloads, particularly examples such as sensor data stor-
age that exhibit small data or metadata access patterns. Present-day parallel fle systems may com-

1Section 6.2 in particular highlights deployment, policy, user access, and eÿciency issues that should be considered in tandem 
with emerging storage technology. 
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Figure 8.1: Examples of conventional storage hardware and service deployment strategies. In the left fgure, 
all EOD and HPC users share a common storage service. In the right fgure, independent storage silos are 
used to di erentiate data models and service requirements for key use cases. An ideal storage platform 
would combine the cost and maintenance benefts of the former with the customized service benefts of the 
latter. 

promise or neglect this workload in order to better optimize for coordinated bulk access from parallel 
applications. 

8.2.2 Indexing 

Scientifc data must be indexed and presented to users in a manner that facilitates query and retrieval. 
Indexing in this context refers to referencing data according to attributes, scientifc characteristics, or ex-
perimental parameters such that relevant data can be located quickly via queries based on those properties. 
A conventional fle system imposes a very limited form of indexing and organization, in which relevant pa-
rameters must be encoded into the fle and directory names for the data. Additional multidimensional 
indexing can be a very costly component of the scientifc workfow. 

State of the art 
A large volume of experimental and observational data is explicitly loaded from its native format into a 
dedicated database for indexing, querying, and retrieval. 

The HPC community has explored a number of methods for indexing and organizing scientifc data pro-
duced by simulations. Examples include FastBit [122] by Wu et al., Scientifc Data Services [123] by Dong 
et al., and evaluations of SciDB [124] by Yao et al. 

Challenges 
The process of transforming or loading data into a dedicated database is too costly both in turnaround time 
and hardware costs for large data sets. The fundamental problem is that it requires creating an additional 
copy of the data and transforming it into a di erent format. If the database contains references to original 
fles (rather than a copy of the data itself) then there is a danger that the fles may become out of sync with 
the database references, and fnding and accessing data will incur the overhead of accessing two distinct 
storage systems. 

R&D needed 
Research and development is need to identify additional streamlined and broadly applicable methods for 
indexing and retrieving scientifc data “in place.” Ideally, the end user would be presented with an appli-

69 



cation programming interface (API) that resembles a traditional database but provides coherent access to 
data stored in situ in its native format in order to avoid the explicit and costly extract, transform and load 
(ETL) process. 

8.2.3 Access latency 

Access latency in this context refers to both the time required for data acquisition from an experimental and 
observational system as well as the turn around time for scientists to acquire the experimental and obser-
vational data that they depend upon for their research. High latency can limit the frequency at which data 
can be acquired, and is a direct impediment to a scientist’s ability to produce timely research results. 

This latency may arise due to a variety of factors, including the use of low performance storage devices for 
capacity or cost reasons, the geographical distribution of large data sets (which may increase the physical 
distance between scientists and data sets), and the lack of suÿcient networking bandwidth at the science 
facilities. 

State of the art 
Science facilities utilize a variety of strategies to address the access latency problem. Physical disks and 
tapes are shipped to and from scientists in some cases (See Sections 18,13). When suÿcient wide-area 
bandwidth is available, ad hoc remote transfers are performed using tools such as FTP, bbcp, and Globus 
GridFTP (See Sections 13, 18 and 12) or managed (third party) remote transfers are performed using Globus 
or File Transfer Service (FTS). 

Commercial web services and media companies (e.g., Netfix) address latency by designing content delivery 
networks that take into account usage patterns and the nature of the content to minimize the latency per-
ceived by their end users. For example, frequently accessed data is replicated widely at data centers closest 
to anticipated users. Similar approaches have been explored by the science community, for example, by the 
ATLAS Collaboration [125]. 

Challenges 
There are three primary challenges to addressing access latency. The frst is simply a lack of network 
infrastructure for end users outside of major facilities. The second is that in cases where computer science 
solutions exist (i.e., for wide-area data transfers), they are not well-integrated with the science workfows. 
Finally, many data centers with suÿcient capacity and bandwidth are designed to cater to HPC workloads 
rather than experimental and observational data. 

R&D needed 

• Design of fexible storage systems and end-to-end storage architectures that can address the access 
requirements of both data-centric and compute-centric workloads. In particular, EOD access latency 
should not be compromised by the presence of bursty HPC I/O workloads. 

• Identifcation of the methods to simplify or generalize the integration of wide-area transfers into 
automated end-to-end science workfows. Examples such as BigPanDA for the ATLAS project at the 
LHC and the SPOT Suite for the ALS projects have demonstrated this type of integration for key 
projects. 

• Development of mechanisms to characterize data use and optimize how it is dispersed across avail-
able storage resources (both distributed and local) to minimize latency. 

70 



�
�

�

�

�

�

�

�

�

� �

� � �
�

�
�

8.3 Impact of Near-Term Storage Technology and Disruptions 

This section evaluates anticipated challenges and disruptions arising from changes in near-term storage 
technologies and architectures (e.g., exascale systems). 

8.3.1 Emerging storage technologies for data ingest 

NVRAM storage devices are a promising technology for use in experimental and observational data ingest 
due to their low latency and high throughput. They could be used to bu er incoming data from instruments 
in much the same way that “burst bu ers” [126, 127] will be used in HPC deployments to absorb simulation 
data before it is transferred to higher capacity primary storage. 

State of the art 
The frst generation of HPC systems with burst bu ers (such as the Cori system at NERSC [128]) are near-
ing production readiness for HPC workloads. The HPC community and vendors are actively working 
on the software infrastructure for burst bu ers to make sure that they address the needs of HPC appli-
cation workfows. Examples include Cray’s DataWarp [129] and DataDirect Networks‘ Infnite Memory 
Engine [130]. 

EOD facilities have already recognized the need for similar dedicated storage resources to bu er incoming 
experimental or observational data and are using a variety of storage systems for these purposes, but these 
systems do not yet use the NVRAM (or similar) technology (see §15 and §19 for examples in which a 
dedicated storage bu er is used to capture initial data from instruments). 

Challenges 
Performance is not the only challenge for EOD data ingestion bu ers. Several of the science use cases call for 
the ability to inspect and operate on data during its initial capture phase in order to provide rapid feedback 
to users, quality control, initial analysis, or user-defned triggers on the scientifc data. This requires a richer 
level of functionality than simple transparent bu ering. Additionally, scientifc instrument workloads are 
characterized by continuous streaming more so than the highly concurrent bursts that motivate HPC burst 
bu er designs. 

R&D needed 
Development of storage architectures and software solutions that allow emerging storage technologies such 
as NVRAM to be used during streaming data ingestion while also facilitating in-fight analysis and manip-
ulation. NVRAM devices can simply be procured in place of conventional storage devices to improve 
performance in cases where ingest and bu ering solutions are already in place, but they exhibit di erent 
access properties and characteristics. Additional research (for example, to take advantage of lower-latency, 
byte-granular access modes) will ensure that they are utilized to their full potential. 

8.3.2 Mapping data to the storage hierarchy 

EOD consists of a variety of di erent types of data (from di erent instruments or experiments, at di erent 
measurement rates, etc.) with di erent lifecycles and usage patterns. Simultaneously, storage systems are 
increasingly using a deep storage hierarchy to balance the characteristics and costs of di erent types of 
storage devices. The convergence of these two trends suggests the EOD workfows will have to e ectively 
map data (and data processing) to appropriate levels of the storage hierarchy to be able to make eÿcient 
use of available resources. 

State of the art 
EOD data is typically mapped to available data center resources in an ad hoc manner, in response to scien-
tifc needs. The computer science community is increasingly exploring deep memory hierarchies from an 
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architecture perspective but has not yet reached a consensus on a coherent usage model. Specifcally, there 
has been early work exploring the role of deep memory hierarchies for supporting data staging and in situ 
or in-transit application workfows [131, 132]. 

Challenges 

• Each science domain categorizes its data di erently. There is no standardized, uniform way to de-
scribe access frequency, QOS requirements, or anticipated access patterns consistently across data 
sets. 

• Application workfows exhibit di erent and varying access patterns and access priorities that may be 
conficting, which makes data placement challenging. 

• There is no consensus on the cost or utility models (e.g., in terms of performance, energy, etc.) for 
levels in the large-scale storage system hierarchy. 

R&D needed 

• Develop a consistent taxonomy of scientifc data (how it will be used), achieved either via survey or 
via automated characterization methods. 

• Catalogue data access patterns of EOD workfows and develop mechanisms for identifying these pat-
terns at runtime. 

• Develop cost and utility models for multi-tiered storage systems that can be used to optimize data 
placement and the movement of data across the storage hierarchy 

• Develop models in which data analytics systems can be treated as storage endpoints in the mapping 
process to streamline analytics-oriented data transformations. 

8.3.3 Data sharing between experiments, observations and simulations 

End-to-end science workfows will require the seamless sharing of data between simulations and experi-
ments or observations as well as with services for analysis, uncertainty quantifcation, etc. Consequently, 
storage solutions will have to facilitate such sharing while address the heterogeneity in, for example, data 
rates, access patterns, execution platforms, etc. 

State of the art 
The data movement in many application workfows is defned by explicit I/O access to and from a par-
allel fle system. Recent work as part of the International Collaboration Framework for Extreme Scale 
Experiments (ICEE) project has explored the use of data-staging techniques to support data sharing (and 
in-transit data processing) between coupled fusion simulations and experiments at the Korea Supercon-
ducting Tokamak Advanced Research (KSTAR) facility [133, 134]. From the computer science perspective, 
frameworks such as DataSpaces [135] can make it easier for applications to implement such end-to-end 
coupled workfows. 

Challenges 

• Experiments, observations and simulations may exhibit very di erent data generation and access 
patterns and the storage solution has to impedance match between them. 

• Experiments, observations and simulations are typically located at geographically distributed facili-
ties, and data has to be transported over wide-area networks. 

• Data often needs to be transformed at runtime, before it can be exchanged between experiments, 
observations and simulations. 

R&D needed 
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• Develop distributed storage architectures that can support data sharing between experiments/observations 
and simulations. 

• Develop programming abstractions and runtime systems that can enable data discovery and data 
sharing between components of end-to-end workfows that integrate observations and simulations. 

• Develop of support for in-transit data staging and data processing to address the heterogeneity of 
data producers and consumers. 

• Develop optimizations, such as data prefetching, to reduce impact of data transport and latency. 

• Develop eÿcient data transport mechanisms over wide-area networks. 

• Develop methods to facilitate bringing analysis and visualization methods to the storage system (as 
opposed to transferring the data itself) in order to facilitate collaboration. 

8.4 Long-term Data Lifecycle Challenges 

This section explores the role of storage systems in data curation: how do we maintain data for long periods 
of time in a productive and cost-e ective manner? 

8.4.1 Facilitating data curation and preservation 

Stewardship of experimental and observational data implies not just reliable storage but also a variety 
of data processing steps such as quality control, generating metadata and provenance information, DOI 
referencing, indexing, and replica verifcation. Section 10 also identifes long-term data preservation as a 
critical challenge to preserve the integrity of scientifc data over time. Many of these stewardship and 
preservation activities could be streamlined or automated by incorporating key building blocks within the 
storage system itself. In this section we focus on storage technologies that can help to facilitate higher level 
data curation activities. 

State of the art 
Most data curation steps are performed explicitly in a domain-specifc manner. Quality Control (QC), 
for example, is performed in several locations including at the instrument, during data streaming, or on 
primary storage. The QC process, particularly on primary storage, often require the data to be explicitly 
read from storage for processing. Likewise, integrity checks or replica validation require reading data from 
storage to a compute resource for in-memory verifcation 

Previous work in general-purpose active storage has shown that considerable performance gains can be 
achieved by performing simple computations or manipulations on data within the storage system itself [136, 
137]. Information lifecycle management (ILM) tools in the commercial arena have proven successful in en-
suring that invariants or lifecycle rules are automatically maintained for long-lived data [138]. Storage 
systems such as Amazon Glacier [139] have been used to optimize long-term storage di erently from fre-
quently accessed data to achieve signifcant cost savings. 

Challenges 
Current high-performance storage systems do not have any awareness of data curation activities in order to 
optimize for these activities, possibly di erently than for general purpose I/O. There is also no mechanism 
to express policies for long-term data storage. Commercial tools and policy engines for ILM are diÿcult to 
apply in a parallel or distributed storage environment. 

R&D needed 
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• Further research is needed to identify mechanisms to facilitate curation and preservation activities 
without transferring data from the storage system to a compute resource. 

• Triggers could be associated with the data sets to actively enforce invariant properties on the data. For 
example, a trigger could be used to indicate that a particular data set should be scanned for integrity 
or verifed against a remote replica on a periodic basis. 

• Mechanisms to cross-validate replicas that are stored in di erent formats (e.g., optimized for di erent 
indexing or analysis methods) would help to preserve data while also supporting multiple data usage 
models. 

8.4.2 Storage federation 

The federation of EOD data stores can enable explorations across multiple experimental or observational 
data sets and broader scientifc investigations. Storage federations can also address the growing storage 
needs in some domains that are producing more data than can be feasibly stored in a single location. See 
also Section 6.4 which explores resource federation challenges from the service facilities perspective. 

State of the art 
The federation of data stores is being explored by the computer science community, and several solutions, 
ranging from loose federations to very tightly and structured federations, have been proposed and adopted 
by industry. However, their use in science community has been limited to a relatively few large projects. For 
example the Earth System Grid Federation (ESGF) [140] has a very sophisticated federated storage frame-
work for climate data. Similarly, the LHC experiments have a production federation infrastructure using 
xrootd [125] (and also other approaches using http), which o ers transparent access to tens for petabytes 
of data over hundreds of sites. Tools such as iRODS [141] and CometCloud [142] are being used in some 
communities to help manage and federate distributed storage resources. 

Challenges 
Research challenges include scalable mechanisms for fexibly and robustly federating data stores, and for 
indexing data and/or metadata within the federation so that user can search and discover data across the 
entire federation, as well as polices for maintaining data integrity, protecting data ownership, and support 
the required attribution. These challenges are further complicated by the fact that di erent communities 
can have very di erent requirements, usage modes, practices, as well as policies (e.g., about usage, preser-
vation, data lifetime, etc). 

R&D needed 
Research is needed to develop appropriate federation protocols and mechanisms that are both scalable 
and fexible and respect data ownership and access control, as well as “data federation toolkits” providing 
high-level services that can be used across disciplines to create such federation. Research is also needed 
in domain-specifc metadata schemas and data indexing and querying mechanisms that can enable discov-
ery across a (possibly dynamic) federation. Finally, from a policy perspective, research is needed in data 
ownership and access policies as well as policies for attribution. 
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Research Challenges: 9 

Scientifc Data Management: Metadata 
and Provenance 

In this section, we provide a summary of the discussions surrounding the topics of metadata and prove-
nance. This section references broad defnitions for metadata and provenance following [143, ch. 12] [144, 
§ 4.1.6]. Metadata is the information about data [145]. It provides the contextual information, description 
and characterization about data, and can make fnding and working with particular instances of data eas-
ier. Provenance traditionally describes the parentage of a data object, including information, such as source 
data it is derived from and the procedure that created it [146, 147]. More recently it has also been extended 
to describe scientifc processes in more detail [148]. 

Metadata and provenance are critical to most aspects of data management including storage, retrieval, 
analysis, curation, publication, and preservation. At the workshop, the participants representing DOE’s 
Basic Energy Sciences (BES), Biological and Environmental Research (BER) and High Energy Physics (HEP) 
communities are unanimous in their opinion that metadata and provenance are essential for the analyses 
of experimental and observational data and the validation of the scientifc insights gained. However, to-
day the capture of these critical information largely still relies on manual, non-digital and non-sharable 
approaches, hindering scientifc discovery in increasingly high-velocity, high-volume data environments. 
Workshop participants identifed four broad categories of challenges: 

1. Eÿcient automated capturing of metadata and provenance, 

2. Event tagging and real-time analysis of massive experimental and observational data, 

3. Scalable accesses for distributed collaborative analyses, and 

4. Reproducing and validating scientifc outcomes. 

Next, we briefy summarize the state of art the key challenges and the R&D needed in each category in 
turn. 

9.1 Eÿcient Automated Capturing of Metadata and Provenance 

Experimental and observational sciences have a centuries-old tradition in capturing scientifc processes, 
their decisions taken throughout the process and its results. Handwritten lab notebooks are the primary 
capture mechanisms for such information. They provide a crucial basis for result analysis, evaluation, val-
idation and reproducibility. In the last two decades, electronic notebooks have become more prevalent, 
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however they still require the manual entering of information in a non-standardized format. Some work-
fow systems could automatically capture certain metadata and provenance of scientifc processes, however, 
such systems could make it easier to share the analysis workfows and results. For example, the UK’s Lab-
Trove project has produced a workfow sharing platform (MyExperiment) with an electronic lab notebook 
that captures the workfow provenance during the analysis [149]. However, even the most advanced sys-
tems available today have not been designed to work in extreme-scale data environments. 

Metadata best practices 
Among the scientifc domains represented at the workshop, there are a number of communities with well-
organized metadata, however there are also a number of application scientists describing their situations 
by alluding to the Tower of Babel. Broadly, the communities with large shared experimental facilities or 
large shared data collections have thought about their metadata practices, while other communities have 
not established a common vocabulary, process, or standard. For example, the high-energy physics com-
munity, climate research community, geographical data community, and cosmology community have well-
organized community-wide data processing e orts. The high energy physics community uses a shared data 
processing platform based on ROOT1 [150], which prompts a common standard for data and metadata. 
Their workfows are captured typically as ROOT scripts. The geographical data and earth sciences commu-
nities have developed a number of metadata standards including ISO 19115 and ISO 19139. In the United 
States, there is coordinating organization known as the Federal Geographic Data Committee (FGDC) that is 
responsible for developing, using, sharing, and disseminating geospatial data through the National Spatial 
Data Infrastructure (NSDI).2 Under the auspices of the World Wide Web Consortium (W3C), there is a set 
of metadata standards under the title of Dublin Core.3 Though it is more commonly used by the library 
sciences and other social sciences, some natural sciences communities are adapting aspects of these stan-
dards, for example, National Aeronautics and Space Administration (NASA) is actively promoting the use 
of Directory Interchange Format.4 

During the workshop, Dean Williams, the PI of the Program for Climate Model Diagnosis and Intercompar-
ison (PCMDI) project5 and the Ultrascale Visualization Climate Data Analysis Tool (UV-CDAT) project,6 

presented a compelling set of use cases from the climate community. Next, we briefy summarizes these 
examples to illustrate how metadata might be used and evolved in an actual application. 

The climate community has a community-wide standard on metadata, known as the Climate and Forecast 
(CF) Metadata Conventions that is used in a large variety of data sets [151]. This standard was started by the 
Atmospheric Model Intercomparison Project (AMIP)7 project in the late 1980s, and propagated to climate 
simulation groups, re-analysis groups, and eventually adopted by the wider community. This common 
standard facilitates the exchange of data from di erent sources, comparison of software tools, and valida-
tion of research fndings. This standard is an integral part of the Climate Model Intercomparison Project 
(CMIP),8 and is key to the Inter-governmental Panel on Climate Change (IPCC) Assessment Reports.9 In 
the CMIP project, metadata can appear in three forms: (1) as header information in a netCDF fle, (2) as 
descriptions of data sets entered by users through a questionnaire, (3) as free-form descriptions of the data 
fle or data sets. Data sets entered to CMIP repository also go through extensive quantity control (cura-
tion) steps including metadata format conformance checking and fle format consistency checking. CMIP 
software system allows users to report quality problems about data sets and relay reports back to the sub-
mitters of the data. After a certain period of error-free uses, a data set is issued a DOI so that users can 

1http://root.cern.ch 
2https://www.fgdc.gov/nsdi/. 
3http://dublincore.org/. 
4http://gcmd.gsfc.nasa.gov/add/difguide/. 
5http://www-pcmdi.llnl.gov/. 
6http://uv-cdat.llnl.gov/. 
7http://www-pcmdi.llnl.gov/projects/amip/NEWS/overview.php. 
8http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php. 
9https://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml. 
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refer to the data set in publications. This permanent reference to a data set acknowledges the contribution 
of the submitters and encourages data reuses and data preservation. 

A key function of metadata is to allow users to locate data relevant to their work. To this end, a best practice 
is to augment the metadata records with some indexing techniques to accelerate the searching operations. 
For example, in the current CMIP implementation, three di erent types indexing techniques are used: Post-
greSQL [152] for high-level statistics, SOLR [153] index for user-facing operations, and THREDDS [154] 
for subsetting of data. 

At this point, the well-organized metadata process in the climate community is largely limited to simu-
lation data. There is a larger variety of experimental and observational data that are managed by many 
disparate research groups collecting the data. These disjoint experimental and observational data sets are 
not easily accessible. Researchers from other communities mentioned similar challenges that will be de-
scribed later. 

State of art in provenance capturing The research community on provenance has developed a range of 
provenance models including domain-specifc solutions such as VisTrails [155] in UV-CDAT [156] and 
generic solutions such as D-PROV [157]. To enable greater interoperability between provenance models a 
working group for the W3C defned the core specifcation for an Open Provenance Model (OPM) [158] in 
2011. This was followed in 2013 by the release of a second W3C standard Prov-O [159]. It provides a set of 
classes, properties, and restrictions that can be used to represent and interchange provenance information 
generated in di erent systems and under di erent contexts. It can also be specialized to create new classes 
and properties to model provenance information for di erent applications and domains [160]. Some of the 
communities represented at the workshop, such as the climate community, have since developed a number 
of OPM and Prov-O ontologies for specifc application domains [161]. Others, such as those from the HEP 
and BES communities are not aware of any widely adopted community standards on provenance. While 
much research has focused on provenance capture and storage methods, workfow management system de-
velopers have been at the forefront of integrating automated provenance capture into their software [162]. 
Science communities on the other hand often have a long tradition of capturing the provenance of their 
work in non-digital means, such as Lab Notebooks mentioned a number of times by BES scientists at the 
workshop. HEP projects vigorously review and test research results as a team before publication, requir-
ing scientists to capture the provenance of their work in electronic and non-digital media to prepare their 
work for this process. In climate modeling, teams capture their model experiment scripts to enable them 
to retrace their steps if required. 

The methods for provenance collection generally fall into three categories: workfow event listener, appli-
cation logs, or direct calls to a provenance vocabulary-based API. Workfow listeners provide a means to 
directly collect and record workfow events, such as workfow identifer start/stop date time stamp, param-
eters or data used and so on. Workfow provenance is typically asynchronously collected, and workfow 
events ordered by the calling order, making transitive closure possible. For Application Provenance Vo-
cabulary APIs, provenance is collected through API calls at application execution time, inferring that any 
provenance collected is reliant on the developer making calls to the API [163, 164]. For log fles, event 
history is derived from either log fles or streaming logs at runtime and reconstructed as provenance using 
a provenance vocabulary API [165]. Logger APIs support logging at di erent granularities: fatal, error, 
warn, info, debug, or trace. Interpretations of the log fle entries is done through a monitor application 
that analyses the log fles and creates the provenance entries [166, 167]. The majority of the available 
solutions has been focused on the collection of relatively low-velocity and low-volume provenance data. 
Only a few projects have started to explore high-volume, high-velocity capture mechanisms. One approach 
uses messaging services such as Apache Axis2 and RabbitMQ [168] or Apache Kafka and AVRO [169] to 
facilitate high velocity provenance transmission. In distributed or extreme-scale computing environments 
provenance capture can at times be unreliable [170], leading to incomplete provenance records. 

Challenges in eÿcient capturing of metadata and provenance 
E ective metadata capture was mentioned by all application representatives as a critical need. The meta-
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data captured here generally include information such as the time a data record is produced, the user who 
produced the data records, the program that produced the data and so on. Following are a number of 
specifc issues discussed. 

1. Eÿciently capture metadata about data movement, correlation, approaches and architectures of 
multi-source, heterogeneous metadata in a distributed computing environment. Existing work-
fow provenance capture solutions are e ective for low-volume capture requirements, however if 
the community wants to support new provenance applications that require high-velocity provenance 
capture new approaches, in particular for extreme-scale systems with deep memory hierarchies. 

2. Describing in situ data reduction. With the increasing costs of data movement and the limitations of 
I/O systems on the road to exascale, workfows for computational science must shift from saving data 
for post-hoc analysis to incorporating various forms of data analysis and visualization while running 
a simulation, with comparatively little data saved for post-hoc analysis. A key challenge hereby is 
the development of suÿciently descriptive and detailed provenance models to capture adaptive data 
reduction processes at runtime to enable the further processing of the data, as well as its validation 
and interpretation post hoc. 

3. Both structure and content of provenance records can be incomplete [171], in particular if cap-
tured in extreme-scale environments. Dropped messages can result in missing nodes or edges in the 
provenance graphs. Additionally, soft, hard or silent errors can lead to missing or incorrect content 
in provenance messages. Furthermore interrupted or failed workfow processes due to system errors 
can lead to incomplete provenance graphs. 

4. Lightweight, customizable approaches to capture of metadata and provenance in highly variable, 
potentially ad-hoc processes. 

5. Capturing the performance metadata could be very useful in providing feedback about the progress 
of the application and in debugging, optimizing and developing analysis procedures. An e ective 
metadata capturing system should have the option to enable capturing of performance metadata. 

6. Enabling users to contribute data and metadata. In discovery science, the direction and methods ap-
plied during data analyses are often driven by events that are discovered in the data or by the intuition 
and expertise of the scientist(s) that conduct the analysis. However there are to date no provenance 
capture methods that work in more ad-hoc situations and at scale. In particular the capture of human 
decision points and reasoning are neglected in today’s automated solutions. 

R&D needed 
The automated capture of metadata and provenance remains an open challenge in all three communities, 
in particular in distributed environments, against the background of high-data volumes and velocity and 
during ad hoc experimental or analytical processes. Research is needed to not only capture metadata and 
provenance eÿciently, but also to ensure the metadata is complete for understanding the data products. 
This can be challenging because some of the analysis steps are performed in situ and could not be easily 
reproduced—i.e., rerunning a large simulation program. In addition to automatic metadata and prove-
nance capturing, the metadata and provenance management systems should be fexible enough to capture 
input from human experts in the form of addition, annotation or correction. 

9.2 Event Tagging and Real-time Analysis of Massive Experimental 
and Observational Data 

The metadata captured in the above discussion is available to be recorded without signifcant computing 
e ort. In contrast, we use the term “event tagging” to refer to the metadata that requires some e ort to 
generate. For example, on a timestep of a global climate simulation data, the metadata such as the user 
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who ran the simulation code and the simulation parameters require no e ort to extract, while whether the 
data contains a tropical cyclotron would require a detection procedure that requires a certain amount of 
computing e ort [172]. We refer to the identifcation of tropical cyclotrons as tagging events. Similarly, 
in an observation, a data record might be an image about a material sample under an X-ray and a feature 
might span multiple of such images, in which case, a tag may be generated to refer to all these images. 
Another common term used to describe such an event is a feature. Di erent science communities appear to 
prefer di erent terms, for example, dynamic metadata is used by a number of workshop participants. These 
dynamic features may be extracted after the data is generated, however, as simulations and experiments 
generate data faster and faster, there is a trend to extract such features while the raw data is frst generated 
or collected before the raw data is written to the relatively slow permanent storage. In fact, in some cases, 
the raw data might never be written to the slower storage [144]. 

State of the art in tagging 
Given a large set of raw data, tagging the data to identify those data records with special features is a 
common practice to help scientists to identify “interesting” data records. This practice is heavily utilized in 
HEP [173, 174] and the biological sciences [175, 176, 177, 178, 179]. There are di erent ways to categorize 
the tagging techniques, for example, automated vs. manual, and structured vs. unstructured. Typically, the 
tagging performed by HEP applications are to classify events based on community-defned ontology [173, 
174], while many of the genomic applications utilizes both controlled vocabularies as well as free-form 
annotations. Often, a large user community could contribute annotations to a centralized data collection, 
such as the GenBank.10 Additionally, there are techniques to extract information from existing annotations 
to generate new information [176, 180, 181]. 

In some applications, the automated tagging is closely associated with real-time data analysis, where the 
tags are used to make decisions about whether and when to terminate the experiment or observation, or 
how to adjust the experimental setting for the next run or next round of data collection. Some of the use 
cases discussed are in the process of automating all or part of the experiment or data analysis [75, 76]. These 
automations are largely based on the automated tagging or classifcation of experimental measurements or 
observations. 

Challenges in tagging 
Existing systems for producing event tags are all custom-developed software created with extensive pro-
gramming e orts. Reducing the cost to develop these tagging systems would make it easier for more ex-
periments and observations to automate more steps of the experiment or data analysis. 

Often the tags or annotations are collected into central databases, but need to be accessed by a large number 
of users distributed around the world. For example, the LHC experiments have thousands of users around 
the world and similarly, global climate research has many thousands of users sharing a large set of climate 
simulation results. Providing eÿcient support for thousands of concurrent accesses to these databases is a 
challenge. The existing querying and indexing techniques may not provide suÿcient performance for the 
real-time needs mentioned above. 

In addition, application scientists have indicated that event tagging should be allowed both at facilities 
where the data records are generated and by user community that performs the analysis tasks. Given 
that some large collaborations have many thousands of users, e ective support for community input is a 
challenge. 

In experimental measurements, it is important to capture the uncertainty in the measured values. Correctly 
capturing and propagating the uncertainty information in the analysis process is another challenge. The 
propagation of the uncertainty in analyzing both experimental data and simulation data could be regarded 
as another form of event tagging. 

R&D needed 
10http://www.ncbi.nlm.nih.gov/genbank/. 
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With growing data volumes, the fast and eÿcient identifcation of valuable events for further analysis is 
becoming increasingly important. The growing desire for larger communities to explore the same data, 
means that this is not only an initial identifcation challenge, but a management challenge too. Enabling 
communities to e ectively describe and discover the events relevant to their research in extreme scale 
feature spaces. 

Uncertainty quantifcation in observational and experimental data, as well as data products derived from 
these results is rapidly gaining in importance across the EOD communities. However, to date there are 
no standardized means to capture, express and compare these insights as part of the data’s metadata or 
provenance records. 

9.3 Scalable Accesses for Distributed Collaborative Analyses 

When discussing the capture of metadata and provenance in Section 9.1, we have touched on a number 
of issues related to the scalability of capturing and accessing such data. Here we will not repeat the dis-
cussion of the state of the art on scalability of metadata and provenance, but instead concentrate on the 
challenges. 

Challenges to scale-up and scale-out 
The metadata and provenance standards and practices must be scalable in a number of di erent dimen-
sions. Here are a few examples. 

1. The number of cores in a high-performance computer is quickly growing. The mechanisms for col-
lecting data and metadata must be able to accommodate this growth. 

2. User analysis jobs often have many steps; propagating the metadata and event tags through the anal-
ysis steps can be a challenging issue. 

3. When preserving data records for the long term, it would be highly desirable to have metadata and 
provenance be permanently associated with the relevant data sets for an extended period of time, say, 
for several decades. How to store them together and what to store in a durable way are challenging 
questions. 

4. As time progresses, new experimental protocols and new measurement devices are developed, the 
ontologies and procedures for capturing metadata must be able to evolve with these changes. For 
example, in the astronomy community, it would be highly desirable to have a metadata framework 
and tools to be reused across di erent sky surveys. 

5. The metadata models should be reusable across di erent specialties of a scientifc domain. For exam-
ple, it is highly desirable to have the same metadata models used on both simulation and experimental 
observations. 

6. As more data become integral part of the public decision making process, some critical data sets 
might be of interest to a large number of people. The relevant metadata infrastructure should be able 
to scale as the number of users increases. 

R&D needed 
Research is needed to scale metadata and provenance in a number of di erent ways. The simple version 
is to scale the metadata capture to a large number of data sources and a large number of data process-
ing pipelines. A more complex version would include coordinating metadata from di erent but related 
projects. Another aspect of scalability is to allow ontologies, metadata and provenance to evolve gracefully 
over time. On projects of national importance, it is important to keep a coherent set of metadata for decades 
or longer. Therefore, scaling the metadata and provenance across time is yet another research topic. 
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9.4 Reproducing and Validating Scientifc Outcomes 

The most important use of metadata and provenance is to facilitate reproducing and validating scientifc 
research results. A workfow may be rerun with a set of modifed parameters to explore alternative options 
in planning, auditing and training. Exactly reproducing a data analysis is necessary to validate scientifc 
outcomes and maintain scientifc integrity. Next, we briefy discuss the metadata-related challenges in 
supporting reproducibility. 

State of the art 
Reproducibility is defned as: “the ability to recompute data analytic results given an observed data set and 
knowledge of the data analysis” [182]. Metadata and provenance play a key role, as they enable scientists 
to compare, contrast and validate research. While reproducibility does not guarantee the correctness of the 
approach or results, it is an essential foundation for validation. As such, this paradigm is being increasingly 
embraced by publishers [183] and funding agencies. 

To easily reproduce a complex scientifc workfow, we would like the workfow to be well documented and 
could be conveniently rerun. However, as mentioned in the previous sections, metadata and provenance are 
often in the form of lab notebooks, handwritten during experiments and observations. These handwritten 
notes typically do not rigorously follow any guiding format that would guarantee the information is com-
plete, accessible, or error-free. Electronic Lab Notebooks have made it easier to share and search such notes 
on discovery processes, but a lack of standard formats makes it still diÿcult if not impossible to compare, 
contrast and correlate these notes across di erent experiments. The ability to formally and automatically 
check any processes is also not available for this form of provenance for reproducibility. 

In computer science, a current research area is focused on the reproducibility of numerical results for single 
applications and the reproducibility of experiments for workfows through provenance capture [155, 184, 
185, 186, 187]. For example, part of the DOE BER ACME project’s initial investigations are underway to 
address the reproducibility of experiments and execution, with an assumption that the core simulation 
codes are numerically reproducible. 

Challenges in Supporting Reproducible Research 
One key reason for capturing provenance is to make it easier to reproduce a data analysis procedure. How-
ever, using provenance to enhance reproducibility is still in its infancy. In communities that use a shared 
analysis environment, such as scientists from the HEP community typically use ROOT [150] to run their 
analyses, reproducing an analysis could be as simple as rerunning the same analysis script on the same data 
fles. However, the existing provenance capturing systems often fail to capture all necessary information to 
rerun the scripts. 

When considering the reproducibility for computational applications as part of the scientifc discovery 
process, additional challenges need to be considered: 

• Numerical reproducibility [188, 189]: has the algorithm been numerically designed to create the same 
results if replicated? 

• Experiment reproducibility [190, 191]: do we have all the information about the simulation to repeat 
it? 

• Execution reproducibility: can we recreate the execution environment, execution conditions (includ-
ing system events) and system architectures? 

Reproducibility for workfows adds a set of additional challenges: 

• Error propagation reproducibility: can we replicate the processes in which numerical- or system-
induced errors or di erences are propagated through the workfow tasks? 

• Decision reproducibility: can we reproduce decisions made by the workfow management systems 
and users during the workfow execution that critically infuence the outcome? 
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• Complexity: can we deliver reproducibility at an a ordable cost across all the above the challenges 
covering a wide range of algorithms, execution environments, system architectures and events? 

Additionally, the workshop participants also discussed the following general reproducibility issues: 

• Provenance capture framework often does not capture all the necessary information. For example, 
one might capture the name and version of the program that generated the data, but neglected to 
capture the information about the compiler, runtime libraries or the OS. Such low-level information 
often has an unexpected impact on the output produced, and is therefore important to capture. The 
challenge is to capture such information eÿciently enough to allow users to continue their analysis 
work without noticing the interferences. 

• Investigation of provenance models for reproducibility. 

• Capturing the uncertainty information in the provenance is important to the interpretation of the 
results that di er from each other in di erent runs. However, how to express the uncertainty and 
express the assessment of the results are new research topics. 

R&D needed 
The reproducibility of scientifc research as part of the validation process for novel fndings is foundational 
to all scientifc work, today this is a predominantly manual process that does not scale to large data volumes 
and complex scientifc processes. Sharing of metadata and provenance information with a wider commu-
nity is necessary for reproducible science but diÿcult. Research on new provenance will be required that 
is suitable for reproducing experiments, observation and their analysis. This work will need to consider 
the tradeo s between the required expressivity and detail to serve the intended purpose versus the vol-
ume of information produced that could negatively impact analysis performance or the accuracy of the 
capture. Furthermore, we need to investigate how we can move from a provenance model with one stream 
of provenance (i.e., from a workfow) to a system where we have many streams that align and intersect 
at certain time intervals—for example, if we consider capturing information from a complex experimen-
tal instrument or workfow. Research will be needed in enacting provenance as part of the validation or 
reproduction process. 
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Research Challenges: 10 

Data Curation 

Digital curation is a proactive process, where data formats, representations and description are continually 
reviewed and when needed updated to keep them relevant and useful for a set of well-defned designated 
user communities. Digital curation involves maintaining, preserving and adding value to digital research 
data throughout its lifecycle. The active management of research data reduces threats to their long-term 
research value and mitigates the risk of digital obsolescence. Meanwhile, curated data in trusted digital 
repositories may be shared among the wider research community. As well as reducing duplication of e ort 
in research data creation, curation enhances the long-term value of existing data by making it available for 
further high-quality research [192]. 

Few data centers provide that level of support, the DOE BER ARM program’s data management team is one 
of the centers that provides active curation. The active curation process involves many di erent processes, 
many of which remain manual to date, others are embedded in the day-to-day operation. More commonly 
centers or publishers provide data preservation services, were the data is preserved in its original state for 
an agreed period of time. Increasingly these data objects are assigned DOI’s issued through the interna-
tional DataCite federation and its partners such as the Oÿce of Scientifc and Technical Information (OSTI) 
for DOE Laboratories. The actual data preservation is however carried out by individual institutions, which 
need to maintain the data. Data preservation requires less e ort, but has the challenge that the community 
has to maintain the knowledge on how to interpret a specifc data format (including the tools that might be 
required to read, decompress, decrypt, analyze, etc). 

In 2013, the Oÿce of Scientifc and Technology Policy (OSTP) released a new directive on Increasing Access 
to the Results of Federally Funded Scientifc Research.1 This directive had the immediate impact that or-
ganizations such as DOE started to develop policies and guidelines to further the long-term accessibility of 
research results. However the directive also stimulated a discussion within the science communities about 
data curation, in particular what data is worth preserving, how long should it be preserved, metadata, 
provenance and active curation required to further data reuse, reproducibility of science and verifcation 
of scientifc discoveries, as well as the costs models associated with long terms data curation. In partic-
ular a recent BER Climate and Environmental Sciences Division (CESD) workshop and associated study 
highlighted the increase of these discussions [193]. 

During this ASCR EOD workshop participants also identifed a clear need for data curation across the 
DOE SC communities and facilities. However, during discussions, it also became clear that no solution 
or approach exists within DOE SC that is generally and broadly applicable. The result is many ad-hoc 
approaches, which results in the duplication of e ort, extra expense, and what may be viewed as an unsus-
tainable approach to curation. A focus on sustainable, program-wide approaches for data curation would 

1https://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf. 
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broadly beneft DOE SC communities in terms of cultivating and sustaining community-centric data repos-
itories, as well as to fulfll legal mandates for making the results of federally-funded scientifc research 
public. 

10.1 Findings 

Findings from the EOD workshop can be summarized in two main points regarding data curation. 

1. There is a clear need for data curation across DOE SC communities, but there does not exist a solution 
or approach within DOE SC that is generally and broadly applicable. The result is many ad-hoc 
approaches, which results in the duplication of e ort, extra expenses, and what may be viewed as an 
unsustainable approach to curation. 

2. A focus on sustainable, program-wide approaches for data curation would broadly beneft DOE SC 
communities in terms of cultivating and sustaining community-centric data repositories, as well as 
to fulfll legal mandates for making the results of federally funded scientifc research public. 

10.1.1 Keeping large-scale research data collections accessible and reusable through 
automated and standardized data curation processes 

The majority of science communities are only familiar with long-term preservation, but not with the pro-
cesses required for proactive curation. While guidance on data curation processes exists through centers 
such as the UK Digital Curation Center, there are no reference implementations or standardized tools 
available that are capable of providing automated curation services. In particular tools for the curation 
of extreme-scale data streams have not been researched to date. Today data curation includes a signif-
cant amount of manual and human-centric tasks, making them challenging to apply to extreme-scale data 
environments. 

State of the Art 
Data curation practices vary signifcantly between di erent scientifc domains, we therefore review in this 
section state of the art from a number of di erent viewpoints. 

The UK Digital Curation Center2 is the premier source on information and training about data curation. 
They provide guidelines to assess existing data assets, to plan the setup of a data curation facility and to 
assess the e ectiveness of an existing facility. The Open Archival Information System (OAIS) is an ISO 
standard initially developed in 2000 by the space science community, which describes the organization of 
people, processes and systems required to run a long-term data preservation service.3 However, while stan-
dards and guidelines have been in existence for some time, no reference implementations or standardized 
tools exist today for digital preservation and curation. The communities that engage in digital curation 
usually develop their own ad-hoc processes and tools to provide the required services to their communi-
ties. 

BES community 
Data curation or preservation is today seen as the task of the individual PI, which the exception of the 
neutron facilities, that have a tradition of preserving raw data for their community as the data volumes are 
seen as small enough to make that easily feasible. In the future, there is a requirement to store data and 
metadata, use universal data formats, and provide physics-based curation (see §17). Data availability and 
curation would be fundamental in enabling the future reuse of data for scientifc verifcation, integration 
of experimental results to create meaningful statistical insights, create a knowledge base that can help 

2UK Digital Curation Center, initially funded as part of the UK eScience Program led by Tony Hey; http://www.dcc.ac.uk/. 
3Open Archival Information System (2012 update); http://public.ccsds.org/publications/archive/650x0m2.pdf. 
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experimental planning and real time analysis. In Europe, the Pandata project has started to address some 
of these issues to enable facilities to establish long-term knowledge archives, not only at a single facility, 
but also across facilities.4 

High Energy Physics community 
In 2009, the HEP community formed a Data Preservation in HEP (DPHEP) study group that investigated 
whether the community had a need for a planned approach to data preservation and curation. The study 
concluded that there would be great beneft to the long term preservation of results, as evidenced by recent 
discoveries that had been enabled through the reanalysis of data from a prior experiment. The study group 
then examined what actions would need to be taken and concluded in its 2012 report5: 

• Urgent action is needed for data preservation in HEP. 

• The preservation of the full capacity to do analysis is recommended such that new scientifc output 
is made possible using the archived data. 

• The stewardship of the preserved data should be clearly defned and taken in charge by data archivists, 
a new position to be defned in host laboratories. 

• A synergistic action of all stakeholders appears as necessary. 

• The activity is best steered by a lightweight organization at an international level. 

The group further recommended the following actions: 

• Priority 1: Experiment level projects in data preservation. 

• Priority 2: International organization DPHEP. 

• Priority 3: Common R&D projects to develop preservation models and tools. 

Astronomy community 
The astronomy community has a long tradition of long-term data preservation for its observational studies, 
and they rely critically on data sharing and the reuse for its scientifc work. The UK Digital Curation Center 
provides an excellent summary of key data formats, tools and active data archives.6 

The National Virtual Observatory and its successor, the Astronomical Virtual Observatory (http://usvao.org) 
set out to federate the data from the whole astronomy community, by defning a set of lightweight proto-
cols that were easy to implement by most data providers. These grew into a world-wide e ort, called the 
International Virtual Observatory Alliance (IOVA).7 

Several large projects, like the SDSS, have attracted a wide-range of users, who go considerably beyond the 
professional astronomy community. An interactive database access was provided to the users who were 
able to make observations through a virtual telescope which was online day and night. Over 5,000 refereed 
papers with 200,000 citations resulted in the use of this data set to date. Citizen science projects like 
GalaxyZoo8 have attracted hundreds of thousands of internet scientists who participated in the research 
using the open data, and made several major original discoveries. 

Large cosmological simulations are also turned into the Open Numerical Laboratories that can be used 
interactively, and are becoming the norm for the community. The simulations are presented through an 
intuitive databases interface that enables the users to query complex evolutionary histories (merger trees) 
of the galaxies. The frst of such databases was the Millennium simulation database, followed by others. 
These methods provide a novel access pattern that go beyond just downloading the simulation snapshots. 

4Experimental Science at Large Scale Facilities—European Pandata Open Data Infrastructure; http://pan-data.eu/PaNdataODI. 
52012 Status Report of the DPHEP Study Group: Towards a Global E ort for Sustainable Data Preservation in High Energy Physics; 

http://arxiv.org/ftp/arxiv/papers/1205/1205.4667.pdf. 
6http://www.dcc.ac.uk/resources/metadata-standards/disciplinary/astronomy. 
7IVOA: http://ivoa.org. 
8http://galaxyzoo.org/. 
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The users do not even need to know whether the underlying simulations are 10 TB or 10 PB, as long as the 
results of a query appear rapidly. 

Climate and Earth Sciences Communities 
This is a community with a long tradition in data preservation and curation in particular for their obser-
vational data collections. For example the World Data Centre (WDC) system was created in 1957 by this 
community to archive and distribute observational data. At the end of 2008, the World Data Centres were 
reformed and a new International Council of Science (ICSU) World Data System (WDS) was established 
in 2009 that encompasses a wider set of scientifc domains. ICSU WDS promotes universal and equitable 
access to, and long-term stewardship of, quality-assured scientifc data and data services, products, and 
information and coordinates trusted scientifc data services for the provision, use, and preservation of rel-
evant data sets. ICSU utilizes the Committee on Data for Science and Technology (CODATA) to develop 
strategic collaborations on issues of common interest. 

Under the World Climate Research Programme (WCRP), the Working Group on Coupled Modeling (WGCM) 
established the Coupled Model Intercomparison Project (CMIP) in 1995 as a standard experimental pro-
tocol for studying the output of coupled atmosphere-ocean general circulation models (AOGCMs). CMIP 
provides a community-based infrastructure in support of climate model diagnosis, validation, intercom-
parison, documentation and data access. The Earth Systems Grid Federation (ESGF), originally developed 
in the late 1990s, is an international collaboration that provides hereby the underpinning infrastructure 
for long-terms data preservation, discovery and sharing. Data in the ESGF infrastructure undergoes strict 
data quality checks and have to adhere to fxed data and metadata standard requirements. 

However despite the e ort of these data centers and many others that are not directly connected to the WDS 
or ESGF collaborations, there are no publications, standardized approaches or tools in this community for 
long-term data curation and each center continues to develop their own ad hoc approaches. The advent 
of dramatically increasing data volumes and rates presents a signifcant challenge to the community to 
continue their existing data curation e orts. 

Biology community 
The biology community shares its data predominantly through databases, some very large and standard-
ized (e.g., the Protein Data Bank, PDB; Proteomics Identifcation Database, PRIDE; and Gene Expression 
Omnibus, GEO), but the majority of the databases are small and usually maintained by single investiga-
tors. These databases are often developed and curated over many decades. Traditionally, di erent felds of 
biology defne their own specialized data and metadata in the form of “minimal information” standards, 
together with the accompanying specialized software. More recently the need for interdisciplinary projects 
has led to the development of ontologies that help to link across some of these formats for specifc topic 
areas, such as the Gene Ontology. A 2009 talk from one of the world’s leading biology institutes9 describes 
the predominantly manual data curation e ort in this complex environment. These observations lead to 
the formation of the European ELIXIR project,10 that aims to establish a pan-European data infrastructure 
in support of life sciences research. Since then, there has been an e ort to develop an overarching frame-
work for data curation in biology based on the ISA-Tab standard (Investigation-Study-Assay) together with 
a suite of software tools to support standard-compliant experimental annotation and community-level data 
curation11 The ISA-Tab format is intended to record the minimal information needed to understand how a 
biology data set was generated, but still depends on other community-based standards to describe the data 
itself. To facilitate this, a biosharing resource was created as an outgrowth of the ELIXIR project to provide 
access to the most current community standards (BioSharing). These e orts to standardize biology data to 
facilitate curation have been adapted by several new data-oriented publications as the preferred format for 
biology data submission (e.g., Nature Publishing group’s Scientifc Data12). Unfortunately, most ISA-Tab 

9EMBL-EBI; http://precedings.nature.com/documents/3225/version/1/files/npre20093225-1.pdf. 
10https://www.elixir-europe.org 
11DOI: 10.1093/bioinformatics/btq415. 
12http://www.nature.com/sdata/. 
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compliant tools still require the manual entry of relevant metadata and the manual linking of data sets, as 
well as a deep knowledge of data structures and ontologies. Thus, to date they have been rarely used by 
biological scientists. Although there are e orts to build more automated data capture and curation tools 
for specifc scientifc programs (e.g., FAIRDOM13), this area remains one of the key research topics in the 
feld of data curation. 

Challenges 
Capturing suÿcient curation information 
Data curation advice and reference models provide guidance on the type of information that needs to 
be present when data is submitted for curation. However, there are no specifc metadata and provenance 
models that implement these guidelines or link into the metadata and provenance capture process available 
(see §9). Furthermore, the guidelines available are focused on the long term description of the data and do 
not take into account the type of information required to support data reuse both in follow-on manual and 
automated science processes. 

Selective data curation 
Data curation requires signifcant resources, given the strongly increasing data volumes in experimental 
and observational facilities it is not sustainable to curate all the data ever created. Today’s approaches to 
data selection for curation are predominantly not only manual, but also very labor intensive—capturing 
and assessing a range of di erent information about the data itself, its impact and its standing in the context 
of the complete existing collection. In large-scale data environments this approach is not sustainable. 
Furthermore the methods available today are focused on complete data sets and have not been applied on 
a much more fne-grained levels. In discussions at the workshop, domain scientists therefore identifed a 
need for methods that would enable the automated, but selective curation of data. 

Long-term data preservation 
In the frst instance, any data curation solution needs to ensure the integrity of the data it is managing over 
long periods of time. The integrity can be at risk from software errors, reprocessing errors, malicious or 
unintentional damage and media faults. While it is possible to combat some of these risks through data 
duplication, regular checks and media migration, these become cost prohibitive in extreme-scale collec-
tions as we see them at modern experimental and observational research facilities. Furthermore many of 
the crucial decisions along the way (i.e., when to migrate) are left to human judgment, rather than standard 
rules, automated checks and indicators for required actions. 

Maintaining meaning over time. Experimental and observational data is only useful if it is accompanied 
by relevant and suÿcient metadata and provenance information. However formats and accompanying 
tools change over time, what was once a mainstream standard can become obsolete over time, or evolve 
signifcantly due to new insights gained. Data in old formats, described by old standards becomes less 
useful to its designated user communities. In other cases new user communities are identifed for a specifc 
type of data, however the community is unfamiliar with the terms used to describe the data and thus cannot 
make adequate use of it. Today these changes are identifed by humans, including the point when actions 
need to be taken to expand or translate specifc formats. What is needed are cost-e ective means to carry 
out these tasks and automate their implementation. 

Data curation against a background of a highly complex network of interlinked metadata standards 
A subset of the challenges described in the previous paragraph are the maintenance and migration of 
data, metadata and provenance formats against a background of a diverse set of user groups, with their 
associated data lifecycles that show many links and interdependencies. 

Sustainability in data curation 
Today the majority of the costs involved in data curation lie in its many manual processes. Moving for-
ward, it is expected that the increasing amount of costs will be in its storage and maintenance. New cost 
models are needed where approaches can be weighed and questions such as: where will long-term curated, 

13http://fair-dom.org 
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searchable, accessible data archives best be hosted? Can existing and future ASCR computing and net-
work facilities be leveraged to become part of the solution to this challenge, e.g. for a set time period? In 
addition one needs to consider approaches that successfully marry data integrity protection and domain 
specifc maintenance of data, metadata, provenance, representation and reuse information. 

Research focus areas 

• Research into metadata and provenance models that not only support the long-term curation of data 
and scientifc processes, but enable the active reuse of the data for identifed purposes such as re-
analysis, reprocessing, reproducibility, validation and background knowledge for time sensitive deci-
sion making. 

• Investigate new data publication approaches that are sustainable for extreme-scale data collections, 
including automated, selective data curation. 

• Software R&D e orts aimed at producing a sustainable approach to curation that can be applied, with 
tailoring, to diverse science programs across DOE SC, and that make use of existing and future ASCR 
computing facilities. 

• New approaches to the management of collections of data products that include raw scientifc data 
along with associated and robust metadata and provenance (see §9). 

• Innovative interfaces that can support interactive access to very large data collections, possibly nu-
merical simulations with trillions of particles or grid cells. 

• R&D e ort to create automated, sustainable approaches to defne, version and maintain data prod-
ucts (including metadata, provenance and tools) in support of publications, that have overlapping 
components. 

• Research aimed at developing methods that enable the long-term reproducibility of curated results 
in support of publication verifcation. 

10.2 Active Support for Data Validation and Reuse 

A key need identifed by the experimental and observational science community is the ability to support 
the active reuse of the curated data as part of subsequent data analysis, validation and reproducibility 
e orts. The community focused hereby not so much on the available information that enables reuse, but 
the mechanisms that can tie this data directly into automated scientifc processes, potentially in time critical 
situations. 

Challenges 
Data discovery 
Part of the value of a curated data archive is having the ability to fnd data; it is not enough to just store it 
somewhere. Finding data requires the ability to perform advanced searches, which implies that searches 
will make heavy use of metadata and provenance, as well as advances in the lexicography of search that are 
useful to the science community. In other words, search engine-style, text-based searches are not suÿcient. 
Furthermore with increasingly automated research processes it is necessary to provide these discovery 
and access services in machine accessible form and at speeds that correspond to the requirements of the 
consuming services and programs. 

Data curation in the context of scientifc discovery 
Data curation research has often viewed the process as a stand-alone activity and few studies exist that 
investigate its linkages to other related research activities such as: curation in support of reproducibility, 
validation and reuse. Challenging is hereby not only the availability of suÿcient information (see §9) 
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to support these tasks, but the necessary software and services to support these processes as part of the 
automated scientifc workfows. 

Curating software 
Curating software as might be needed for curation in support of reproducibility, is still an open research 
topic and the impact that new computing environments have on the reproduced results of these tools 
remains unstudied. 

Research needs 

• Advances in the lexicography of search to support common needs of the DOE SC scientifc commu-
nity. 

• Research aimed at developing methods that enable the long-term reproducibility of curated results 
in support of publication verifcation. 

• Fast search, access and analysis methods that enable the direct integration and reuse of curated data in 
subsequent wide ranging re-analysis workfows or utilize the information content of the curated data 
as background information in in situ, streaming or in-transit analysis and decision making processes. 

• Software curation research. 
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Case Study 11 

Data management, Analysis and 
Dissemination at the Environmental 
Molecular Sciences Laboratory 

H. Steven Wiley, Samuel H. Payne and Matthew E. Monroe 
Environmental Molecular Sciences Laboratory 

11.1 Science Use Case 

11.1.1 Present or Near Term 

The Environmental Molecular Sciences Laboratory (EMSL) is a national scientifc user facility that is funded 
and sponsored by the DOE’s Oÿce of Biological and Environmental Research (BER). EMSL supports BER’s 
mission to provide innovative solutions to the Nation’s environmental and energy production challenges 
in areas such as atmospheric aerosols, feedstocks, global carbon cycling, biogeochemistry, subsurface sci-
ence and energy materials. EMSL is unique as a user facility in that it contains dozens of di erent types 
of instruments, including mass spectrometers, electron and light microscopes, nuclear magnetic resonance 
(NMR) instruments and spectrometers as well as a center for high performance computing. EMSL special-
izes in multidisciplinary research in which external investigators collaborate with teams of EMSL scientists 
to apply multiple types of analytical approaches to solve complex problems. 

Identifying, collecting and linking metadata is one of the greatest challenges that 
EMSL faces in analyzing and integrating research data and making it [useful] to the 
broader scientifc community. 

Because of the diversity in problem sets, research instrumentation and analytical approaches, EMSL gen-
erates highly diverse data types. Although some of our instrumentation can generate large quantities of 
data (e.g., mass spectrometers), data from EMSL is characterized more by its complexity than by its vol-
ume, which thus requires particular attention to the associated metadata that describes the relationship 
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between di erent data sets. However, because EMSL typically plays only a part in multi-partner collab-
orations, it usually does not have access to all of the metadata describing the data. Thus, identifying, 
collecting and linking metadata is one of the greatest challenges that EMSL faces in analyzing and integrat-
ing research data and making it usefully sharable to the broader scientifc community. The wide variety 
of di erent instruments, scientifc problems and approaches supported by EMSL makes it impossible to 
specify a single type of workfow or use case that would adequately encompass all data generation pro-
cesses. Advances in specifc instrumentation will necessitate the development of unique workfow and 
data processing pipelines to capture and analyze the attendant data. These workfows will usually be de-
veloped by the domain specialist and will be highly dependent on the specifc scientifc problem being 
pursued. However, for the data to be discoverable and useful to the wider scientifc community, adequate 
data and metadata standards and data management systems will be required. Thus, much of the current 
e ort in data capture, processing and analysis at EMSL is focused on these more general needs and require-
ments. 

In this case study, we will focus on a ”typical” process that describes several common ways in which sci-
entists interact with EMSL sta to generate data. In particular, we focus on the generation of proteomics 
data, which currently constitutes one of the largest research data sets in EMSL. It is also one of the best-
documented types of data and is currently managed by a mature and robust data handling system. Ex-
perience in managing proteomics data in EMSL has provided us with more than a decade of experience 
in practical approaches for capturing, analyzing and visualizing data to support collaborative research 
projects. These approaches have been successfully applied to other types of data such as RNA sequenc-
ing data. It has also shown us the gaps that must be addressed to make data usefully accessible to other 
investigators. 

General process of data generation at EMSL 

The primary focus of EMSL is to understand the processes, on the molecular scale, that gives rise to com-
plex phenomena in the chemical, physical and biological sciences by the application of powerful analytical 
instrumentation. This is usually accomplished by generating specifc samples through an experimental 
protocol and then analyzing the samples with EMSL instrumentation. Although EMSL does contain a 
number of experimental facilities that generate samples for analysis, this is not always the case. For ex-
ample, it is very common for investigators to send protein samples to EMSL for analysis by NMR or mass 
spectrometry. These samples will be associated with suÿcient metadata to allow analysis, but not necessar-
ily suÿcient metadata to understand the signifcance of the results. The data from the analysis is provided 
to the project team that supplied the sample, which presumably has the metadata needed to make sense of 
the results. In practice, the analysis of the data is usually done in collaboration with EMSL scientists, but 
the associated metadata is still usually distributed between the user and the EMSL facility. 

As an example, assume there is a project to understand how microbes break down biomass under di erent 
conditions in which EMSL generates proteomics data. An outside team of users would typically grow 
the microbes at their home institution. The user would prepare a series of samples exposed to the di erent 
experimental conditions, which they would ship to EMSL, requesting a specifc type of analysis. EMSL sta 
would then process and analyze the samples based on a minimal set of metadata (e.g., microbial species, 
protein concentration, etc). Primary instrument data would then be used to generate derived results, based 
on the user needs. For example, the primary mass spectrometry data could be used to generate a list of 
expressed proteins, their relative abundances, how they change, etc., depending on the needs of the user 
and usually in an iterative fashion in collaboration with EMSL sta . Depending on the results of this 
primary analysis, more data processing could be performed or samples could be reanalyzed. At the end of 
this iterative process, a subset of the data and associated analyses is assembled into a data ”package” that 
is provided to the user. All of the primary data and selective analyses are then stored in the EMSL Archive. 
Data processing is usually performed on computer clusters. The HPC center in EMSL, in contrast, is mostly 
used for simulations. 
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Figure 11.1: Proteomics workfow as an example user case in EMSL. A user typically prepares samples in 
the course of an experiment and sends the sample to EMSL. Samples are then prepared for mass spectrom-
etry analysis by digestion and separation by high-performance liquid chromatography. The raw data fles 
are analyzed using the PRISM data system using a series of software packages. The types of data analyses 
conducted depends on the individual needs of the research project. A custom set of data and metadata is 
then provided to the user in the form of a data package. 

The above example highlights one of the more distinctive aspects of EMSL as a user facility: most EMSL 
users do not operate the instruments nor collect the data. Instead, EMSL sta usually perform this work. 
Thus, the data provided to the users constitutes a subset of all of the data collected during sample analysis 
and is usually highly processed. Specifc capability groups within EMSL usually handle data collection, 
analysis and processing. The more general data needs in EMSL is understanding how to make collected 
data more generally useful to the research community. 
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Usability of collected data 

In the above-described scenario, data generated by the instruments are usable, except in the rare case of 
equipment failure. The data might not be useful to the project generating it, but that is almost always due to 
a failure of experimental design on the part of the user or some unforeseen problem in sample preparation. 
These types of issues are outside of the ability of computational systems to o er a potential solution. The 
real problem, however, is that presently the data is almost never usable by anyone other than the original 
group that generated it. This lack of data ”reusability” has many underlying causes, but this problem must 
be solved if making data publicly available is intended to have any useful purpose. 

The real problem . . . is that presently the data is almost never usable by anyone other 
than the original group that generated it . . . this problem must be solved if making 
data publicly available is intended to have any useful purpose. . . . 

Truly reusable data requires a signifcant amount of associated metadata, some of which is very discipline 
and sample-specifc. In addition, this metadata is typically distributed across multiple data storage modal-
ities (e.g. lab notebooks, electronic spreadsheets, instrumentation software) and is generated by multiple 
people. Assessing and consolidating all of the relevant metadata has traditionally been extremely complex 
and laborious, requiring highly trained and motivated investigators. In addition, much necessary metadata 
is never collected because of the lack of understanding of what is required for data sharing by the primary 
investigator. The overall cost and complexity of metadata recording and consolidation is currently pro-
hibitive, which is the primary reason it is rarely collected. Unfortunately, this means that the associated 
data cannot be easily discovered or reused. 

Truly reusable data requires a signifcant amount of associated metadata, some [of] 
which is very discipline- and sample-specifc. . . . The overall cost and complexity of 
metadata recording and consolidation is currently prohibitive, which is the primary 
reason it is rarely collected. Unfortunately, this means that the associated data cannot 
be easily discovered or reused. 

11.1.2 Future 

The scope of work in EMSL is likely to continue to expand due to advances in the types and numbers of an-
alytical technologies needed to solve DOE-relevant science questions. Together with the expansion in new 
data types, there will be an urgent need to improve systems to collect and manage the associated metadata, 
and to improve the collaborative analysis of multidimensional data sets. Both the improvement of systems 
and analysis will likely develop together because the needs of collaborations will require community stan-
dards and adequate metadata, but standards and metadata need to be developed around specifc scientifc 
needs. Because collaborations are usually geographically dispersed, location-independent software sys-
tems will be needed to manage group resources and analyses. At the instrumentation level workfows are 
likely to be similar to current ones. What will change, however, is the increased use of software frameworks 
to capture metadata and to support collaborative data analysis. Currently, the EMSL User Portal system 
maintains records on current and previous projects, including investigator information, publications and 
the resources allocated to each project. What it lacks, however, is specifc information on the experiments 
and the protocols used to generate the samples analyzed within EMSL. We are currently developing a sys-
tem, called MyEMSL, that will automatically collect the data and metadata needed to support advanced 
data analysis, visualization and sharing. 
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Figure 11.2: MyEMSL is a framework to consolidate data and metadata capture to facilitate data sharing 
and analysis. A series of software modules have been developed to automatically upload data from instru-
ments into a central data repository. Metadata will be captured by another series of modules at both the 
experimental stage and the sample preparation stage and placed in a central metadata repository. The raw 
and processed data will be linked to the metadata through USIDs. This will allow automatic consolidation 
of all of the relevant data and metadata to support collaborative data analysis and sharing. 

In the future, we expect to greatly increase the types of metadata captured by the MyEMSL system. We 
also plan to develop software modules that will capture metadata on samples sent to EMSL, or generated 
by EMSL sta . This data will be stored within a dedicated metadata database and linked to the project 
generating the samples through unique sample IDs (USID). When the samples are analyzed on EMSL in-
struments, the USID will be linked to the data. Secondary analysis of the data will also be linked to the 
USID so that all results generated by any particular sample will be clearly identifed as such. 

In the future, all of the data and metadata will be stored and managed using the ISA-Tab (Investigation, 
Study, and Assay Tabular Format) framework or a modifcation of that framework. Collaborative work be-
tween users and EMSL sta is expected to generate secondary analyses, models and conclusions that will 
also be stored back to the central data repositories. This rich set of linked information can then be pushed 
into data sharing sites, which will be specifcally tailored for each type of data or scientifc specialty (e.g., 
proteomics, genomics, imaging). Some of these sites currently exist as data repositories that require specifc 
types of metadata to be associated with the primary data. For example, EMSL proteomics data is currently 
made publicly available through the ProteomeXchange (a.k.a. PRIDE), MassIVE, and PeptideAtlas reposi-
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tories. EMSL will likely host data sharing sites for specialized data types in the future. We expect that data 
export to data sharing sites will be as automated as practical. 

11.1.3 Data Lifecycle 

Currently, the MyEMSL system captures and uploads data from selected instruments into a central data 
repository together with a minimal set of instrument-specifc metadata. Proteomics data is managed 
through the DMS system, which contains all metadata as well as raw and processed data on proteomics 
samples. The MyEMSL system captures data from the DMS system for uploading into the central data 
repository. Once the primary data is analyzed, collaborators are notifed and they are provided access 
through a data link. If modifcations of standard analysis routines are requested, an appointment is usu-
ally set up with EMSL sta to discuss those modifcations. This is usually done in an iterative fashion. The 
results of these analyses are then provided to the users, but they are not necessarily stored permanently on 
the DMS system. 

All of the data and metadata as well as the results of analyses that are stored on the central data repository 
are also permanently stored in the EMSL archive and backed up by a tape system. Older data is o�oaded 
into tape storage, which can be retrieved upon request. 

11.1.4 Data-centric Requirements: Capabilities, Speeds, and Feeds 

The amount of data from the proteomics facility currently represents the greatest volume generated within 
the EMSL facility. Although specialized equipment, such as imaging mass spectrometers can generate large 
bursts of data, they operate on a very intermittent basis. In addition, data capture by these instruments 
are handled with specialized hardware designed in concert with the instruments. In the future, the data 
generated by EMSL could increase by perhaps an order of magnitude to 20 TB monthly, but is unlikely to 
exceed this. 

Processing stage Present/Near-term Long-term 
Data acquisition rate: maximum 
rate(s) and monthly or annual to-
tals 

Experiment-side processing 

Real-time constraints, 
turnaround time from collec-
tion to result for experimental 
control 

Metadata/provenance capture 

100Mbps maximum data rate; 
3.6 TB monthly 

data reduction, preliminary 
analysis 

3 days 

Metadata from instruments and 
automated data processing 

1 GB/s maximum data rate; 18 
TB monthly 

data reduction, metadata collec-
tion, collaborative analysis 

1 hour 

Fully automated metadata and 
provenance capture together 
with metadata from experi-
mental protocols and sample 
generation 

Table 11.1: Summary of data-centric requirements for proteomics data. 
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11.2 Impediments, Gaps, Needs, Challenges 

Our proteomics use case for EMSL can be generalized to include all environmental and biological exper-
iments, including genomics, proteomics, transcriptomics, and/or metabolomics. For these types of data, 
there are a variety of impediments and challenges that hinder scientifc progress, such as diÿculty in in-
terpreting complex data sets and incomplete analysis that fails to uncover the most relevant and important 
conclusions that could be potentially derived from a data set. Thus data is generated, but the result is 
sometimes not discovered. Impediments that are most detrimental are related to the issues of data sharing 
and collaborating in large groups, methodological transparency, and dissemination and archival capabili-
ties. 

Impediments that are most detrimental are related to the issues of data sharing and 
collaborating in large groups, methodological transparency, and dissemination and 
archival capabilities. . . . The community needs a more fuid means for sharing data 
and working together. 

As a national laboratory, we are collaborative by design; it is the goal of our research to work with the best 
scientists in the Nation. However, the data volumes and complexity being generated in modern science can 
be intimidating to non-computational scientists. It is not our desire to make every scientist pursue a joint 
degree in computer science, but rather to use computational frameworks that assist them in accessing and 
using the data in powerful, intuitive ways. 

Metadata capture and data discoverability 

For data to be useful to investigators outside of the initial research group it must be discoverable and data 
is almost always discovered through its associated metadata. Thus, for all types of scientifc data, it is 
necessary to frst defne an adequate controlled vocabulary for representing the necessary metadata and 
identifying where in the scientifc workfow it will be captured. Unfortunately, current metadata frame-
works were designed for small-scale science and are frequently inadequate for a user facility such as EMSL. 
For example, the ISA-Tab framework was designed as “a general-purpose framework with which to cap-
ture and communicate the complex metadata required to interpret experiments employing combinations 
of technologies, and the associated data fles” [194]. 

However, just as the structure of a scientifc paper (hypothesis-test-validation/refutation) was designed to 
communicate the results of research, rather than being a historic record of how the research was done, the 
ISA-Tab framework poorly corresponds to typical scientifc workfows. This makes it diÿcult to enter data 
into current ISA-Tab-based software. In addition, its hierarchical, relational structure is poorly suited for 
use in noSQL systems. 

For data to be useful to investigators outside of the initial research group it must be 
discoverable and data is almost always discovered through its associated metadata. 

The needs of a data sharing site are quite distinct from one designed to store or analyze data. Data sharing 
software must have robust features for searching for specifc data types and for evaluating their relation-
ships to people, studies, scientifc felds and published results. In contrast, data storage and manage-
ment software for user facilities should be optimized for the workfow used to generate and analyze data. 
Workfow-based frameworks are generally easier for scientists to both understand and use. Indeed most of 
the specialized software used by scientists is designed around their specialized workfows. Understanding 
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the process of how science is actually done, what information needs to be captured and where the data is 
generated are key issues that must be addressed to enable e ective data sharing. 

For metadata to be most useful in promoting data sharing and reuse, it must be based 
on standards accepted by the targeted scientifc community. 

For metadata to be most useful in promoting data sharing and reuse, it must be based on standards accepted 
by the targeted scientifc community. Although these standards are available for a limited range of data 
types, such as genomics and proteomics data, they are missing in many cases. EMSL is currently working 
to generate controlled metadata vocabularies for di erent types of scientifc data generated within EMSL, 
based on the Dublin Core specifcations [195]. This e ort will be coordinated with outreach to the relevant 
scientifc users/communities to minimize duplication of e ort and to maximize community acceptance and 
use. 

User interface considerations 

To solve the problem of metadata recording and consolidation, it is necessary to discard the idea of creating 
a singular software solution (e.g., electronic laboratory notebook), because no one piece of software is capa-
ble of being suÿciently fexible to easily capture all types of necessary data and metadata. Instead, EMSL 
is developing a framework that can support di erent software modules optimized for specifc data entry 
tasks and automatic consolidation of this data. This way, interfaces can be designed to support the scien-
tifc workfow and the consolidation task itself is automatically accomplished by software. Currently, the 
MyEMSL system can upload instrument data and metadata to a central data repository or archive. Future 
e orts are being directed towards capturing metadata on experimental protocols and sample generation 
from external users and sample processing metadata from EMSL sta . 

“Sample” as a key concept in a generalizable data sharing system 

To support large-scale, noSQL data management systems, there must be at least one unique key-value for 
each data record. Our studies on the implementation of various data integration strategies have indicated 
that one very promising approach is to assign unique IDs to each sample that is generated by a study (i.e., 
experiment). All scientifc studies that generate data must have samples and thus samples constitute a 
universal, core aspect of all studies. Scientifc studies can generate multiple samples and each sample can 
be used in multiple analyses, but multiple studies cannot generate the same sample. It is possible for a 
study to not generate a sample, but to instead analyze data or samples generated by other studies. In these 
cases, the sample would be linked to the secondary studies through the analyses (of which there can be 
many per sample). In the case of a simulation or calculation, the result of the simulation (its output) would 
constitute the study sample. 

Data sharing and analysis by large groups 

Most projects that use the proteomics resources of EMSL for environmental and biological research rep-
resent a collaboration of at least 10–20 individuals. This includes a variety of domain scientists, technical 
sta , and students. For these collaborations, current technologies are inadequate for sharing the data be-
tween group members, especially because of their wide range of technical expertise. Many people default 
to email for medium size fles and fle transfer protocol (FTP) servers for large fles on the order of gigabytes 
to terabytes. These fle sizes and transfer mechanisms have unfortunately caused a self-selection for those 
who participate in data analysis. Those uncomfortable with data wrangling and statistical programming 
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often take a less involved role. The consequence being that the group no longer benefts from their input 
and insight. 

Current technologies are inadequate for sharing [. . . ] data between group members. 
. . . The community needs a more fuid means for sharing data and working together. 

Methodological transparency 

One issue with big data is that data processing can be done in a wide variety of ways. Because no two exper-
iments are alike, there is no single standard way to process data. Furthermore, documenting methodology 
in a manuscript is never complete. Although some individuals have been open with their methods, such 
as by posting all scripts used in data analysis to a webpage, this is not required. This lack of transparency 
impedes scientifc progress because the community fails to fully learn from each other. 

Dissemination and archival capabilities 

Although progress has been made in some respects to coordinate and require data publication along with 
results published in peer-reviewed journals, it is clear that the process of data sharing is not easy or fully 
accepted. One reason for this is that the mechanisms for sharing do not generally support the collaborative 
process that is necessary to adequately use complex data sets. For example, it is not easy or appropriate 
to share the chain of emails between co-PIs. Thus scientifc progress is substantially challenged by the use 
of distinct mechanisms for private sharing and collaboration before the data is released and subsequent 
public data sharing after the scientifc publication is released. 

Solutions 

The community needs a more fuid means for sharing data and working together. Fortunately, computer 
science software development can be used as a model for how large and diverse groups working across the 
globe can achieve these ambitious goals. At EMSL, infrastructure is built around the team and all work 
by any team member is coordinated within the infrastructure through the use of version control software. 
Although di erent commercial and open-source platforms have been created for this purpose (such as CVS, 
SVN, Git) this solution has unifed software engineering for the past 30+ years. Data analysis in science is 
remarkably similar to software engineering in that: 

The community needs a more fuid means for sharing data and working together. 

• There is a large, geographically dispersed community of individuals working together on a scope of 
work; 

• Individuals may overlap in interest and skills, but the team generally includes many di erent types 
of expertise; 

• The work is asynchronous; and 

• Individual work must be merged into the group’s work; 
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We therefore believe that many of the issues mentioned above as impediments, gaps, needs and challenges 
can be addressed by adopting/adapting the version control methodologies born from software engineering 
to scientifc data analysis. 
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Case Study 12 

Climate Simulation and Analysis 

Philip J. Rasch1 

Pacifc Northwest National Laboratory 

12.1 Science Use Case 

This “use case” describes the production and subsequent analysis of simulations from a state-of-the-art 
global climate model being developed for the BER ACME2 and HiLAT3 projects that can be run at very high 
spatial resolution. Typical production simulations take place on DOE LCFs (Titan and Mira), or the NERSC 
facility (Edison), and development work and shorter simulations occur on smaller machines (institutional 
computing). 

The ACME model is quite portable, and currently scales reasonably on LCFs. The model consists of “com-
ponents” corresponding to di erent parts of the Earth system (atmosphere, ocean, etc). While the atmo-
sphere component scales well to very high processor counts other components perform less well, and act 
to limit the performance. On Mira, our current application uses about 2000 nodes (4 MPI tasks/node, 
each task with 16 threads/task). On Titan, we have more fexibility and currently use 68000 Cores (8 
MPI tasks/node, 2 threads/task). Only the atmospheric component of the model is currently capable of 
making eÿcient use of the GPUs. Our current confgurations do not yet scale well to the very highest 
“capability” performance utilization on LCF machines unless bundled ensembles of simulations are run 
simultaneously. 

Model calculations are performed with 64-bit arithmetic and simulation output (also called “data” here-
after, and typically written as 32-bit foats) is archived at varying frequencies ranging from hourly intervals 
(to characterize relatively high frequency features), to monthly averaged felds (capturing lower frequency 
features). Simulations of a few hours or days are made during model development and debugging, ex-
tending through centuries for production simulations that explore climate variability and responses to 
climate forcing agents (increasing CO2 concentrations, land-use changes, etc). Even longer simulations are 
needed to explore climate responses to variations in planetary orbital evolution, or continental shifts, and 
to estimate long-term biogeochemical responses but these are currently too costly with this class of model, 
so lower resolution models with simpler physics are generally used for study of those climate features. 

1The ACME model is developing rapidly and I intend this use case description to be an informal characterization of the modeling 
methodology—any errors in characterization are my own. 

2http://climatemodeling.science.energy.gov/projects/accelerated-climate-modeling-energy. 
3http://hilat.org. 
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Uncertainty quantifcation (UQ) plays a role in our research by exposing simulation sensitivity to uncer-
tain parameters in process representation (e.g., clouds) in model components, and investigating non-linear 
feedbacks within the model. 

12.1.1 Present or Near Term 

Our current science problems target simulation spatial resolutions for atmospheric grid cells of an approx-
imately 25km horizontal resolution, with vertical resolutions consisting of 20m layers near the surface, 
stretching to approximately 3000m near the model top at 60km, where the atmospheric density is very low 
and the science can tolerate lower vertical resolution. The ocean component of the model uses a somewhat 
higher horizontal and vertical resolution (approximately 11km near the equator to 3km in polar regions) 
over a somewhat smaller (about two-thirds of the planet) domain. The land component is run at approxi-
mately the same horizontal resolution as the atmosphere with fewer levels with a domain that encompasses 
one-third of the planet. Cryosphere components require much higher spatial resolution but occupy a much 
smaller areal extent. 

Precise estimates of the storage requirements for model output depend on model confguration details. 
Several hundred monthly averaged 3D felds are archived during each month of simulation in a nominal 
model confguration that archives only monthly mean output. Approximately 1 TB of data output are 
produced per model year for the confguration specifed above, and we are targeting performance of ap-
proximately fve simulated years per wall clock day (e.g., 5 TB/day of model output are produced) for this 
kind of model for next-generation optimized confgurations. Higher-frequency output of the same infor-
mation at 1-hour intervals would increase the output by three orders of magnitude, easily overwhelming 
current computer and storage capacities, necessitating alternate strategies for high frequency data archival 
(e.g., archive only a subset of the total model domain (for example, for particular regions, time, or levels, 
for specifc felds). 

In addition to the in situ time averaging calculation, our models are just beginning to utilize more complex 
calculations in which diagnostics are performed on-the-fy, and summaries of information are archived. 
Typical in situ calculations include: 

• Satellite and aircraft simulators (which sample the model as a satellite or aircraft would see it, to 
mimic sampling biases produced by real measurement systems and allow more appropriate compar-
ison to observations); 

• Calculation of probability density functions (PDFs) characterizing the frequency of occurrence of 
some aspect of model state (e.g., precipitation intensity); 

• Compositing of high-frequency information to produce longer term estimates of features that recur 
with approximately repeatable higher frequencies) (e.g., diurnal variations of state variables); and 

Future feature tracking may include calculations for cyclones, atmospheric rivers, fronts, etc. 

Model output is written to spinning disk as the simulation proceeds, in fles that contain manageable 
chunks of information (less than or equal to 4 GB). The output is typically written using netCDF fle for-
mat.4 Typically the output is left on spinning disk until the simulation is complete so that it can be further 
processed and transferred to other machines more suited for data analysis and visualization. 

While more sophisticated workfows are being developed within ACME, our current workfow: 

• Makes use of scripts (shell, python, etc.) to check out source code, perform model confguration, 
build and then run the model. The scripts have a secondary function of documenting the simulation 
provenance (e.g., what is the source, what platform the simulation is was performed on, how the 

4A common well regarded fle format for geophysical data that includes metadata describing the data, and provenance, http: 
//www.unidata.ucar.edu/software/netcdf/. 
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model was confgured, compiled, etc). We archive the scripts as to provide a precise specifcation of 
how the model was run that could be passed to someone else and they could reproduce the simulation. 
Metadata is embedded in the model output that connects the simulation to the platform, source code, 
and scripts used to produce the data. 

• Model output is typically transferred to another machine where it can be analyzed, or regridded 
to produce alternate representations of the information with lower (temporal or spatial) resolution, 
or composited to produce climatologies (e.g., the long-term statistical average of a feld. The model 
output may also be refactored to allow more eÿcient sampling for another purpose (e.g., by extracting 
a subset of the feld). I will call this processing stage 1 processing hereafter. 

– While it would be desirable to perform stage 1 processing on the platform where the data is 
produced (or on a local machine dedicated to visualization and analysis sharing a common 
flesystem, like Rhea in CADES at OLCF), this seldom occurs because the LCFs are optimized 
for capability computing, and local machines have not yet matured to the point that they are 
useful. Stage 1 processing is generally performed on capacity-level platforms or institutional 
computing. 

– Transfer of data to the analysis platform is performed by either 1) scp with ssh keys; 2) Globus; 
or 3) publication using the ESGF.5 Automating this data transfer remains a challenge (but the 
situation is improving). 

– scripts (shell and python) that make use of purpose-built tools for data manipulation of netCDF 
fles are used for the regridding, compositing, and refactoring;6 UV-CDAT;7 and NCL.8 As the 
model output is transformed, metadata is added to the output fles to record the transformations 
that have been applied to it, which also acts as a provenance mechanism (the transformation 
operations are recorded, as well as fngerprints of the tools used to produce the transformation). 

• Procedures have been developed to make sure that original model output and transformed data are 
backed up to HPSS or stored on redundant fle systems on more than one platform. 

• Subsequent analysis (stage 2 processing) is also currently performed on an analysis platform that is 
not part of an LCF. This analysis includes: 

– The use of scripts to perform routine analysis of model output to compare to previous simula-
tions. These analysis scripts evolve over years to produce a standard analysis procedure that is 
used on the vast majority of model simulations. 

– The use of interactive tools (through scripts, and interactively at the command line or using 
a GUI with, for example R, Python, MATLAB, UV-CDAT, ParaView, NCL, etc.) to probe data 
rapidly. 

12.1.2 Future 

While science objectives and motivations are unlikely to change, next generation models and analysis 
frameworks are likely to di er in the following ways: 

• Models will run at higher resolutions, producing more data for a fxed simulation length. Weather 
prediction and some Global Cloud Resolving Models are already running at these much higher resolu-
tions (at resolutions approximately 4 or 5 times higher resolution in each spatial dimension), making 
the operation count (and I/O volume without changes in strategy) increase by O(54) 600. It is diÿcult 

5http://esgf.llnl.gov/. 
6See NCO, http://nco.sourceforge.net/. 
7http://uvcdat.llnl.gov/. 
8http://www.ncl.ucar.edu/. 
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Figure 12.1: A schematic of a typical climate simulation and analysis workfow. 

to estimate when future architectures/algorithms would be ready to tackle this class of simulation—it 
is a grand challenge, and probably unrealistic to assess for this exercise. Instead I postulate a nominal 
increase in resolution by a factor of two in each dimension, which would increase operation counts 
by a factor of sixteen and memory requirements by a factor of eight. An additional increase in com-
plexity of representation of diabatic processes could increase costs and memory by another factor of 
two. So a very rough estimate in operation count and memory might be about 50 times higher than 
today’s models. 

• Next-generation models will also make better use of accelerators, and scale to much higher node, 
processor and thread counts, producing data at a much higher rate.9 

• A better workfow is being developed (particularly under the ACME and SciDAC projects), which 
should help in automating some of the tasks that still require manual intervention (e.g., publication 

9These issues are being addressed directly in the current ACME and SciDAC Multi-scale projects). 
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of data), transferring data across dedicated infrastructure for large-scale data ingress and egress. 

• Conventions for model and observational metadata are evolving, improving, and becoming more 
standardized across modeling centers, making it possible to build tools that exploit metadata that is 
embedded in model output more easily.10 

• With the increasing use of ensembles of simulations used to understand the sensitivity of the Earth 
system and models to characterize processes and parameters, I suspect we will begin to use tools for 
probing features of this multi-dimensional space more frequently, and comfortably.11 

12.1.3 Data Lifecycle 

Figure 12.1 shows a skeleton of the way climate models are developed and used. Discussion proceeds from 
top left to bottom right: 

• In the model development phase, code is written, and model simulations are performed at a low resolu-
tion for short periods of time on local-, institutional- or intermediate-scale machines to provide small 
data sets that domain scientists, computer scientists and software engineers can use. The purpose is 
the development of code, debugging, development of standards for data output, and analysis tools. 

• When preliminary tests look promising, the codes are moved to LCFs to undergo performance opti-
mization with shorter simulations. Bottlenecks are identifed and returned to the model development 
stage when necessary (see iteration arrow on Figure 12.1. Codes are then revised to improve perfor-
mance. Tests with very short (1–30 day) simulations are made to confrm that solutions are insensitive 
to performance revisions. 

• In the production simulations on LCFs stage, intermediate and very large calculations are performed. 
Intermediate-level calculations are run at either full resolution (25 km resolution, 60–70 layers) for 
short periods of time (1–5 year simulations), or at a lower resolution (100km, 30–60 layers) for longer 
time periods (decades to centuries). Ensembles are frequently run varying initial conditions, or in-
ternal model parameters to explore model internal variability, sensitivity to initial conditions, and 
sensitivity of model response to process or parameter variations (these are a class of uncertainty quan-
tifcation for simulations of days to decades). Very large calculations consist of simulations for decades 
to centuries are occasionally run (typically perhaps a dozen per year, but for some very ambitious cal-
culations). Data are typically retained on spinning disk to allow rapid stage 1 processing but if that 
is not possible, data is stored on HPSS for later processing. 

• During stage 1 processing the data undergoes signifcant reduction, typically by producing climatology 
fles that summarize some of the statistical behavior of the felds. For example, a January climatology 
fle could be produced by compositing all of the Januarys of a century-long simulation to produce a 
time average value, with estimates of the time, mean and standard deviation. The result is a reduction 
by a factor of ffty in size of that feld. Similarly, ensemble members can be averaged to characterize 
the ensemble mean and spread. The data can be sliced and diced in a variety of ways to allow con-
densed information to be retrieved much more rapidly in stage 2 processing. Sometimes the stage 1 
processing occurs on machines in LCFs (such as CADES) although this has not proven particularly 
successful to date. Typically it must be moved, shared, and published to other locations for processing 
(for example, on the NERSC machines, or institutional computers). 

• In stage 2 processing, these data sets are small enough that they can be processed on smaller machines, 
even as small as a desktop machine with a lot of storage (although it is easy to fll the disks). Pro-
cessing is typically done with some combination of scripts (to allow easy and reliable repeatability 
of data manipulation) and interactive data manipulation (with a GUI, or by entering commands at 

10See http://cfconventions.org/. 
11See NDDAV: http://www.cedmav.com/research/project/26.html. 
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a command line) to probe data as understanding grows and hypotheses develop, or to produce a 
compelling fgure to illustrate a point. 

• At some point research is released in the form of a publication in a scientifc journal, or technical note, 
and the data sets used to produce the publication conclusions need to be release. Alternatively data 
sets are often released to the community for a larger activity—for example, model intercomparison 
activities like CMIP5.12 

• This cycle of research is completed by the understanding produced by the analysis leading to further 
scientifc research and model development—then the cycle begins again. 

12.1.4 Data-centric Requirements: Capabilities, Speeds, and Feeds 

Processing stage Present/Near-term Long-term 
Data rate for production simu-
lations on LCF standard output: 

Assume increase by factor of 50 
maximum rate(s) and annual to-

5 TB/day maximum data rate; over present day: 250 TB/day 
tal assuming we could do this ev-

1.5 PB annually maximum data rate; 50 PB annu-
ery day of the year. No attempt to 

ally optimize strategies to archive data 
(e.g., compression). 
Current strategies assume data 

We do not do this now, but are
published at the rates above will We do not do this now, but wish 

trying: data is currently written 
be published (shared across net- we could. 

to HPSS. 
works routinely). 
Stage 1 processing: data reduc-

Input 5 TB/day → 50 GB/day 
tion of LCF output, preliminary 250 TB/day → 5 TB/day output 

output
analysis. 
Stage 2 processing: routine visu-
alization and analysis of multi-

Multiple 50 GB data sets daily. Multiple 5 TB data sets daily. 
ple data sets output from stage 1 
above. 

Table 12.1: Summary of data-centric requirements. 

12http://cmip-pcmdi.llnl.gov/. 
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12.2 Impediments, Gaps, Needs, Challenges 

Procedures for moving data from place to place, including tools for automating re-
silient workfow for orchestrating distributed data-related operations are a bottleneck 
(§12.2) 

The previous sections have already identifed many of these issues. There are a number of current bottle-
necks to data analysis and visualization: 

• I/O is already a signfcant burden during model simulations. This increases the importance of alter-
nate strategies for analysis, including use of in situ diagnostics and strategies for data compression. 

• Time to transfer (identical to the sharing of) data sets across platforms is already a bottleneck, and 
likely to get worse as data volume increases. This is another motivation for more emphasis on strate-
gies for data compression (both classic lossy and lossless compression techniques, and perhaps things 
like Principal Component Analysis or other Statistical Learning Techniques). 

• Current strategies for managing (accessing, processing, keeping track of) the large number of sim-
ulations (including ensembles of simulations used in UQ) are awkward, requiring a combination of 
manual intervention to stratify di erent classes of simulations, and use of automated tools (to track 
and analyze the consequences of systematic variations in parameter settings). It would be very use-
ful to develop procedures to systematize the characterization of simulations (perhaps developing an 
ontology of the kinds of model variations that we tend to work on). 

• Data distribution (between machines that produce the data, and those appropriate for data analysis) 
is a bottleneck to climate science today that signifcantly impedes our scientifc progress. 

• There is a need today for an intermediate computing facility available to climate science that is not an 
LCF but is larger than the resources a single DOE lab or project is likely to be able to muster for data 
analysis and visualization (DAV). The DAV facility should be tied to LCFs, NERSC, and other large 
computing resources that produce large amounts of data through fast communication pathways to 
reduce the bottleneck of data sharing and publication, but focused on data analysis and visualization, 
archiving, and dissemination. 

• procedures for some components of workfow (provenance, job submission) for producing data ap-
pear to me to be marginally adequate but could certainly be improved. 

• Procedures for moving data from place to place and including tools for automating resilient work-
fows for orchestrating data-related actions are suboptimal and a bottleneck. They could likely be 
improved, and would be very nice if there were an infrastructure available that was easy to use and 
more powerful than our current strategies and resources. 
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Case Study 13 

Atmospheric Radiation Measurement 
Climate Research Facility 

Laura D. Riihimaki and Chitra Sivaraman 
Pacifc Northwest National Laboratory 

13.1 Next-Generation Atmospheric Radiation Measurement User Fa-
cility Vision 

13.1.1 Present or Near Term 

The ARM Climate Research Facility, a DOE scientifc user facility, provides the climate research community 
with strategically located in situ and remote sensing observatories designed to improve the understanding 
and representation, in climate and earth system models, of clouds and aerosols as well as their interactions 
and coupling with the Earth’s surface. ARM operates a network of surface stations including fxed sites with 
long-term measurements, mobile facilities deployed for several months or years (see Figure 13.1), and an 
Aerial Facility with a G-1 Aircraft that makes atmospheric in situ measurements. Mobile and Aerial Facility 
campaigns are chosen through a competitive proposal process where proposed campaigns are selected 
based on scientifc priority and practical feasibility. Ground site data comes from over 350 instruments, 
with another 25–30 instruments used on board the aircraft during feld campaigns. All measurements and 
derived Value Added Products (VAPs) are stored in the ARM Archive and are available for download from 
ARM’s webpage.1 ARM also interacts closely with the Atmospheric Science Research (ASR) program and 
other science users to identify facility priorities like new instrumentation and VAP development. 

Many . . . instruments . . . produce very large and complex data streams . . . [that] re-
main unmined . . . and are quickly becoming the largest fraction of our data by vol-
ume . . . because they must be manually interpreted by experts for data quality and 
meaning. 

Figure 13.2 shows the movement of data from initial measurements to the ARM data archive where it can 
be downloaded by the user community. Currently about 18 TB of data are archived each month from the 

www.arm.gov. 
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Figure 13.1: Map of fxed ARM sites, mobile facility deployments, and aerial facility campaigns as of 
August 2014. 

over 350 instruments. Currently there are about 12 million fles from 1500 di erent data streams in the 
ARM archive. A number of new instruments or upgraded instruments were added to the facility during the 
Recovery Act which promise to provide new information on some key gaps in our measurements of cloud 
microphysical processes, aerosol composition, and the like. However, many of these instruments (scan-
ning radars, vertically pointing radar Doppler spectra, high spectral resolution radiometers, and Aerosol 
Observing System measurements) are challenging to operate and produce very large and complex data 
streams. Thus many of these data streams remain unmined resources, and are quickly becoming the largest 
fraction of our data by volume. Many of these data streams are now being used only for case studies for 
a few days per year because they must be manually interpreted by experts for data quality and meaning. 
When all of the new instrumentation is operating, it is anticipated that the annual observational data rate 
will be 5 PB, 10 times what is currently being archived annually. So by this estimate, and without further 
data product development, perhaps about 90% of data will soon fall into the category of only being acces-
sible for small case studies by experts. Additionally, even some well-defned algorithms to retrieve useful 
information from these data streams are testing the limits of our current method of processing data. For 
example, optimal estimation retrieval methods to retrieve atmospheric humidity and cloud liquid water 
paths from infrared and microwave radiances call radiative transfer codes iteratively. To handle the pro-
cessing, we often subsample and only retrieve 1-10% of the time steps, but if we parallelize this code and 
run it in an HPC environment we could run all time steps which will give better cloud statistics. 

13.1.2 Future 

Observations can only get us so far in fully understanding and quantifying atmospheric processes because 
some key quantities can not be measured, or can not be measured at an optimal spatial scale. ARM is now 
beginning a new approach where high resolution Large Eddy Scale (LES) models forced by observational 
data will be run routinely in order to fll in some of those gaps. In order to accomplish this, additional in-
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Figure 13.2: Diagram showing sources and stages of data processing from measurement to user download. 
Diagram courtesy of Jimmy Voyles. 

strumentation has been added to the Southern Great Plains site in Oklahoma, and a team has been selected 
to do a two-year pilot project to develop the infrastructure needed for routine modeling. The pilot project 
will focus on modeling cases of shallow cumulus clouds. Several scientifc motivations for this focus are 
the impact of shallow cumulus on global climate model temperature bias in that region, the importance of 
land surface heterogeneity on cloud properties, and the ability to develop statistics for parameterizations 
that incorporate higher order terms of the covariance between multiple parameters. 

This next-generation paradigm for ARM that more closely links observations and modeling is illustrated 
in Figure 13.3. Box 1 shows the higher density of observational measurements at the site, along with the 
new transformations needed to put the data into a format for forcing the model (boxes 2–3). Modeling 
will be needed for data assimilation (box 5) to provide forcing for the higher resolution runs (box 4). The 
LES output will then be further compared to observations in an interative fashion (boxes 6–8), to refne the 
model (box 9) and the measurement strategy (box 10). This integrated approach will be used to build a 4D 
data cube that can give a more complete picture of the atmospheric state over time. 

Incorporating atmospheric modeling into ARM’s observational strategy will increase the computing needs. 
The anticipated data rate of the LES models is over 1 PB per year. LES modeling will also signifcantly 
increase the computational processing requirements for the program. One of the goals of the pilot project 
is to examine the costs and benefts of how much model output to store and what model settings (e.g., 
resolution) to use to run the model. One of the challenges, however, is to accommodate the scientifc needs 
of a variety of users in these decisions. Initially, beta users will be identifed that ft into ARM and other 
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BER program’s scientifc priorities for the LES model output. But in order to support a wider array of users, 
creative solutions will need to be found. For example, we will need to store the required forcing data sets 
and model settings in a way that users can rerun the model for the specifc output they need. In addition, 
we will need model metrics, statistical summaries, and indices that allow users to fnd the subset of data 
of interest to them. This either requires predefning data so that a smaller subset of data can give needed 
information, or alternative ways to query large data sets without downloading it. A further challenge 
is developing the needed tools to integrate observational and model data through improved retrievals and 
instrument simulators. This will likely initially only be done for the subset of instruments that are expected 
to have the largest impact on our scientifc question. 
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Figure 13.3: Diagram showing steps in new vision for more integration between measurement and model 
data. 

13.1.3 Data Lifecycle 

Measurements from each instrument at the fxed and mobile sites displayed in Figure 13.2 are stored on 
individual data loggers or computers in formats that are native to that system. That data is then transferred 
to the Data Management Facility (DMF) via the network for most data streams or physically on hard drives 
for large data streams or those at remote sites. At the DMF, the data is ingested into netCDF fles follow-
ing ARM standard formats.2 Daily data is examined by students at the Data Quality Oÿce along with a 

2http://www.arm.gov/publications/programdocs/doe-sc-arm-15-004.pdf. 
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few automated quality control checks (minimum, maximum, spike). Each instrument has a mentor who is 
responsible for guiding the operation and interpreting the quality of the instrument’s measurements. De-
pending on the instrument, this is a more or less accomplishable task. Some instruments are custom built 
by ARM or undergo signifcant modifcations to work for the ARM purposes and take signifcant e ort to 
produce calibrated, consistent measurements. 

Higher level Value Added Products (VAPs) that retrieve atmospheric parameters of interest from measure-
ment data streams are also created autonomously at the DMF. Much of the research for developing retrieval 
algorithms is done by the scientifc community outside of ARM. When an algorithm is deemed to be suitable 
for automation, and of suÿcient interest to a broad community, members of the ARM infrastructure will 
implement those algorithms for automated processing. Both ingests and VAPs are implemented by develop-
ers, and most use the ARM data integrator (ADI) software and libraries that helps put data into a consistent 
format following ARM standards, transforms data into needed units and resolutions, populates databases 
that document dependencies, metrics, and operational status and logs, and captures provenance. 

This data is then stored in the ARM archive in daily netCDF fles where users can search and download data 
streams or individual variables from data streams from the data discovery interface (see Figure 13.4). For 
typical requests, the archive retrieval process extracts the user requested data from the archive, packages 
the data, and places the results on an ARM FTP server. A dedicated ARM 10Gbps network at ORNL 
processes these archive requests. Most ARM archive data is available on spinning disk, but large data 
streams (like radar and modeling data), and older data are stored on HPSS. 

Figure 13.4: Screen shot of the data discovery web interface. Search parameters are shown in left bar. 

Some large data streams, like radar Doppler spectra or scanning radars are processed on an ARM comput-
ing cluster. Additionally, discussions are underway for what resources and processes would be needed to 
allow scientifc users to request that large data sets be moved to a computing cluster for analysis. Globus or 
GridFTP is used for some of the transfers between the ARM cluster and archive, but not currently between 
the ARM archive and other computing clusters. 

The LES model output will take data forcing data sets created from ARM and external data streams using 
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techniques like data assimilation to provide the initial conditions for model runs. Runs will be done in an 
HPC environment and then some predetermined output will be stored at the archive. It will likely require 
a new web interface for searching data metrics and diagnostics, or updates to the data discovery interface 
that will allow users to subset by events of interest (e.g., convective boundary layers, shallow cumulus with 
or without overlying cirrus, etc). 

13.1.4 Data-centric Requirements: Capabilities, Speeds, and Feeds 

Processing stage Present/Near-term Long-term 
Data acquisition rate: monthly 5 PB observational data annu-

18 TB/mo 
or annual totals ally, 1 PB model data annually 

SGP 100 Mbps, anticipated in-
crease to 1 Gbps in FY16; most

Network data transfer rates by 
mobile facility sites around 1– May remain the same

site 
2 Mbps satellite link; Antarctica 
bandwidth limited to 512 kbps 
Currently about 10–15 TB per Expected to be much higher; in-

Archive download rate month, most individual data or- dividual LES model download 
ders less than 100 GB rates may be of a few terabytes 

Example new large data stream: Five months of spectra data had This data stream will soon be 
radar Doppler spectra at Azores volumes: 6.9 TB, 7.3 TB, 737 GB, collected regularly at all 5–6 
site 4.7 TB, 11 TB sites 

Data discovery tool can search 
and subset by variable, site, and 

Searching, merging, and subset- Searching and subsetting by at-
measurement and will soon be

ting data mospheric state, cloud type, etc. 
able to merge some data streams 
into a common time using ADI 

Table 13.1: Summary of data-centric requirements. 

13.2 Impediments, Gaps, Needs, Challenges 

• Processing and managing large data streams: 

– We need a reliable way to compress large data streams for storage until we have algorithms that 
can reduce their size and give the needed information. As the science of interpreting the data 
progresses, we may have a need to process or reprocess large data streams for new content, but 
the challenge of storing this data over time is signifcant. 

– For reading and writing large data volumes when we process large data, like KAZR spectra, the 
I/O requirements are signifcant and sometimes prohibitive. 

– We need better parallelization of data processing when sequential data is needed. Many algo-
rithms use data from times before or after a measurement to give context to a measurement. 
This makes it more diÿcult to process algorithms in parallel. 

• Monitoring and improving data quality: 

– Ways to visualize data remotely in real time to monitor the health of an instrument is particularly 
a challenge at remote deployments with low bandwidth (1.5 Mbps at Oliktok and Brazil, 512 
kbps at Antarctica). Part of the diÿculty is a lack of resources to create visualizations of data that 
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will be useful for spotting problems. It is often a research e ort to understand what problems 
can go wrong with an instrument and how to identify them. Ways that could speed up the 
discovery process so that simple summary plots could be decided on more quickly would help. 

– How to achieve usable data quality (calibration, feld conditions, etc.) with limited human re-
sources to manually inspect data and develop algorithms to automate this process is another 
challenge. Even simple events like the recurring shading of instruments from a tree, or an in-
strument that is covered in direct sunlight are now often screened manually for lack of a quick 
system to automate these processes. There is a need for very complex automation of data quality 
as well. For example, it can take 20–30 hours of a trained scientist’s time to get the best usable 
data out of three hours worth of X-band scanning radar data (about 10 GB). 

• Providing ways for diverse users to access and interpret data for di erent scientifc needs: 

– As data volume grows, in order for users to be able to do statistical analysis of new data streams 
and not be confned to a few cases, we need an interface to search and subset data without 
having to download it. Our plan for the short term is to create predefned, static indices like 
cloud classifcations, LES model metrics, etc. that allow users to fnd cases of interest and then 
either download them or analyze them on an ARM computing cluster. But it would be even 
better to have something that would allow users to interact with the data to defne their own 
metrics on-the-fy. 

– Increasingly, with larger radar data sets and especially new high resolution modeling output, 
users will need ways to transfer large amounts of data to the computing resources where they 
can do analysis. 
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Case Study 14 

Advanced Light Source 

Dilworth Y. Parkinson, Alexander Hexemer and Craig E. Tull 
Lawrence Berkeley National Laboratory 

14.1 Science Use Case 

14.1.1 Present or Near Term 

The Advanced Light Source (ALS), located at Lawrence Berkeley National Laboratory, is a third-generation 
synchrotron and national user facility that attracts scientists from around the world. The ALS has 39 
beamlines as of October 2015, providing hard and soft X-rays, IR, and EUV light for imaging, scattering, 
and spectroscopy experiments for chemical, geological, life, material, and physical sciences. 

More and more users are working on time-resolved, combinatoric, and high throughput experiments. To 
meet this need experimentally, synchrotrons are pushing to provide the necessary X-ray source by increas-
ing their brightness, to build beamlines with appropriate optics and sample environments, and to work 
with detector developers on fast, high resolution, high eÿciency detectors. 

But bright sources, good optics, and fast detectors are not the only developments necessary to meet the 
new user needs. They must be accompanied by fast networks, high performance computers, and advanced 
software and algorithms. These are necessary in many cases to manage and store the large amounts of data 
coming at high rates, but also to reduce, process, and analyze the data to extract the useful information. 
Some of this computing must happen very quickly to provide feedback to users as they collect data. In 
other cases, more computationally intensive algorithms may be chosen—these may be slower, but they can 
give optimal results for subsequent analysis and publication. 

The ALS has participated in two collaborations with ASCR scientists to attempt to meet users’ computa-
tional needs: the Center for Advanced Mathematics for Energy Research Applications (CAMERA), which 
is an integrated cross-disciplinary center aimed at inventing, developing, and delivering the fundamental 
new mathematics required to capitalize on experimental investigations at scientifc facilities; and SPOT 
Suite, a suite of tools developed jointly by the ALS, Berkeley Lab’s Computational Research Division, the 
Energy Sciences Network and the National Energy Research Scientifc Computing Center (NERSC), to pro-
vide ALS users access to best-of-breed data management, data analysis, and simulation tools. We will give 
an overview of four representative ALS beamlines that have been part of these initiatives. 
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• Imaging (Beamline 8.3.2, hard X-ray micro-Tomography). Scans at this beamline consist of tens to 
thousands of 2D X-ray transmission images (“radiographs”) which are collected as a sample is rotated, 
generally through 180 degrees. Tomographic reconstruction yields a 3D volume with approximately 
1 micron spatial resolution; in many cases, image volumes are collected every few seconds to minutes 
to measure dynamic processes. This beamline is used by earth scientists to study e.g. fow through 
porous media, by materials scientists to study e.g. material failure under strain, and by biologists to 
study e.g. plant and insect anatomy. 

• Scattering (Beamline 7.3.3, small- and wide- angle X-ray Scattering). Small- and wide-angle X-ray 
scattering (SAXS/WAXS), as well as grazing incidence X-ray scattering, are techniques where the 
scattering of X-rays by a sample is recorded. The pattern of scattering yields information about char-
acteristic distances within the sample on the nanometer scale, and about the shapes and sizes of 
macromolecules. One characteristic experiment is on organic photovoltaic (OPV) materials. Printing 
these materials with a specialized printer shows promise as a less expensive, more fexible way to 
fabricate solar cells to convert sunlight to electricity. The ALS is one of the only facilities that has 
been able to print and measure these materials simultaneously. By capturing an image of the solution 
every second for fve minutes, scientists can watch the structures crystallize during the drying process 

• Micro-di raction (Beamline 12.3.2). Laue x-ray microdi raction has been successfully used to probe 
the microstructure of materials at the (sub)micron scale. Quantities such as crystal orientation, 
strain/stress and defect density can be extracted from the analysis of a Laue pattern. One exam-
ple of a recent experiment is with single crystal nickel-based super-alloys, the material of choice for 
making turbine blades in the aeronautical industry because of their excellent resistance to thermal 
creep and hot corrosion, and their strength at high temperature. However the cost of replacing the 
turbine blades when damaged can be prohibitive. Laser assisted 3D printing is the most promising 
alternative for repairing worn parts, as the single crystallinity needs to be maintained for the material 
to retain its mechanical properties. In this project, layers of Ni-based superalloys grown on a single 
crystalline substrate of the same material by laser assisted 3D printing under various conditions of 
laser power and speed, are investigated with Laue x-ray micro-di raction. Finding the conditions for 
the appearance of the deleterious stray grains and crack formations inside the layers are of partic-
ular interest for fne-tuning the technique. Modeling and simulation are used to assess the crystal 
nucleation and solidifcation process as well as strain distribution to be directed compared with the 
experimental data. 

• Hybrid (COSMIC Beamline, ptychography). Ptychography is a coherent di ractive x-ray imaging 
method which enables x-ray imaging at a spatial resolution that is limited by the x-ray wavelength 
rather then the quality of x-ray optics. Images are reconstructed by a phase retrieval algorithm that 
acts on coherent di raction data and information known a priori about the imaging geometry. It is 
a scanning method, so the feld of view, and hence the di raction data set, can be arbitrarily large. 
X-ray ptychography is in the early stages of development but is already having a very large impact in 
the study of chemistry and magnetism in nano-materials. 

14.1.2 Future 

Much of the computing at the ALS—especially prior to around 2013—was with local desktop-class ma-
chines, along with serial software developed for this platform. Much of this computing infrastructure did 
not integrate advanced computer science solutions. Currently and in the future, ALS needs in this area 
increase because of at least three changes: upgraded beamlines, new beamlines, and new approaches to 
the analysis and use of data after it is collected. These changes will lead to a need for adopting additional 
computing resources and parallelized software solutions. 

• Data rate increases at existing beamlines will come from new and improved detectors, as well as from 
increases in fux and brightness due to upgrades in the storage ring, beamline optics, and end stations. 
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The increase in complexity of the experiments is enabled in part by the increases in speed, but also 
because of the constantly improving reliability and stability of the normal beamline components, 
which means that more risky and challenging experiments can be attempted. 

• For the ALS, two prime examples of new data-intensive beamlines that will come online are the 
new ptycho-tomography beamlines, and new infrared tomography beamlines. In both of these cases, 
detectors will be used that can approach 10 Gbps data rates. And in both cases, the processed data 
will result in 5D data sets: 3D volumes that contain spectral information and which are collected as 
a function of time. 

• There will be an increasing demand to combine data from multiple sources—not just from multiple 
beamlines, but from beamlines and other types of experiments, including neutron, electron, optical, 
and other experiments. To the extent that data becomes more widely shared and accessible across 
communities, we also see in the future an opportunity for a large new e ort in data mining to fnd 
patterns across data. Rather than relying solely on data you collect, you can combine results from 
your data with data collected by many other researchers. In many cases, this will mean the use of 
algorithms and questions that go far beyond the original questions and conclusions made by the 
researchers who collected the data. 

14.1.3 Data lifecycle 

We acknowledge that one barrier to collaboration between science domains and computer scientists is the 
lack of common terminology or representations for modeling and profling the data lifecycle. On the other 
hand, it is a challenge for us to accurately portray in a simple way a characteristic data lifecycle at the 
ALS because it is highly experiment dependent–even for experiments at a given beamline, it can be highly 
variable. We will present the data lifecycle for one characteristic experiment from each of the beamlines 
discussed above. 

• Imaging (Beamline 8.3.2, hard X-ray micro-Tomography). 

During a scan at Beamline 8.3.2, an acquisition computer saves images it receives from a camera to 
a Data Transfer Node, where SPOT Suite software packages each set of images (about 10 GB) and 
transfers them both to NERSC and to a local temporary storage server. At NERSC, preprocessing 
(normalization, phase retrieval, and other fltering) and tomographic reconstruction (fast analytic 
approaches based on Fourier transforms) is launched automatically for each data set, which results 
in reconstructed 3D image volumes. Users can also submit a limited number of data sets for tomo-
graphic reconstruction using iterative and model-based methods which give superior results but are 
orders of magnitude more computationally intensive. All results are presented to users through a 
web portal. Users then download the reconstructed image volumes (20–50 GB each) and carry on 
with subsequent steps. Data on NERSC is kept on disk for a period of a few days, until it is moved to 
tape, and staged back to disk on demand. 

The kinds of analysis performed on the reconstructed 3D volumes is extremely diverse, but it is 
common to flter and then segment structures of interest (defne their boundaries); the ALS has col-
laborated with CAMERA to develop faster and more automated and robust methods for these steps. 
In many cases, segmentation is a precursor to measure porosity, or to generate statistics about the 
size, shape, and distribution of certain features within the volume. In other cases, a reconstructed 
(and often segmented and then meshed) volume is used as the input to a simulation such as reac-
tive transport, which combines fuid dynamics, structural changes, and chemistry; these simulations 
using an initial volume as its starting point can be compared to the measured experimental sample 
during in situ time resolved experiments. 

• Scattering (Beamline 7.3.3, small- and wide- angle X-ray Scattering). 
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Figure 14.1: Data lifecycle for Beamline 8.3.2, from the perspective of a domain scientist (in other words, 
lacking details of where the computations occurred, or details about data sizes, software used, etc). Images 
courtesy Rob Ritchie (UC Berkeley/LBNL) and Hrishi Bale (now at Zeiss). 

For one run of the organic photovoltaic (OPV) materials printing experiment described above, an 
attempt was made to illustrate a ’super facility’ concept, with seamless integration of multiple, com-
plementary DOE Oÿce of Science user facilities into a virtual facility o ering fundamentally greater 
capability. The facilities were the ALS, NERSC, the Oak Ridge Leadership Computing Facility (OLCF) 
and ESnet. The SPOT Suite workfow management system running at the National Energy Research 
Scientifc Computing Center (NERSC) was used to create a prototype data pipeline: as data was col-
lected from an ALS GISAXS experiment, it was sent via DOE’s Energy Sciences Network (ESnet) to 
the Titan Supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) for analysis on 
8000 nodes using CAMERA’s HipGISAXS code, a customized high performance code that exploits 
advanced graphics processors and particle swarm optimization to quickly reverse engineer the sam-
ple from simulated scattering patterns based on distorted wave Born approximations. The project 
demonstrated the capability for researchers in organic photovoltaics to not only measure scattering 
patterns for their samples at the ALS and see real time feedback on all their samples through the SPOT 
Suite application running on NERSC, but also to see near-real time analysis of their samples running 
at the largest scale on the Titan supercomputer at OLCF. This allowed the researchers to understand 
their samples suÿciently during beamtime experiments to adjust the experiment to maximize their 
scientifc results. Making a super facility available to users on a regular basis would have a large 
positive impact on the kind of work that could be done. 

• Micro-di raction (Beamline 12.3.2). With the advent of fast and large-size x-ray detectors such as the 
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DECTRIS Pilatus hybrid pixel array detector, it has become possible to map large portion of a sample 
with micron step sizes within a few hours. the technique becomes particularly useful when the data 
generated can be analyzed in real time. We have written a Laue indexing and strain refnement code 
that can process multiple images in parallel. Data collected on beamline 12.3.2 of the Advanced 
Light Source can be transferred to NERSC automatically, through SPOT Suite. Users can then log into 
a web portal, where they input their desired data processing parameters, and calculations are then 
launched on NERSC. Results are presented within the web portal. Processing tens of thousands of 
Laue patterns, which previously took weeks on a desktop computer, can be done in just a few hours, 
so that users can get results during their beamtime and use the feedback to adjust their experiments. 
The use of high performance computing and fast detector technology has provided the opportunity 
to transition from Laue x-ray micro-di raction mapping (a few hundred data points on localized 
area of the sample) to a quantitative micro-structural imaging tool—1 megapixel images showing the 
distribution of grain orientation, phases, strain/stress and deformation inside a material. 

• Hybrid (COSMIC Beamline, ptychography). Currently, di raction data is streamed from a high frame 
rate CCD detector, through a data transfer node and to a multi-GPU cluster during the sample scan. 
Data is then submitted to a preprocessing computation which removes background, flters outliers 
and ideally samples the di raction measurements. After preprocessing, the sample image is recon-
structed by a phase retrieval algorithm that acts on the full set of di raction patterns. The parallel 
projection algorithm iteratively recovers reciprocal space phases and allows for a direct computa-
tion of the image via FFT. After image reconstruction, higher level analysis may proceed on a set of 
projections that represent a tomographic or spectroscopic image data set. 

14.1.4 Data-centric Requirements: Capabilities, Speeds, and Feeds 

The ALS submitted a case study to the 2014 ESnet Basic Energy Sciences Network Requirements Review.1 

This included an analysis of current and predicted data rates; those trends and predictions still hold true. 
We include one fgure and a table that were part of that report to summarize the results of that case 
study. 

Figure 14.2: Based on a data rate prediction tool formulated by interviews with beamline scientists at the 
ALS (bl832web.lbl.gov/esnet), various scenarios can be investigated to determine expected future data 
rates. Predicted data rates indicate that the exponential rate of growth in network traÿc seen over the last 
5+ years (at least) will continue at about the same pace. 

1Basic Energy Sciences Network Requirements Review - Final Report 2014: http://www.es.net/assets/Hester/ 
RequirementsReviews/2014/BES-Net-Req-Review-2014-Final-Report.pdf. 
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Processing stage Present/Near-term Long-term 
Data acquisition rate: maximum 

10 Gbps max; 140 TB/month av- 80 Gbps max; 1.5 PB/month 
rate(s) and monthly or annual to-

erage (raw data) (raw data) 
tals 

In addition, add higher-level fea-
data reduction, tomographic re-

Experiment-side processing ture extraction/identifcation to
construction, etc. 

guide experimental system 
Real-time constraints, 
turnaround time from collec-
tion to result for experimental 
control 

varies among 40 beamlines from 
sub-second to minutes 

varies by beamline, increasing 
numbers of beamlines will need 
sub-second feedback 

Coordinated system for captur-
Metadata/provenance capture Varies by beamline ing metadata and data from all 

beamlines 

Table 14.1: Summary of data-centric requirements. 

14.2 Impediments, Gaps, Needs, Challenges 

There are a number of needs based on future plans at the ALS. Some of these have been mentioned in the 
previous sections. We will review them here. We note that this list has signifcant overlap with the report 
of the BES Facilities Computing Working Group from their May 2015 meeting. 

• One overarching challenge is the number and diversity of light source experiments. Even for a given 
beamline, there are often tens of di erent types of experiments. This means that it is possible to 
“solve” all the problems of one user without helping the next user at all. Even when there is a potential 
for a given tool to beneft other users, it often takes signifcantly more development time to make a 
tool robust and easy to use to be useful to the community rather than for a single user (documentation, 
testing, bug tracking, message boards, outreach), and the incentive to do this extra development is 
often not there. On the other hand, consolidation of software would mean better software with overall 
less investment. One approach could be to focus on easy libraries and languages that allow relatively 
easy customization, rather than full environments. It will be important for these solutions to focus 
on parallelism in the processing and on taking advantage of emerging hardware, while facilitating 
running applications on multiple platforms. Another approach could be focusing on workfow tools, 
which could provide the vehicle that would lead to a community catalog of software libraries. 

• Usability and accessibility are key concerns. It is necessary to minimize the need for facility users to 
have detailed knowledge of system hardware and operating systems. The ALS has been extremely 
successful at expanding its user base to a wide variety of science areas as well as to industry users. 
Many of these users will beneft from advanced computing, but they are experts in areas other than 
computing—writing a script is something many of them have never done. Many users also do not 
have easy access to computing power beyond their laptop. Even for users who do have access to more 
computing power, for some of the newer beamlines and for planned beamlines, it is getting to point 
where users cannot just download their data–their hard drive isn’t big enough, and if it was they 
wouldn’t have the computing power needed to do anything with it. In these cases, a new form of 
instrument combining storage, compute, data, and code is required (a “super facility” or “discovery 
engine”). 

. . . it is getting to point where users cannot just download their data—their hard drive 
isn’t big enough, and if it was they wouldn’t have the computing power needed to do 
anything with it. 
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• As data rates and experiment complexity increase, it becomes more desirable to steer the data collec-
tion, and near-real-time feedback can permit qualitatively di erent, more interactive and collabora-
tive discovery modalities. One requirement for this will be automating and abstracting key analysis 
tasks, to better allocate the human in the loop—another way to think about it is the requirement to 
“mathematicize” more of the process (to formalize and quantify metrics that were previously qual-
itative). Of course, doing this would have applications beyond just real-time feedback. Another 
requirement to make this work will be workfows, which must help cross the boundaries of multi-
ple data sources, computing resources, operating systems, and runtime environments to provide the 
necessary feedback. This is a challenge because, among other reasons, there is currently a lack of 
common scheduling across facilities, or a common language to defne job pipeline operations across 
centers. 

• With increasing data rates, the ALS is seeing more problems with storing data quickly enough, with 
how to let users access it, and with how to transfer it to users’ home institutions or to their collabo-
rators. One issue is a lack of a network infrastructure to end-users, or other issues reaching the end 
users—to cite one example, many users from industry have internal security policies which preclude 
them from using globus.org for data transfer. 

• There are a number of areas in which new algorithms or analysis approaches are necessary. In many 
cases data is collected that is noisy or which has missing information. Some users collect large 5D 
data sets, and would like to visualize them with low latency or collaboratively share interactive vi-
sualizations with people at multiple locations. In other cases, users would like to combine di erent 
types of data from di erent instruments in a way that adds value. Many tools focus on single data 
sets of low dimension, so these data ensembles and high dimensional data provide a particular chal-
lenge. New visualization methods must use novel visual encoding, interactive tools for dealing with 
higher dimensional data, and automatic algorithms to identify salient variables across ensembles or 
for dimension reduction with real-time feedback. 

• Ideally, any relevant data should be made available to the scientifc community after some amount of 
time. But more than data preservation is required—proactive data curation is necessary for the data 
to be really useful. This will require more detailed metadata than is currently available, and it is a 
challenge to fnd ways to have automated but customizable ways to capture metadata. Data curation 
would mean making the data accessible in such a way that it can be searched—not just based on the 
existing metadata, but also based on scientifcally meaningful metadata that is flled in through ma-
chine learning or other approaches. Ideally, there would be ways for data to fnd interested parties as 
it is created, rather than waiting for scientists to search for the data, which may be spread across many 
di erent archives. It might mean making the data accessible along with the software and computing 
infrastructure necessary to process the data. The beneft of curation would be to reduce duplication 
of e ort in data creation, but also for re-use of data for further high quality research. Another beneft 
would be that it could lead to more algorithms and software being made available to the community, 
as researchers write code that can be benchmarked and used against curated data. It is not clear who 
would host or pay for this data curation. 
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Case Study 15 

Linac Coherent Light Source 

Amedeo Perazzo 
SLAC National Accelerator Laboratory 

15.1 Science Use Case 

15.1.1 Present or Near Term 

The frst X-ray free electron laser (FEL) to generate hard X-rays, the Linac Coherent Light Source (LCLS), 
began operation in 2009 and has dramatically exceeded performance expectations. This facility was cre-
ated using an existing electron accelerator which limits its pulse rate to 120 Hz. It generates X-rays by 
amplifying spontaneous noise in the electron beam (the so-called self-amplifed spontaneous emission, or 
SASE process), which limits the temporal coherence of the pulses. 

Nevertheless, the LCLS has already had a signifcant impact on many areas of science, including: resolving 
the structures of macromolecular protein complexes that were previously inaccessible; capturing bond for-
mation in the elusive transition-state of a chemical reaction; revealing the behavior of atoms and molecules 
in the presence of strong felds; observing quantum vortices in superfuid helium; and probing extreme 
states of matter from the structure of supercooled water to metals shock-heated to 10,000 degrees. 

X-Ray range 250 to 11,300 eV 
Pulse length < 5 - 500 fs 
Pulse energy 4 mJ 
Repetition Rate 120 Hz 

Table 15.1: Key LCLS parameters. 

15.1.2 Future 

The 2007 BES report Directing Matter & Energy: Five Grand Challenges for Science & the Imagination1 identi-
fed fundamental open questions that underpin energy science. The report further cited the need for new 

1The 2007 BES report can be found at: http://science.energy.gov/˜/media/bes/pdf/reports/files/gc_rpt.pdf. 
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�Figure 15.1: Pictorial representation of the LCLS X-ray generating di raction patterns from a sample. The 
ultrafast X-ray pulses are used much like fashes from a high speed strobe light, enabling scientists to take 
stop-motion pictures of atoms and molecules in motion, shedding light on the fundamental processes of 
chemistry, physics, and biology. LCLS experiments can generate up to 10GB/s sustained of science data. 

observational tools and facilities to help address these grand challenges. The 2009 BES report Next Gener-
ation Photon Sources for Grand Challenges in Science and Energy2 recognized specifc areas of energy science 
where next-generation X-ray light sources would have the greatest impact. Most recently, the Report of the 
BES Advisory Committee’s Subcommittee on Future X-ray Light Sources (2013) specifcally stated: an ex-
citing window of opportunity exists for the U.S. to provide a revolutionary advance in X-ray science by developing 
and constructing an unprecedented X-ray light source. This new light source should provide high repetition rate, 
ultra-bright, transform limited, femtosecond X-ray pulses over a broad photon energy range with full spatial and 
temporal coherence.3 

LCLS-II represents just such an advance in X-ray laser technology and will be a transformative tool for 
energy science. It will qualitatively change the way in which X-ray scattering, spectroscopy and imaging 
will be used in the future, to observe in ways never before possible, how natural and artifcial systems 
function, spanning multiple decades of time scales (down to the attosecond regime) and multiple spatial 

2The 2009 BES report can be found at: http://science.energy.gov/˜/media/bes/pdf/reports/files/ngps_rpt.pdf. 
3The Report of the BES Advisory Committee’s Subcommittee on Future X-ray Light Sources can be found at: http://science. 

energy.gov/˜/media/bes/besac/pdf/Reports/Future_Light_Sources_report_BESAC_approved_72513.pdf. 
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scales (down to the atomic regime). LCLS-II will further enable powerful new ways to capture rare chemical 
events, characterize fuctuating heterogeneous complexes, and reveal underlying quantum phenomena in 
matter using nonlinear, multidimensional, and coherent X-ray techniques that are only possible with a true 
X-ray laser. 

This next-generation facility will be based on advanced superconducting accelerator technology (continuous-
wave radio frequencies) and tunable magnetic undulators. It will support the latest seeding technologies 
to provide fully coherent X-rays (at the spatial di raction limit and at the temporal transform limit) in a 
uniformly-spaced train of pulses with programmable repetition rates of up to 1 MHz and tunable photon 
energies from 0.25 to 5 keV. It will also provide coherent X-ray pulses at photon energies greatly exceeding 
those presently available at LCLS, up to 25 keV at 120 Hz. 

15.1.3 Data Lifecycle 

Data acquisition 

The data acquisition system (DAQ) is the frst step in the LCLS science data lifecycle. The DAQ is the set 
of hardware and software responsible for correctly and coherently transporting data from an experiment’s 
cameras and detectors to o�ine storage. The DAQ is used to confgure, calibrate, and control these devices, 
to read out the data, to assemble the various contributions into events tagged with the fducial ID of the 
beam shot, and to write the data to disk. The DAQ also provides an online monitoring framework which 
allows users to analyze the quality of the data on-the-fy by snooping on the DAQ event traÿc as it is sent 
to the data cache. Together the DAQ and the online monitoring (analysis and monitoring interface, AMI) 
have the ability to readout, event build, and store multi-gigabyte-per-second data streams, analyze data 
on-the-fy, and the fexibility to accommodate user-supplied equipment. 

Each instrument—the Atomic, Molecular and Optical Science (AMO), Soft X-Ray (SXR), X-ray Pump Probe 
(XPP), X-ray Correlation Spectroscopy (XCS), Coherent X-Ray Imaging (CXI), and Matter Extreme Condi-
tions (MEC)—has its own independent data acquisition system hardware and software, and all hutches 
may be run simultaneously. 

Each experiment has a unique set of cameras, digitizers, detectors, encoders, and other devices that are 
required in order to accomplish the experiment’s objectives. Using a set of 10–20 linux nodes per hutch 
connected by a dedicated 10 Gigabit network within each hutch, the data acquisition system supports the 
confguration, triggering, and readout of over 30 detector types that range from commercial o -the-shelf 
products, SLAC-built and other custom detectors, detectors along the upstream beamline, and improvised 
systems based on an experiment’s unique requirements. 

These devices can be used in any combination in each hutch; each device’s readout is coordinated with 
the arrival of the FEL, lasers, and pulsed devices by the DAQ which distributes a trigger signal of pro-
grammable delay, width, and polarity with a known timing o set relative to the FEL beam. The DAQ 
system is capable of reading out 5 GB/s per instrument for all hutches except MEC which is limited to 1 
GB/s, due to its lower designed data rate. CXI is capable of running two independent experiments simul-
taneously; consequently, its infrastructure is capable of reading out 10 GB/s. 

Most devices are operated near their highest possible frame rate, and read out at the LCLS trigger rate of 
120 Hz. However, the DAQ is able to acquire data from devices that read out at di erent frame rates (e.g., 
120Hz, 30Hz, and 10 Hz) and associate the data with the appropriate fducial in the event record. The data 
are collected by the DAQ event builder software running on a distributed system of data storage nodes and 
stored as complete events in the data cache. The data cache is equipped with solid-state drives (SSDs), with 
about 4 TB of storage per hutch and 16 TB for CXI. The data are cached in the SSDs, and the transfer to 
fast feedback (FFB) nodes is initiated immediately when a run is started. The fast feedback nodes can store 
100-200 TB of data while awaiting transfer to permanent o�ine storage. 
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Figure 15.2: Schematic of the LCLS data fow. 

The data acquisition system is controlled by the user through a GUI or through a scripted python interface 
that can be used to confgure triggers and detectors, start/stop a run, and monitor the progress of a run. All 
detector devices and the set of DAQ nodes used by a specifc experiment are managed through the control 
GUI. 

Real-time monitoring 

The purpose of the online AMI is to produce a user confgurable, GUI-based analysis, without requiring any 
user coding or preparation. Monitoring and storage nodes receive each detector’s data, assemble complete 
events, and then copy the events to shared memory where the data are promptly available for applications 
that allow users to perform tasks such as background subtraction, event fltering, and detector correlations. 
Users may also integrate their own code to perform even more sophisticated or device-specifc processing. 
Analysis and storage farm nodes register for a multicast group to receive a fxed fraction of all events. 
Each hutch’s processing farm typically contains over 40 CPU cores. Each node in the processing farm 
receives complete events containing science data from all detectors. Thus, the processing and storage load 
is distributed across the nodes in the farm, and each node is still capable of fully analyzing any given event. 
Analysis results are collected from each node for display to the operator. AMI is the default tool for online 
analysis and feedback. 
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The monitoring nodes may only monitor a fraction of the total events depending upon the number of 
monitoring nodes used, the data size, and the complexity of the analysis. The feedback to the user is 
immediate allowing analysis on-the-fy. AMI can be used on online and o�ine data without any coding. 
In the online, the processing is handled by the monitoring nodes, but may not handle every event. In the 
o�ine mode, the processing is done on the local machine and every event is analyzed. Multiple sessions 
of AMI may coexist so that users may monitor the data on di erent consoles and using di erent criteria. 
The GUI has a set of simple operations that can be cascaded to achieve a variety of monitoring measures. 
The monitoring automatically learns which detectors are available in the data and makes their raw data 
available to the user with the click of a button. All of the scalar data such as the beam energy, beamline 
or endstation diode values, encoder readout, Experimental Physics and Industrial Control System (EPICS) 
data (1 Hz sampled) associated with the event are also available. Any “posted” data, data that is the result 
of processing detector data for this event, is also accessible. 

The data may be displayed as histograms, strip charts, distributions, and scatter plots, and it may be aver-
aged over a confgurable number of events. Scalar data can also be combined in an algebraic expression. 
The events included in these plots may be fltered; for example, the analysis may require that a laser shot 
be present in the event. The plots can be further manipulated, overlayed, displayed as a table, and saved to 
a text fle or an image. 

AMI supports single event waveform plots and image projections; these can be averaged, subtracted, and 
fltered. AMI has an algorithm for simple edge fnding using a constant fraction discriminator. Samples can 
be generically manipulated by adding cursors and doing cursor math or waveform shape matching. 

The online monitoring can also display data from image detectors such as commercial cameras, custom 
charge coupled devices (CCDs), and Pixel Array Detectors (PADs), displaying raw or custom-corrected 
data that includes dark subtraction, common mode noise correction, and bad pixel masking. AMI supports 
region-of-interest selection and masking, projections, integrals, and contrast calculations, as well as photon 
counting for these detectors. Other applications can run on the monitoring nodes and analyze the data 
received in the shared memory. Custom code can be used to plug into the monitoring framework to generate 
plots and contribute to the scalar data. 

Data management 

The main purpose of the Photon Controls and Data Systems (PCDS) data management system is to take 
care of the experimental data, the relevant metadata, and to make these data available for user analysis 
and for export to users’ institutions. The system handles information produced by various sources, includ-
ing: 

• DAQ systems of the LCLS instruments; 

• Camera images recorded by the LCLS EPICS controls system; 

• Custom user data recorders run in parallel with the DAQ system in some experiments; 

• Data translation services producing HDF5 fles from the raw XTC fles; 

• LCLS users and experiment support personnel annotating data and the data taking activities during 
experiments and/or when analyzing data and, with some limitations, data processing and analysis 
activities of LCLS users. 

This is a brief list of functions of the data management system: 

• Maintaining a central registry of experiments; 

• Implementing a safe and reliable mechanism for storing the data and metadata at various storage 
locations of the LCLS computing infrastructure, including disks, tape archives and databases; 
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• Performing data movement between original data sources, storage levels and locations within the 
LCLS as required by the needs of experiments and users as well as by LCLS data policies; 

• Translating raw XTC fles into the HDF5 format; 

• Maintaining the integrity of the data throughout all stages of data movement; 

• Due to the high cost of an LCLS experiment, data integrity is a paramount requirement to the sys-
tem; in a scenario of limited LCLS beam time available to experiments, data losses at any level or 
system failures are not acceptable (experimental groups will not have “another chance” to repeat the 
experiments); 

• Maintaining a catalog of the experimental fles; 

• Making the fles available for user analysis and for exporting to users’ institutions outside SLAC; 

• Providing LCLS users with interfaces and services for managing experimental fles; 

• Providing Web applications for viewing and managing various metadata of the experiments; 

• Providing the electronic logbook services for annotating the data taking and analysis activities; 

• Implementing and enforcing LCLS data access policies; 

• Enforcing LCLS data retention policies; 

• Providing database and Web server services to other subsystems of LCLS and to LCLS users. 

The data management system (DMS) has been designed to be an integral part of the LCLS data systems 
by: 

• Relying upon the common computing and networking infrastructure of LCLS; 

• Gathering data from LCLS DAQ and controls systems; 

• Providing database and Web applications services to the LCLS DAQ systems; 

• Providing data and metadata for LCLS analysis activities. 

• The system also makes use of SLAC Central Computing services for archiving experimental and user 
data to the HPSS tape archive system. 

Files are made available to users via the POSIX-compliant fle systems Lustre and GlusterFS. This fle stor-
age centric approach allows users to employ their custom tools to access and to analyze the data. The 
primary data format for the experimental fles, as they are recorded by the DAQ systems, is XTC. XTC is 
a homegrown binary fle format allowing sequential storing and retrieval of C++ objects. XTC fles can be 
also translated into the HDF5 format if requested by an experiment. In addition, the system: 

• Has a distributed data movement architecture which supports simultaneous data migrations for all 
LCLS instruments; 

• Is capable of handling multiple GB/s of aggregate data movements; 

• Has a high level of automation using various procedures and operations; 

• Uses databases and Web services as the core implementation (these services are also shared with the 
DAQ system); 

• Has a fle catalog based on iRODS; 

• Enforces data integrity via checksums (presently MD5) calculated on each fle at its origin (DAQ), 
recorded in the iRODS fle catalog, and used when moving fles between storage layers; 
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• Adopts a data security model based on UNIX groups: groups are managed by each experiment’s PI or 
instrument support personnel. 

The system includes the following databases provided via a redundant setup of MySQL servers: 

• Experiment registry (experiments catalog) 

• Authorization and roles (privileges) 

• File catalog 

• Electronic logbook 

• Active experiment 

• Data migration status 

The Web services are built upon a redundant installation of the Apache Web servers and protected via the 
WebAuth/WebKDC authentication mechanism. The Web application were developed using PHP, Python 
and modern HTML5 technologies (JavaScript frameworks). 

Data policies 

LCLS doesn’t impose any limits on how much data can be acquired by an experiment, or what kind of 
output data formats users would choose for their data processing and analysis. These choices are driven by 
specifc needs of an experiment and what would work best in each particular case. 

The data retention policies implemented at LCLS balance the storage needs of the experimental activi-
ties against storage resources available at LCLS. The core principles of the policies implemented at LCLS 
are: 

• All data (fles) and metadata (electronic logbook, etc.) of a particular experiment are by default 
available to the members of the experiment; 

• The policies are enforced via POSIX groups. Each experiment gets its own group managed by the PI 
of the experiment or a person chosen by the PI; 

• The raw data are kept on disk for two years with a quota imposed after 6 months. The raw data are 
kept on tape for 10 years. 

Data analysis 

The goal of the PCDS data analysis system is to provide software that allows users to: 

• Quickly analyze LCLS data, both online and o�ine, using a common tool that is easy to use; 

• Move raw or reduced data to computers of their choice in a standard format; 

• Use the the same software online/o�ine as well as on computers not located at SLAC; 

• Create central tools to perform core tasks, re-usable by many, to minimize duplication of e ort (e.g., 
for detector calibration); 

• Create and support an additional portable data format (HDF5) so that other tools can analyze LCLS 
data; 

• Develop and support software release tools; 

• Write documentation and support users. 
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This work is challenging because LCLS experiments change frequently and LCLS analyses are quite di-
verse. 

Many of the LCLS users come from synchrotron environments where data volumes are much lower, and 
often they are not familiar with python or C++. 

The main tool supported by the o�ine analysis group is called psana, for Photon Systems ANAlysis. It 
is based on C++ and python and has been under development since 2011. The features of this software 
include: 

• Support for both C++ and python; 

• Ability to capture commonly used algorithms in reusable modules that can be chained together in a 
serial fashion; 

• Support for calibrating images using standard tools; 

• A new Data Description Language (DDL) that allows automatic code generation for both C++ and 
python data access; 

• Ability to run the same software o�ine and online (with real-time plot display); 

• Ability to analyze data parallelizing over events (up to thousands of cores). 

Psana provides a framework-based analysis: this is a sequence of modules, written in either python or C++, 
that get called back sequentially for each event by the core psana code. The output object(s) of one module 
can be placed in an event store where it can be accessed by modules that follow it in the chain. 

15.1.4 Data-centric Requirements: Capabilities, Speeds, and Feeds 

Processing stage Present/Near-term Long-term 

Data acquisition rate: maximum 
rate(s) and monthly or annual to-
tals 

1–10 GB/s maximum data rate; 
1.5 PB annually 

100 GB/s maximum data rate; 15 
PB annually 

Experiment-side processing 
Detector calibration, feature ex-
traction, histogramming, visual-
ization 

Detector calibration, feature ex-
traction, histogramming, visual-
ization 

Real-time constraints, 
turnaround time from collec-
tion to result for experimental 
control 

1–10 sec 1–10 sec 

Table 15.2: Summary of data-centric requirements. 

15.2 Impediments, Gaps, Needs, Challenges 

The high repetition rate (1 MHz) and, above all, the potentially very high data throughput (100 GB/s) gen-
erated by LCLS-II will require a major upgrade of the data acquisition and storage system and increased 
data processing and data management capabilities. The main challenge will be developing high-density, 
high-throughput, petascale storage systems that allow concurrent access from thousands of jobs. Another 
critical feature is the deployment of a trigger/veto system to veto the readout process for uninteresting 
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events thus reducing the data throughput. Additional critical capabilities include upgrading the SLAC net-
work connection to ESnet and expanding bandwidth and capacity of the tape archive. Specifc challenges 
are noted here, and targeted projects to address these are outlined in the following section. 

Data acquisition (DAQ): Two main modifcations to the current system will be required for operating at 
high-repetition rates: moving the event builder from online to o�ine and developing the ability to 
aggregate contributions from multiple events in the readout nodes. These changes are required for 
running at 1 kHz or above, independent of throughput. The deployment of a trigger/veto system 
for LCLS-II will be required for large-area detectors since reading out images at full rate will not be 
feasible. Changes dictated by the increase in throughput are a network upgrade (from 10 Gigabit 
Ethernet to Infniband or to 40 Gigabit Ethernet) and the online cache upgrade. 

Real-time analysis: The LCLS experience has shown that the most e ective way to perform real-time anal-
ysis is allowing users to run their code against the data on disk (fast feedback storage layer). Fast 
feedback will become even more important with the deployment of a trigger/veto system for LCLS-
II. The existing storage technologies are too slow for the LCLS-II fast feedback layer. Spindle-based 
systems will become cheaper and more dense, but not much faster or easier to manage, and they 
do not handle concurrency well. Solid-state-based systems will also become cheaper, but the cur-
rent trend for commercial systems is to optimize IOPS (input/output operations per second) versus 
throughput and scalability, the key aspects for a system hosting the LCLS-II science data. In addition, 
current commercial systems come with a signifcant premium on the the cost of the fash memory, 
making a multi-petabyte system prohibitively expensive. 

Data storage: The SLAC tape archive system is approaching limits in overall storage capacity ( 20+PB) 
and throughput. Such limits are already observed at LCLS when archiving data from on-going exper-
iments while serving concurrent user requests to restore fles from tape. Based on the current storage 
requirements and the estimated increase in the amount of acquired data, it is expected that LCLS-II 
will require between 20 and 100 PB of fast storage. Deploying and maintaining these levels of storage 
at SLAC would require a signifcant increase in the capabilities of the existing LCLS and/or SLAC IT 
groups. A more cost-e ective solution would be to o�oad part of the LCLS-II data storage to larger 
computing facilities like NERSC. 

Data management: LCLS has developed a powerful data management system that handles both the au-
tomatic workfows of the data through the various storage layers (e.g., long-term data archival) and 
the users’ requests through a web portal (e.g., restoring data from tape). Some aspects of the cur-
rent system, such as checksum calculations, HPSS interface, and lack of prioritization, will become 
limitations at higher data volumes and will need to be upgraded. 

Data processing: Based on the current computing requirements and the estimated increase in the amount 
of data to process, it is expected that LCLS-II will require between 200 TeraFLOP and 1 PetaFLOP. As 
with data storage, deploying and maintaining very large processing capacity at SLAC would require a 
signifcant increase in the capabilities of the existing LCLS and/or SLAC IT groups. A more e ective 
solution would be o�oading part of the LCLS-II data processing to larger computing facilities like 
NERSC. 

Data network: SLAC recently upgraded its connection to ESnet from 10 Gbps to 100 Gbps. The primary 
reason for upgrading this link is to gain the ability to o�oad part of the LCLS science data process-
ing to NERSC, as current LCLS data acquisition rates are up to 5 times a single 10 Gbps link. The 
100 Gbps link will not be enough for LCLS-II, and terabit capabilities will be required if LCLS relies 
on NERSC for processing LCLS data. In regard to the local network, Infniband would be superior 
to Ethernet for building a high-throughput network for LCLS-II, especially under high congestion 
conditions. However, Infniband has cost consequences in non-localized installations: it is more ex-
pensive than Ethernet to connect devices that are not within 10 meters of each other, and signifcantly 
more expensive to connect devices that are more than 300 meters apart. 
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Data format: The LCLS DAQ is currently writing the raw data in XTC format. Users can request that their 
data be translated to HDF5. The translation step will become a bottleneck in the future and LCLS-II 
should adopt a single data format. HDF5 is becoming the de-facto standard for storing science data 
at light source facilities, but in order to e ectively replace XTC in LCLS, a couple of critical features 
are required. These features, namely the ability to read while writing and the ability to consolidate 
multiple writers into a consistent virtual data set, are currently missing in HDF5. However, the HDF 
group claims these features could be added if enough resources are made available. 
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Figure 15.3: Current LCLS Data Systems Architecture. 

15.2.1 Data systems projects 

We currently envision an evolution of the LCLS data system where the fast feedback storage layer is built 
on fash memory and where the o�ine processing and storage capabilities can be o�oaded to multiple 
facilities. NERSC is ideally suited to becoming one of these facilities (see Figures 15.3 and 15.4). This 
is a summary of the critical projects required to build a data system able to handle the LCLS-II require-
ments: 

Event builder: Move the event builder from the online (on-the-fy data acquisition) o�ine (after the data 
are written to disk) and introduce the ability to aggregate contributions from multiple events in the 
readout nodes to maximize network transport eÿciency. Both changes require software development 
only, and are incremental from what is currently in operation and required for running at 1kHz or 
above, independent of throughput. The online monitoring framework (AMI) and the o�ine frame-
work (psana) will need to be adapted to the new paradigm. 

Flash storage: Develop a custom, solid-state-based, online cache (DAQ recorders) and fast feedback stor-
age layer (users data analysis) to solve the storage challenge. SLAC has previously worked on petas-
cale fash-based systems and determined it is possible to build a scalable, petascale, solid-state stor-
age by aggregating commercial o -the-shelf components. The same technology could be used to build 
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Figure 15.4: Evolution of the LCLS Data Systems Architecture. 

custom recorders for both the online cache and the fast feedback system. 

Upgrade local-area network: The current system uses 10 Gigabit Ethernet from the readout nodes to the 
online cache and to the fast feedback and Infniband from the fast feedback to o�ine and within the 
o�ine nodes and the storage. SLAC will investigate introducing Infniband or 40 Gigabit Ethernet 
from the readout nodes to the online cache and to the fast feedback. The fnal solution will be based 
on actual space constraints. 

Add data management capabilities at high throughput: This includes upgrading the SLAC tape system, 
since we already see limitations when handling data from on-going experiments and concurrent 
users’ requests to restore fles from tape, and upgrading the data management framework. 

Deploy new timing system: The existing event timing system is not scalable to megahertz operations, 
therefore a new system will be required. 

Investigate a veto system: A veto signal could be delivered to the front-end electronics (EuXFEL approach), 
to the readout nodes, to the online cache or in the fast feedback layer. In general, a veto in the front-
end electronics reduces the throughput requirements on the DAQ components, while a veto in the 
following layers provides cheaper/larger bu ers and more time to reach a decision. 

HDF5 upgrade: Some critical features are missing from the HDF5 API. The HDF group thinks these fea-
tures are useful in general, not just for the LCLS, and that they could, and should, be added to the 
API. The group needs additional resources to work on these features. 

Increase data processing capabilities: Data centers built towards data-intensive systems could help of-
foad the LCLS/SLAC o�ine computing system. General support for LCLS-II o�ine analysis would 
require more than 100 PB tape storage, a dedicated 20–100 PB of disk storage and a processing farm 
in 0.2–1 PetaFLOP range with an aggregate throughput to the storage above 10 GB/s per PB. These 
capabilities could be achieved by using dedicated resources to extend one of the large NERSC ma-
chines (Cori for LCLS-I and the next-generation supercomputer for LCLS-II). Other key requirements 
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are the ability for LCLS users to manage their data through the LCLS tools and workfows and, ideally, 
the ability to use their SLAC user account (or a federated account). 

ESnet link upgrade: The ability to o�oad computing capabilities relies on a faster connection between 
SLAC and ESnet at 100 Gbps for LCLS and 1 Tbps for LCLS-II. 
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Case Study 16 

Data for Neutron Sources at the Oak 
Ridge National Laboratory Neutron 
Sources 

Garrett E. Granroth and Thomas Pro en 
Oak Ridge National Laboratory 

16.1 Science Use Case 

16.1.1 Present or Near Term 

Oak Ridge National Laboratory (ORNL) hosts two high-fux, neutron sources. One is the Spallation Neu-
tron Source (SNS) and the other is the High Flux Isotope Reactor (HFIR). These facilities use neutrons 
to study structure and excitations of a wide range of materials. The primary access to these facilities is 
through the user program. Between internal sta and users, we service a wide range of science like: battery 
materials, catalysts, gas storage, strongly correlated electron systems, polymers, superconductors, biofuels, 
multiferroics, etc. As scattering intensities for neutrons and X-rays have very di erent scattering intensities 
as a function of elemental composition, these two techniques can be combined to provide optimal scientifc 
results; thus requiring multi-modal analyses. Also in many cases, it is straight forward to compare the 
neutron response in a model to materials simulations. Some of these materials simulations, like Density 
Functional Theory (DFT) or Molecular Dynamics (MD) run on HPC platforms. Therefore there is an in-
creasing need to simplify access to, and use of HPC resources. This includes facilitating experimental data 
and simulation results. 

An overview of the data workfow, and the various hardware that enables it, is provided in Figure 16.1. 
An experiment usually begins at a planning stage which, right now, typically involves small scripts run on 
a user’s computer or on one of the facility-provided analysis machines. Once an experiment is approved 
and scheduled, it is run on an instrument. Here data is collected as neutron events, meaning when a 
neutron is detected, its pixel ID and absolute time (to 100 ns precision) are recorded. There is roughly a 
week of possible local storage at each instrument for bu ering purposes. Furthermore as the events are ac-
quired, they are streamed to the ORNL main campus where they are translated into an Event NeXus [196] 
fle and stored on a Lustre Parallel File System (PFS). Various metadata, sample temperature, instrument 
parameters, etc. are also streamed down to the PFS. The PFS was chosen so that data writing activities 
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from the highest rate instruments do not impede the reading of other data. The streaming is handled by 
a publish-subscribe system known as Adara [197]. Adara was developed as a collaboration between the 
Neutron Sciences Directorate (NScD) and the Computing and Computational Sciences Directorate (CCSD), 
both located at ORNL and funded through Laboratory Director’s Research and Development funds. There-
fore it is an excellent example of a collaboration between Computational Sciences and Neutron Sciences to 
provide a robust streaming service to a BES User Facility. Besides the translation client, other clients can 
listen to the live stream if live access to the data is needed. One such client that has been very popular is a 
website [198]that allows users to track the progress of the experiments. 

Resources on Main Campus HPC resources

Instrument

AcquisitionExperiment Planning

Analysis Machines

Cataloging

 Lustre Parallel File System

Reduction/AutoReduction Visualization

Fermi Cluster Dedicated AutoReduction
 Machine

Analysis Publication

OLCFNERSC

Users' machines

Figure 16.1: Diagram showing the current workfow for the acquisition, reduction, and analysis of neutron 
data at the ORNL neutron facilities. Steps in the workfow are shown in blue rectangles. The hardware, 
where the tasks occur, are indicated by green ellipses. 

Upon closing of the NeXus fle, the data is catalogued using an ICAT database [199] to allow for ease of fnd-
ing data in the future. The next process in the workfow is reduction. In reduction, the data is transformed 
into instrument-independent units through straightforward mathematical transforms. Traditionally this 
process is manually controlled and launched by the user or instrument scientist. However, automated re-
duction is gaining popularity and most users at the SNS look at data that has been transformed in this way. 
By automatic we mean that the reduction process is launched as soon as the fle is closed. 

There are three types of hardware where reduction may occur. Manual reduction, and automated reduction 
that does not require a lot of resource, usually occurs on one of several analysis machines at the SNS. There 
are two analysis machines per beamline and another nine that are shared between all instruments. The 
standard confguration for these machines is 64 cores and 512 GB of RAM. Since the frst neutrons at 
the SNS, reduction has been performed on such a cluster, although the size of these machines has grown, 
since the beginning of the facility. For reduction that can beneft from parallelization, a 100-core cluster 
called Fermi, and co-located with the PFS, can be used. Also auto-reduction for instruments that require 
large compute resources are performed on a dedicated auto-reduction machine. Some of these dedicated 
machines are located at the facility and some are on the main campus. The PFS is mounted on all of these 
machines to provide access to the collected data and for a place to record the reduced data. In this way data 
is transferred back and forth to the facility on an as needed basis. Reduction is handled by the Mantid [200] 
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software framework. 

After the data is reduced it may be visualized and then analyzed, or just analyzed, depending on the 
technique. The reduced data varies greatly in size—it can be as small as a few megabytes to as large as 
300 GB. We provide the analysis machines to allow the users to visualize and analyze their data. Currently 
most of the analysis codes were designed to run at previous generation facilities. In the cases where the 
data is smaller, some users do their analysis on the cluster and some simply transfer it, via ssh and Ethernet, 
to their personal computer for analysis. The traditional software, when run on instrument confgurations 
at the SNS, requires as much as 300GB of RAM. Most users do not have access to such computational 
resources at their home institution. Furthermore the time to download such a reduced data set makes use 
of the remote analysis resources more appealing to most users. Although some who have access to ESnet or 
Internet2 at their home institutions would like the ability to use faster data transfer methods. 

Visualization currently occurs most frequently with traditional software such as Horace [201] or Dave-
Mslice [202] which are Matlab [203] and IDL [204] based codes, respectively. The feld is in a transition 
to using software that leverages ParaView [205] for visualization. This is occurring to leverage parallel 
resources to visualize volume renderings of data sets that are hundreds of gigabytes in size. 

An example of this transition is shown by a slice through a 4D data set from a neutron spectroscopy mea-
surement on (T l,Rb)2Fe4Se5 shown in Figure 16.2. This slice was processed in ParaView using the jet 
colormap. This data was originally processed with Horace [206]. F. Samsel visualized this data using a 

Figure 16.2: A slice of a 4-D neutron spectroscopy data set as viewed from ParaView 

di erent colormap (Figure 16.3), The result shows more detail, especially near the level of the background 
(di erences in blue shades). Therefore gains in understanding should be possible by providing better tools 
for manipulating color maps and education in what makes a good colormap. 

There is growing interest in using computationally intensive techniques like DFT or MD in analysis. For 
these cases we utilize facilities at the OLCF, NERSC, or other resources the users themselves provide. As 
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Figure 16.3: A slice of a 4D neutron spectroscopy data set as viewed from ParaView. 

this grows, we expect to need more access to these resources. Right now we also leave it up to the user 
to get the results of the simulation o the HPC resource and to decide where to compare their data to the 
simulation. Right now we have no limitation on the size of the results that users can upload to the system. 
This works because demand is currently low and the process for uploading data requires slow links and 
the user’s computer to be in the middle. However this is not scalable and a long-term solution for storing 
and moving the appropriate reduced data, and the required simulation results must be found. 

Right now we leave it up to the user to [manually perform simulation-experiment 
data comparison/analysis, along with associated manual data movement] . . . However 
this is not scalable and a long term solution for storing and moving the appropriate 
reduced data, and the required simulation results must be found. 

Similarly many studies co-analyze X-ray data taken at one of the users facilities. However this data again 
must traverse the user computer for comparison. Here this works because the vast number of use cases 
are passing reduced data sets that are small. We can envision the need to pass around large data sets, say 
tomographic reconstructions of neutron and X-ray imaging data. Our current system would support only 
a limited amount of this comparison. 

. . . our only archival process right now is that provided by the published journal. 

The output of this process is typically paper production. Notice that this task comes from the users’ com-
puters, and our only archival process right now is that provided by the published journal. The current 
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typical output per instrument is roughly one paper per every two experiments. The net result of this is 
approximately 400 papers per year for the facility. 

16.1.2 Future 

Figure 16.4 shows a diagram of the workfow and the associated hardware in the future. For the most part 
acquisition and reduction will see little change. One exception arises from a time-of-fight imaging beam-
line that we expect to bring online within the next 5 years. It may require signifcantly more computing 
at the beamline so that we can send computed tomographs to the PFS rather than raw data. This instru-
ment may merit an expansion of the Adara streaming system as the data rate is higher. A synergy with the 
X-ray user facilities may also be found as the data is a stream of images, like the data produced by X-ray 
detectors, rather than a stream of events. Second we expect almost all reduction to move to automated 
resources so the analysis machines are used more for analysis. This is a trend we are seeing and we expect 
it to continue. 

Resources on Main Campus
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Analysis Machines

Cataloging
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Reduction/AutoReduction Visualization

Fermi ClusterDedicated AutoReduction
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Long Term
 Data Archive

EsNet Transfer
 Node
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 Transfer Node

User Facilities' data store

EsNet Transfer
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Figure 16.4: Diagram showing the expected future data workfow. Again blue rectangles indicate steps 
in the process and green ellipses indicate hardware used to execute the workfow. Note that feedback has 
been implemented between analysis and acquisition. Also more high-speed data transfer capabilities are 
included. 

The diagram changes signifcantly as we get to analysis. First note that feedback has been introduced from 
analysis back to acquisition. This is a growing request from instrument sta . The most straightforward 
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idea is to check simple quantities like the statistical signifcance in a region of interest on the detector 
bank. Such processes can be handled by the analysis machines; thus the hardware connection between the 
analysis machines and the instrument. However one could envision simultaneously running a simulation 
requiring HPC and acquiring data at the same time. Acquisition and or simulation, would move to the next 
step based on some heuristic comparing the two data sets. 

Another aspect of analysis is we expect to make more use of HPC resources. Note that the CADES resource 
at ORNL is introduced into the HPC box. This is a moderate level computing resource that is well matched 
to many of the physical problems studied by neutron scattering. It will also be tied directly to the PFS 
allowing for the direct comparison of data. We are testing this model with DFT calculations of molecular 
vibration over the next years and expect it to expand to more techniques. Other HPC resources like amazon 
web services [207] or Microsoft azure [208] may also be used as well. 

Introduction of ESnet connections is also planned to help future analysis work. This will allow easy ex-
change of data between multiple facilities and HPC centers. Also if users have access, they should be able 
to download their data and or simulations. 

Finally we have explicitly spelled out a long-term data store. With increased data rates from new instru-
ments and additional detector banks on other instruments, we expect we will no longer be able to keep 
all data and all reduced data on the PFS. Some appropriate longer term resource is required. Furthermore 
there is interest, especially among the theoretical community, of having access to data after the current re-
searchers have published. Such access needs to ensure that enough metadata is stored that the data can be 
analyzed appropriately. We have the ability to store raw data and the reduction script used to get from raw 
data to reduced data. However we need an electronic logbook to capture the reason why certain aspects 
of analysis or reduction were performed. Furthermore this notebook needs to be archived with the data 
so this subsequent access is useful. Providing more access to the data, in a manner that can be used by 
more scientists, will improve eÿciency, increase the impact of the science, and result in more papers per 
experiment. 

Providing more access to the data, in a manner that can be used by more scientists, 
will improve eÿciency, increase the impact of the science, and result in more papers 
per experiment. 

From a di erent perspective there are gains to be had by introducing advanced mathematical methods in 
several aspects. Using multi-modal data to constrain a model is one example. The current state of the 
art is co-refnement of a structural model using neutron and X-ray di raction data with programs like 
GSAS [209] and Fulprof [210]. More generally a Baysean approach of optimizing a model from whatever 
experimental data is available, is the future. Next we want to use the optimized algorithm on the optimal 
platform via an architecture that allows the user to assemble novel workfows using simple scripts. To 
this end we need a library of HPC-optimized routines (numerical integration, Metropolis Monte Carlo, 
optimizers like Dakota [211], etc.), each with a python interface, that can be assembled in this workfow. 
For visualization we have made a frst pass at adaptive binning procedures in the Mantid Software [200]. 
This uses rectangular bins [212]. But as the user community becomes more familiar with this, technique 
we will look into tessellated bins [213]. 

16.1.3 Data Lifecycle 

Currently raw data is generated during the acquisition and the researchers are generally done with it once 
the publication has been completed. Our policy is to keep raw data indefnitely, and we have no specifc 
policy about reduced data. However, with our highest rate instruments now online, we may have to rethink 
this strategy within the next two years. There is also interest in rethinking our policy that the user controls 
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access to the data in perpetuity. Researchers, beyond the traditional experimentalists would like access 
to compare standard data sets to models. We are currently storing more metadata with the reduced data 
than ever before in the history of the community. We are also now storing the algorithms used to convert 
a raw data set to a reduced data set. However to allow the fullest use of data sets to the broader scientifc 
community will also require tracking analysis procedures and to some degree tracking notes. 

16.1.4 Data-centric Requirements: Capabilities, Speeds, and Feeds 

Processing stage Present/Near-term Long-term 
Data acquisition rate: maximum 
rate(s) and monthly or annual to-
tals 

Experiment-side processing 

Real-time constraints, 
turnaround time from collec-
tion to result for experimental 
control 

Metadata/provenance capture 

500 MB/s maximum data rate; 
0.3 PB annually 

data reduction, traditional anal-
ysis 

5–15 minutes 

This is done for most automated 
experiment variables and for re-
duction 

5 GB/s maximum data rate; 1 PB 
annually 

data reduction, traditional anal-
ysis, electronic notebook meta 
data 

5 sec 

capture appropriate analysis 
metadata and notebook style 
information. 

Table 16.1: Summary of data-centric requirements. 

16.2 Impediments, Gaps, Needs, Challenges 

In summary, we see the following items as challenges that will need to be overcome. 

• Archiving the appropriate data and reduced data or data and procedure to reduce data; 

• In the aforementioned archive, include the appropriate metadata so it can be utilized by researchers 
beyond the group that acquired it; 

• Implementing a facility to enable data sharing and reuse of already acquired data; 

• Transferring large data sets between scattering user facilities, between HPC resources and scattering 
facilities, and providing high speed access to it for users that can take advantage of the high speed 
data links. 
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Case Study 17 

Data and Analysis Requirements in 
Scanning Probe and Electron 
Microscopies 

S.V. Kalinin, A. Belianinov, A. Lupini, S. Somnath, E. Strelcov, and S. Jesse 

Oak Ridge National Laboratory 

17.1 Science Use Case 

Scanning probe (atomic force, scanning tunneling, etc.) and scanning transmission electron microscopies 
now form the mainstay of nanoscience by providing capabilities for the local characterization and manipu-
lation of matter on the nanometer and atomic scales. Until very recently, development of these techniques 
was based on the synergy of instrumentation platforms (stability, noise, or environment), improved probes 
and detectors, measurement modalities, and mathematical tools for the extraction of materials-specifc pa-
rameters from imaging data. However, in almost all cases the information provided to the researcher is in 
the form of 2D images and (in the last decade) 3D spectroscopic imaging data sets, whereas full informa-
tion fow within the microscope was unavailable for the operator and end users and the internal analytics 
(required for feedback systems, for example) was limited. Furthermore, the generated data sets are usually 
manually sub-selected for subsequent detailed analysis by the researcher, further limiting the information 
generation capability of these tools and obviating data re-use. This paradigm di ers signifcantly from that 
in large scattering and synchrotron facilities for example. 

Here, we analyze the information aspects of probe and electron microscopy imaging as a frst step for devel-
oping systematic solutions for full data utilization and reuse in imaging. Given the traditional gap between 
the felds, we perform the analysis separately for scanning probe microscopy (SPM) and ((Scanning) Trans-
mission Electron Microscopy, (S)TEM, and elucidate commonalities when possible. We also note that SPM 
operates with scalar (single data stream) excitation and detection signals over a 2D scanning area, whereas 
STEM allows for much broader variability of detection schemes (0D, 1D, 2D) and scanned areas (2D or 3D). 
Hence we analyze SPM frst and STEM second. 

The SPM group at the Center for Nanophase Materials Sciences (CNMS) is actively working on the develop-
ment of scanning probe microscopy techniques for probing bias-induced (ferroelectric polarization switch-
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ing, electrochemical reactions) and thermal (glass transition, melting) transformations at the nanoscale. In 
these experiments, the SPM tip focuses an electric or thermal feld in a small (5–30 nm) region of material, 
inducing local transformations. In parallel, measured dynamic strain, resonance frequency shift, or quality 
factor of the cantilever (piezoresponse force microscopy, electrochemical strain microscopy) or tip-surface 
current (conductive atomic force microscopy, AFM) provides information on processes in the material (po-
larization, domain size, ionic motion, second phase formation, melting) induced by local stimulus. In the 
future, the detection strategies can include microwave, Raman, focused X-ray, electron microscopy, and 
other high-bandwidth local (approximately on the order of 10 nm and below) structural and chemical 
probes. 

The uniqueness of this approach is that the transformation can be probed in material volumes contain-
ing no or single individual extended defects, paving a pathway for studying phase transformations and 
electrochemical reactions at the single defect level (as opposed to volume averaging for typical materials 
science methods; compare to the impact of molecular unfolding spectroscopy in biomolecular chemistry), 
the target of crucial importance for materials science to link a defect structure to its functionality. 

These [future] studies require drastic improvement in their capability to collect and 
analyze multidimensional data sets, well beyond the state of the art (2D imaging or 
3D spectroscopic imaging) in the feld. 

The hardware platforms for these studies can be realized on 30,000+ SPMs worldwide and necessitate a 
classical development path of minimizing by noise level, improving drift stability, and introducing proper 
chemical and thermal environments. However, these studies require drastic improvement in capability to 
collect and analyze multidimensional data sets, well beyond state of the art (2D imaging or 3D spectro-
scopic imaging) in the feld. This can be demonstrated as follows: 

• The spatial scanning necessitates data acquisition over 2D dense grid of points; 

• The probing local transformation requires sweeping local stimulus (tip bias or temperature) while 
measuring the response; 

• All frst order phase transitions are hysteretic and hence are history dependent. This necessitates 
types of frst-order reversal curve studies, e ectively increasing the dimensionality of data (e.g., prob-
ing Preisach densities); 

• First-order phase transition often possess slow time dynamics, necessitating probing kinetic hystere-
sis (and di erentiating it from thermodynamics) by measuring a response as a function of time; and 

• The detection of force-based SPMs necessitates a probing response in a frequency band around res-
onance (since resonant frequency can be position dependent and single-frequency methods fail to 
capture these changes). 

These simple physical arguments illustrate that complete probing of local transformations necessitate 6D 
(space × frequency × (stimulus × stimulus) × time) detection scheme, as compared to the 1D molecular 
unfolding spectroscopy. To date, we have realized 5D and tentative 6D detection schemes (frst order 
reversal curves, time relaxation within hysteresis loop methods). The development of these techniques 
is illustrated in Table 17.1. Figure 17.1 shows the evolution of information volume for selected scanning 
probe microscopy techniques since their invention. 

(S)TEM and associated focused ion beam (FIB) microscopies spectroscopies are well established, robust 
imaging tools that have proved to be powerful for the visualization of structure and functionality of ma-
terials with atomic resolution [214, 215]. The ultimate goal of localized imaging and spectroscopy is to 
observe and quantitatively correlate structure-property relationships with functionality—by evaluating 
chemical, electronic, optical and phonon properties of individual atomic and nanometer-sized structural 
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Figure 17.1: Evolution of information volume in multidimensional scanning probe microscopies. 

elements [216]. Historic improvements in the underlying instrument hardware and data processing tech-
nologies has allowed for the determination of atomic positions with sub-ten-picometer precision [217, 218], 
which enabled the visualization of chemical and mechanical strains [219], and order parameter felds in-
cluding ferroelectric polarization [220, 221, 222, 223] and octahedral tilts [224, 225, 226, 227, 228]. Ide-
ally, complete studies have to be performed as a function of global stimuli, such as the temperature or 
uniform electric feld applied to the system, as well as local stimuli that are induced by additional probe 
or ionic interactions [229, 230, 231]. Furthermore, this technical combinatorial instrumentation challenge 
is exacerbated by a wealth of extracted information at both global and local scales necessitating a drastic 
improvement in capability to transfer, store and analyze multidimensional data sets. 

17.1.1 Present or Near Term 

Traditionally, data analysis, storage, and distribution e orts in the scanning probe, electron and ion mi-
croscopy domains are the responsibility of an individual sta or user; with whatever limited data analysis 
knowledge and capability available to them. Only an insignifcant fraction of data is analyzed (based on 
the initial screening during the acquisition process), and a fraction of analyzed data is published and be-
comes available for community-wide examination. Many analytical tools are custom designed, and are 
rarely traceable. The delayed use or re-use of data is common for a single PI, but is highly unlikely out-
side the groups by the broader community. At the same time, the value of complete utilization and re-use 
of data are obvious, and both domain-specifc and synergistic opportunities enabled by it can be easily 
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envisioned. 

Traditionally, data analysis, storage, and distribution e orts in the scanning probe, 
electron and ion microscopy domains are the responsibility of an individual sta , or 
user; with whatever limited data analysis knowledge and capability available to them. 
Only [an] insignifcant fraction of data is analyzed (based on initial screening during 
acquisition process), and [only a] fraction of analyzed data is published and becomes 
available for community-wide examination. 

In the last year, the SPM group at CNMS, in association with OLCF and the Institute for Functional Imag-
ing of Materials (IFIM) made signifcant strides in implementing an HPC infrastructure called BEAM 
(Bellerophon Environment for Analysis of Materials) [232]. BEAM enables instrument scientists to lever-
age the integrated computational and analytical power of ORNL’s CADES platform with HPC resources 
at the OLCF and at the National Energy Research Scientifc Computing Center (NERSC) to perform near-
real-time, scalable data analysis via a web-deliverable, cross-platform Java application. At the core of this 
cluster-based computing system is a web and data server located in CADES that enables multiple, con-
current users to securely upload and manage data, execute materials science workfows, and interactively 
engage analysis artifacts. BEAM’s long-term data management services utilize CADES large-scale stor-
age system and enable users to easily manipulate remote directories and upload or download new and 
processed data in their private data storage area as if they were browsing on a local workstation. Addi-
tionally, this framework accepts custom data analysis algorithms (developed by mathematicians, compu-
tational scientists, and materials scientists) in order to enable user-defned workfow needs; and allows 
post-authentication, “push button” execution of dynamically generated workfows on multiple DOE HPC 
platforms and CADES compute clusters (a.k.a., the “DOE HPC Cloud”). 

Many analytical tools are custom designed, and are rarely traceable. The delayed use 
or re-use of data is common for a single PI, but is highly unlikely outside the groups 
by broader community. 

Currently a custom set of algorithms, that are broadly described as multivariate analysis, curve ftting 
and image feature recognition, are being implemented on BEAM. These algorithms are being used to pro-
cess sta and user data for the Band Excitation suite [233], atom fnding and local crystallography anal-
ysis [234], ptychography [235] and large spectral data sets [236, 237]. The overall workfow is shown in 
Figure 17.2. 

The workfow process can be succinctly summarized as the following: 

1. Data is generated at the “Scientifc Instrument Tier” on an appropriate microscope platform. 

2. The data is transferred via the “BEAM User Tier” using a local in-house connection (scp) from the 
microscope control resource, or a personal sta /user machine via HTTPS to the CADES resource. 

3. The CADES resource a ords multi-tier architecture that simultaneously serves as a data storage reposi-
tory, BEAM Web and metadata server, and the CADES Cluster Computing resource that executes parallel 
user workfows. 

4. BEAM can then allocate jobs to additional DOE HPC platforms and allows post-authentication, “push 
button” execution of dynamically generated workfows. 

As of now, only a small percentage (1–5%) of the data is analyzed on BEAM, due to such a short lifetime of 
the project. The expected use of such an infrastructure would ideally be 95% and more, with a small subset 
of data reserved for customized processing and algorithm development. 

144 



�

Figure 17.2: BEAM workfow and infrastructure. 

17.1.2 Future Scanning Probe and Transmission Electron Microscopies 

As illustrated in Tables 17.1 and 17.2 current data volumes are already approaching the capacity for anal-
ysis on a local compute resource—like a workstation computer. In the near future computational clusters 
will be necessary in order to handle even the simplest of operations in data visualization. It is important 
to note here, that unlike physical probe microscopies (AFM, Scanning Tunneling Microscopy, STM) data 
generation time for (S)TEM and FIB are at least three orders of magnitude faster. On average, a single high-
quality image on a physical probe microscope is collected in approximately fve minutes at 512×512 pixels; 
whereas in a (S)TEM, a single 4k×4k image is captured well under a second. With images being perhaps 
the most basic, easy to handle and process data types. 

These data generation volumes extend beyond issues in processing and storage, but also in data transfer, 
particularly in experiments that rely on real time feedback to the tool operator. This problem is complicated 
even further by the fact that many of the experiments summarized may happen concurrently with parallel 
data fows coming from independent detectors. Combined tilt-focal series; time series spectra; or through-
focus Ptychograms [238] as well as movies that are even minutes in length will take a lot of space and 
require massive throughputs that necessitate livestreaming capabilities from the microscopes in order to 
eÿciently transfer this information. It is immediately apparent from the near-future trends in Figure 17.3 
and Table 17.2 that these problems are only expected to get more severe. 

We envision that operating within an HPC environment will provide the key interface for the intimate in-
teraction of experiment and theory. The multimodal, hyperspectral data collected in these new generation 
microscopy techniques is an amalgam of what is typically independently processed by well-established, 
theoretical techniques that utilize self-contained approaches but are rarely cross-validated. These inde-
pendent analysis workfows are well-understood, and widely utilized in a high-intensive computational 
environments by theoreticians today. We expect that combining storage, preprocessing, and theoretical ef-
forts will intertwine experiment and theory into a single, streamlined analysis process enabled by an HPC 
environment. Naturally, the grand goal of uniting these e orts is to enable true theoretical feedback to 
guide experiment and discovery in near real-time. 
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Figure 17.3: Scientifc data sizes on the processing and generation ends. For columns noted from left 
to right, laptop and workstation capabilities are estimated by average machines available on the market 
today. 25 GB general-mode (G-mode) STEM is a single “small” (see Table 17.1) 4D (200×200×400×400) 
data set. Full detector and probe data size is for a single 4D hyperspectral data set where the output of 
all electron or ion probe positions (2048×2048) is captured at an average size detector array (2048×2048). 
Large Hardon Collider ATLAS detector output for 2012–2013 is also noted. A 50-frame movie captured at 
2048×2048 probe positions with a 2048×2048 detector array. Modest G-mode movie captured at 200×200 
probe positions on a 768×768 pixel detector (per 1 exposure), with 256 Ronchigram Energy Channels over 
40 frames. 

We expect that combining storage, preprocessing, and theoretical e orts will inter-
twine experiment and theory into a single, streamlined analysis process; enabled by 
an HPC environment. Naturally, the grand goal of uniting these e orts is to enable 
true theoretical feedback to guide experiment and discovery in near real-time. 

17.1.3 Data Lifecycle for Scanning Probe and Transmission Electron Microscopies 

The data lifecycle follows a familiar cyclical pattern commonly found in Data Life Management literature 
which is replicated in Figure 17.4. 

• Creating Data: The microscope generates the data almost entirely. There is some additional descriptor 
metadata associated with the sample, operator and the microscope state, but it is rather infnitesimal 
compared to the size of the detector output. The number of detectors can vary, but currently will 
rarely cross over into double digits. The raw data output is uncompressed and is currently at 32-bit 
integers (software limited), with older microscope detectors clamped at 16 bits. Data transfer mech-
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Figure 17.4: Data lifecycle process in imaging. 

anisms from the detector to the storage media depends on the manufacturer, but the most commonly 
used interfaces are USB, Ethernet and PCI/PCI-e. 

• Processing Data: Classical processing methods utilize binning and averaging to improve the signal 
to noise, however over the last decade the detection hardware has improved signifcantly, with the 
processing methods largely utilized to control data volumes. At the very frst stages of the analysis 
workfow, we are interested in collecting full detector response at the fastest meaningful rates in order 
to assess tool performance and adjust parameters on-the-fy. Additionally fast visualization schemes 
would be of use to monitor the sample and quality of the output signal (§17.1.2). 

• Analyzing Data: The analysis framework has to be scalable, parallelizable and fexible. Due to the 
maturity of the feld, a large number of instrumental confgurations, and with the breadth of scientifc 
interests, the analytical backend has to have the capability to adapt to either completely new analysis 
library software, or have the fexibility to combine analysis workfows in an unconstrained fashion. 
Currently the analysis requirements include standard packages for plotting, 2D or 3D visualization, 
fle I/O, mathematical and multivariate statistical processing libraries. In the near future, more exotic 
neural network, image and hyperspectral registration and segmentation, compressed sensing, and 
robust fle sharing packages will be necessary. 

• Preserving Data: As a part of the user center service, data stewardship has to be included with the 
data collection and processing services. Data quotas, length of storage, redundancy, and encryption 
are only some of the important details that have to be discussed at the proposal preparation stages. 
However, some form of basic, short-term storage and access over the lifetime of the user project for 
pertinent analyzed and raw data sets have to be available. 

• Accessing Data: In the current framework of the user nanocenters, the data belongs to the PI on the 
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user proposal. Associated students, sta , and co-PIs have access to the data with the permission of 
the main PI. As such we envision data access during its lifetime on the ORNL compute resources to 
be limited to the individuals with proper training and security credentials vetted through the ORNL 
system that are a part of the user project for which the data is being collected. 

• Re-using Data: The BEAM framework at CNMS was conceived with data reusability and reanalysis in 
mind. Due to the nature of the experiments and the statistical framework to analyze and refne the 
data, recurring analysis of the same data set is vital for understanding the underlying physics and 
chemistry, as well as the validity of proposed theoretical models. We expect that users will reanalyze 
their data sets multiple times, and have in fact built the capability to capture and contain the results of 
periodic reanalysis into the data fle structure. Additionally, the results of such a persistent approach 
to analysis will be cross-correlated and form some of the very basis of scientifc arguments enabled 
by the BEAM framework. 

Due to the nature of the experiments and the statistical framework to analyze and 
refne the data, recurring analysis of the same data set is vital for understanding the 
underlying physics and chemistry, as well as validity of proposed theoretical models. 

17.1.4 Data-centric Requirements: Capabilities, Speeds, and Feeds 

The data-generation speed in SPM is presently limited by the bandwidth of the optical detector (at 10 
MHz) multiplied by the data capability of the DAQ card (16–32 bit). Typical information content in the 
data stream is limited by specifc imaging mode, etc., but can be estimated based on typical oscillation 
amplitude (approximately 0.1nm in contact modes, 50–100nm in non-contact modes) and the magnitude 
of thermal noise in the system. Traditionally, the frst step of data utilization is heterodyne fltering (lock-in 
or phase-locked loop) that compresses the approximate 10-megahertz data stream from the photodetector 
to about a 1-kilohertz data stream of amplitude/phase or frequency/amplitude data (compression is chosen 
to match acquisition time of single spatial pixel, which in turn is controlled by the speed of topography 
feedback). In band excitation mode (developed in 2007), excitation is performed at multiple frequencies, 
e ectively multiplexing data stream to about 100 kHz. In a recently developed G-mode (developed in 
2015), the full data stream is captured. The functional imaging of the materials is achieved by scanning 
time, voltage, and parameter space at each spatial location, giving rise to multidimensional data sets as 
summarized in Table 17.1. 

The acquisition of these compound data sets brings the obvious challenge of data storage, dimensionality 
reduction, visualization, and interpretation. While the analysis is tailored for new materials systems or de-
tection sequences, we can summarize the typical procedure for Band Excitation (BE) Piezoresponse Force 
Microscopy operation. In these, the frst step of data analysis of a 5D data set includes a simple harmonic 
oscillator ft along the frequency dimension, reducing dimensionality by 1 and giving rise to a 4D ampli-
tude, quality factor, and resonant frequency data set (vs. position and stimulus). For time measurements, 
the data can be analyzed to yield time delay hysteresis loops (e.g., using proper relaxation function fts). Re-
sultant 3D data sets are ftted using phenomenological models to give 2D images of polarization dynamics 
(and for example, their time dispersion). For frst-order reversal curve (FORC) type measurements, we typ-
ically convert to the Preisach type plane and then study spatial variability of Preisach parameters. For a 5D 
and 4D data set, we regularly use the multivariate statistics methods such as principal component analysis 
(PCA) to explore the variability of materials responses and its relationship to surface morphology. The use 
of more complex multivariate statistical analysis tools, such as end member extraction using the Bayesian 
method, has also been applied to 4D and 5D data sets. Similarly, the use of independent component anal-
ysis and k-means clustering for specifc problems may also be applied. Note that despite the complexity of 
the analysis procedure, in some cases 5D data sets can be reduced to two 2D images with readily identifable 
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Target data 
Technique Dimensionality Target data set 

size 
Band Excitation 
(BE-PFM) 

PFM 
3D, space and ω (256 × 256) × 64 32 MB 

Switching spectroscopy 
PFM (SS-PFM) 

3D, space and volt-
age 

(64 × 64) × 128 4 MB 

Time relaxation 
(TR-PFM) 

PFM 
3D, space and time (64 × 64) × 128 4 MB 

AC sweeps 
4D, space, ω, volt-
age 

(64 × 64) × 64 × 256 512 MB 

BE Polarization Switch-
ing (BEPS) 

4D, space, ω, 
age 

volt-
(64 × 64) × 64 × 128 

BE thermal 
4D, space, ω, 
perature 

tem-
(64 × 64) × 64 × 256 512 MB 

Time relaxation BE (TR-
BE) 

4D, space, ω, time (64 × 64) × 64 × 64 64 MB 

First order reversal 
curves (FORC) BEPS 

5D, space, ω, 
age, voltage 

volt-
(64 × 64) × 64 × 64 × 2 GB 

Time relaxation 
sweep, BE 

on 5D, space, ω, 
age, time 

volt-
(64 × 64) × 64 × 64 × 64 16 GB 

FORC Time BE 
6D, space, ω, volt-
age, voltage, time 

(64 × 64) × 64 × 64 × 16 × 64 128 GB 

FORC IV BEPS 
5D, space, ω, volt-

(64 × 64) × 64 × 64 × 16 4 GB 
age, cycle 

FORC IV and FORC IV- 4D, space, voltage, 
(64 × 64) × 64 × 20 200 MB 

Z cycle 
Time-resolved Kelvin 
Probe Force Microscopy 3D, space, time (60 × 20) × 106 8 MB 
(KPFM) 
Open loop (OL) BE 4D, space, ω, volt-

(256 × 256) × 32 × 16 256 MB 
KPFM age 
General-mode PFM (G- 3D, space and volt-

(256 × 256) × 1.6 × 104 4 GB 
PFM) age 
G-mode Voltage Spec-

ND, Space, voltage (256 × 256) × 1.6 × 106 400 GB 
troscopy (G-VS) 

Table 17.1: Development of multidimensional SPM methods at CNMS. 

physical meaning (e.g., separation of reaction and di usion in electrochemical systems, or components of 
relaxation in a ferro-relaxor arising from feld-induced phase transitions and ordinary polarization switch-
ing). However, some of the multivariate methods, such as the Bayesian unmixing approach, require HPCs 
to be realized on the 5D and 6D data sets, due to memory and computation requirements. General-mode 
(G-mode) data is typically processed in sections or chunks to alleviate the handling of large data sizes. 
Data sections are transformed to the frequency domain via a fast Fourier transform and multiple signal 
processing routines such as low-pass flters, and noise-thresholds are applied to reject noise in the signal. 
Alternatively, multivariate statistical analysis methods such as PCA may be applied to statistically flter the 
signal. Upon fltering the data, the aforementioned statistical methods are used as in BE data to extract 
relevant material properties. 

Figure 17.5 depicts the time required to process data acquired in BE and G-mode techniques. The process-
ing capability of a computer is generally limited by the memory and the speed, and parallel processing 
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Figure 17.5: Variation in computational time for BE, G-mode data sets for a range of data sizes. 

capability of the processor. Consumer laptops are feasible only for processing BE data smaller than 1 GB. 
Though workstations and desktops can process large BE and G-mode data sets, processing times can near 
24 hours for data sets exceeding 4–10 GB. HPC clusters can provide a 100–500 times improvement in 
processing time and can potentially enable real-time processing. 

The parameters in Table 17.1 illustrate that even for 4D methods data sampling is insuÿcient to ensure high 
temporal and energy resolution, whereas for 5D these problems are presently critical (e.g., eight FORC sets 
are insuÿcient for Preisach map sampling, and about 100 sets are typically required) and so far preclude 
6D imaging, although a low resolution form has been conducted. Figure 17.6 illustrates the bottlenecks 
that currently limit the data generation in select experimental methods, and they can be broadly classifed 
as limitations in: 

• Data acquisition: Our current instrumentation software is capable of transferring only a limited num-
ber of data samples—106 to and from the data acquisition hardware. This limitation results in trade-
o s between the number of FORC cycles, voltage steps in BEPS measurements, and the number of 
measurements that can be averaged to improve the signal-to-noise ratio. These limitations preclude 
larger data sizes in Tr-KPFM, BEPS than those possible currently. 

• Microscope drift: Scanning probe microscopes su er from drift in the scanner position with respect 
to the tip. Though the drift can be neglected in measurements that span over just a few minutes 
(e.g., band excitation piezoresponse force microscopy, BE PFM, or general mode Piezoresponse Force 
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Figure 17.6: Limitations in realizing the target BE and G-mode data sizes. 

Microscopy, G-PFM), the drift can be substantial in slower measurements such as time resolved Kelvin 
Probe Force Microscopy (Tr-KPFM), Band Excitation Piezoresponse Spectroscopy (BEPS), and FORC 
in current voltage measurement (FORC-IV) BEPS. The drift is exacerbated by the sudden and jerking 
motion of the scanner as the tip moves between measurement points. The drift forces tradeo s in 
the spatial, or voltage resolution in the measurements and thereby precludes the acquisition of larger 
data sets than those currently possible. 

• Tip wear: Many techniques such as BEPS, FORC IV BEPS and G-VS apply large biases between the tip 
and the substrate which can result in electrochemical reactions at the tip that can erode the conductive 
metal layer that covers the tip. Mechanical abrasion, due to friction when scanning, can also result in 
tip damage which deteriorates the spatial resolution. 

• Analysis: As described earlier, the analysis time scales linearly with the data size and our current 
techniques generate data that can require more than 24 hours of processing time with existing work-
stations. This limitation precludes analysis of G-mode data sets larger than 8 GB. 

• Until 2014, data generated by most experimental techniques occupied only a small portion of the data 
storage drive and others such as FORC time BE generated larger data but at a slow rate. The newly 
developed G-mode techniques are capable of generating as much as 38 MB of data per information 
channel, every second. It is possible to fll existing storage drives with just a few such G-mode data 
sets in a day. Access to vast, fast, cloud-based storage drives is necessary to enable storage of such 
large data sets. 

Table 17.2 summarizes various common experiment types and the data sizes for a given number of probe 
position (x,y) coordinates and higher dimensional energy channels. Looking beyond proposed values to 
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a fve- to ten-year outlook, the data sizes will continue to grow. Realistically for each electron, we could 
record the probe position (x,y), scattering angle (u,v), and the energy loss (E) (here we assume that you 
record the energy loss as a single value, not as a complete spectrum); resulting in a 5D data set as the 
most basic data unit. Additionally, this data could be a function of frame or focus or some physical pa-
rameter (Ptychogram, Focal series, Tilt series, etc.) adding dimensionality and size. Recording (x,y,u,v,E) 
gives roughly 20 bytes of data (using 32-bit integer values) per electron, providing a data rate of 4 Gbps, 
for a standard imaging case of about 32pA current, which is roughly 200 electrons per microsecond per 
detector. 

Probe posi- Pixels or Estimated size (32 Near future outlook (32 
Experiment Type 

tions channels bit int values) bit int values) 
Spectrum (Note 1) 1 1k 4kB -
Ronchigram ref 26 1 1k × 1k 4 MB 16MB 
Line spectrum 128 1k 512kB 16MB 

64MB (4k × 4k) × chan-
Image 1k × 1k 1 4MB 

nels 
Spectrum image 64 × 64 1k 16MB 16GB (1k × 1k × 4k) 
Ptychogram ref 25 64 × 64 256 × 256 1GB 4TB (1k × 1k × 1k × 1k) 
Focal series 512 × 512 160 167MB 1GB (2k × 2k × 160) 
Tilt series 1k × 1k 100 400MB 1.6GB (4k × 4k × 100) 

Many 4k × 4k × 100
Time series 512 × 512 100 100MB/frame 

frames (hours) 

Table 17.2: Current trends and short-term outlook for data generation and sizes in electron and ion beam 
microscopies. Note 1: Spectra could be Electron Energy Loss Spectra, X-ray spectra or other detector feed. 
Note 2: These are intended to be “typical” values based on the ORNL systems that people are currently 
using, rather than the maximum value possible. Depending on the sample, set-up or particular microscope 
hardware, values could easily increase by a factor of 2–4. 

Processing stage Present/Near-term Long-term 
Data acquisition rate: maximum 
rate(s) and monthly or annual to-
tals 

Experiment-side processing 

Real-time constraints, 
turnaround time from collec-
tion to result for experimental 
control 

Metadata/provenance capture 

∼10–100 GB/day for movies, 
ptychographic data sets, and 
Gmode SPM 
Lossless compression, ex-
ploratory data analy-
sis/multivariate statistics, de-
convolution, feature extraction, 
pan-sharpening, compressed 
sensing, image registration 
In most cases o�ine in the 
day-month interval for analyt-
ics, minutes-hours for micro-
scope operation 

Metadata from instrument and 
environmental parameters. Stor-
age of data analysis pathways 

∼10 Mb/s for SPM, ∼(1-10) GB/s 
for STEM in the full information 
capture modes 

data reduction, metadata collec-
tion, collaborative analysis, real 
time theory feedback 

Real-time analytics (unmixing, 
atom fnding, structure extrac-
tion) at imaging rates 

Capture appropriate analy-
sis meta data and notebook 
style information. Cross-
correlation of metadata with lit-
erature/web/data base searches 

Table 17.3: Data and analysis requirements in scanning probe and electron microscopies 
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17.1.5 Impediments, Gaps, Needs, Challenges 

Regarding Data Capture, Compression, and Storage 

1. Real-time processing and high-data throughput to support real or near-real-time experimental feed-
back is a challenge with data transfer rates of at least 4GB/s required. 

2. We will also need large, accessible data repositories for archival and data sharing, with annual storage 
capacity of 5 PB. 

3. Limited access to suÿcient computing resource for the initial processing of generated data is another 
challenge with a requirement for a dedicated 2000 (64 per microscopy tool) node system with GPU 
capabilities in the near future. 

. . . what hinders the future of STEM/FIB can be summarized as the lack of resources to 
move, store, share and process scientifc data. 

While each of the aforementioned roadblocks is a challenging issue at even the current rates of data gen-
eration and analysis, what hinders the future of STEM or FIB can be summarized as the lack of resources 
to move, store, share and process scientifc data. According to even the modest near-future estimates outlined 
in Table 17.1 and Table 17.2, continuous, secure data transfer rates approximately 4 GB/s per microscope 
are required to sustain tool operation to adequately fulfll the center’s obligation to the user community. 
An alternative but temporary solution is eÿcient data compression at the generation point. Furthermore, 
global data accessibility is an important preamble to analysis—as input from various experts in the feld 
is vital to achieve real scientifc progress. Therefore, a fexible data repository that allows fast and secure 
access to data by a handful on individuals to advise and oversee the analysis process is critical. Finally, the 
ability to receive real-time, or near-real-time feedback to the operator requires a dedicated computational 
resource to each microscope. In the near future, satisfying both data processing and theory requirements 
for the data stream o each microscope is likely unrealistic, however previewing the analyzed data and 
getting it ready for serious theoretical e ort is an excellent near future goal. 

Data analytics and visualization 

• Data visualization for high dimensional data sets (note that given highly regular spatial grids, its 
likely to be less complex then for more abstract data sets) 

• Infrastructure to support, verify, and reuse custom codes for mapping to physical models (e.g. recog-
noton and classifcation based neural nets algorithms, Bayesian endmember extractions, and other 
component analysis methods). 

• Image registration (for mapping multiple data set over time, e.g. aging of battery or upon changing 
gas pressure or global temperature when consecutive images can be shifted spatially and must be 
aligned e.g. using topography as a reference) 

• Development of physics-based statistical tools (e.g. constrained unmixings, etc.). 

Workforce training 

Many of the data curation problems and the extraction of materials-specifc responses from instrument data 
require close interaction between domain scientist and data scientist. Generally, such dual backgrounds are 
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an exception and some amount of professional training (boot camps or intensive courses) is required to fll 
this gap. 

Many of the data curation problems and extraction of materials specifc responses 
from instrument data require close interaction between domain scientist and data 
scientist. Generally, such dual background is exception and some amount of profes-
sional training (boot camps, intensive courses) is required to fll this gap. 

Infrastructure for data re-use and integration across user facilities 

The development of universal framework for full data capture within individual facilities further brings 
forward the consideration of their integration, providing an integrated data environment for subsequent 
re-use and data mining. This necessitates discussion of the integrability between chosen architectures and 
data formats. 

Conclusion 

In conclusion, the emerging trends place a heavy emphasis on combinatorial imaging that correlates spa-
tial, chemical and physical information. Serious challenges in processing these data have been slowly, but 
steadily addressed by the scientifc community on many fronts, however scaling, validating and cross-
correlating these independent e orts is a serious roadblock that can only be addressed by close collabora-
tion with the HPC and data handling experts. We foresee that close ties with the information technology 
community would usher in a technical revolution in the scientifc fronts by providing the infrastructure 
for truly close-knit multidiscipline collaboration. 
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Case Study 18 

Computing within the Advanced Photon 
Source for Data Collection and 
Analysis 

Brian H. Toby 
Argonne National Laboratory 

18.1 Background 

The APS1 is the Nation’s premier high-energy light source. Nearly 70 distinct beamlines are operated, with 
approximately half run by the facility and the rest by externally run consortia. Each beamline operates 
with unique capabilities and an independent scientifc mission. Thus, it is better to think of the APS as a 
confederation of more than 70 di erent independent laboratories (since some beamlines support multiple 
scientifc missions) rather than a monolithic experimental facility. Computational needs and strategies may 
di er considerably across beamlines, but computation is required for nearly every aspect of the facility. At 
present, it is estimated that the APS generates circa 2 PB of raw data/year. This document will concen-
trate on computing within the X-ray Science Division (XSD) of the APS. An assessment of XSD data and 
computing needs are underway, and a strategic plan for APS scientifc computing is also currently being 
prepared. 

Each beamline operates with unique capabilities and independent scientifc mission. 
. . . Computational needs and strategies may di er considerably across beamlines, but 
computation is required for nearly every aspect of the facility. 

The APS is planning to upgrade to a multi-bend achromat lattice storage ring to go into operation in the 
early 2020s. This will increase the brightness of the APS by two to three orders of magnitude and also the 
coherence of the source signifcantly. While not all beamlines will gain equally from the upgrade, some of 
the APS beamlines that already have the highest data rates can be expected to be enhanced by one to three 
orders of magnitude. 

1Information about the APS can be found at: http://aps.anl.gov. 
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18.2 Science Use Case 

While a comprehensive consideration of computing challenges for the entire facility is impossible without 
a very extensive document, it is possible to consider a single scientifc domain, as is done in the following 
section. 

18.2.1 Example: X-ray Imaging/Microscopy Challenges 

Scanning probe microscopy and X-ray imaging have made tremendous impacts on the scientifc commu-
nity over the past decades, addressing extremely broad and highly relevant scientifc questions. In the life 
sciences, X-ray fuorescence microscopy (XFM) has had a revolutionary impact in the area of bioinorganic 
chemistry, directly enabling the visualization of trace metal content, with various applications studying the 
role of metals in life and disease (fundamental biology, cancer research, endogenous dysregulation of metal 
homeostasis, development of therapeutic drugs and contrast agents, nanomedicine, bioremediation, metal 
impact on carbon cycling in the ocean). In the energy sciences, XFM has been used to study impurities 
and contaminants in photovoltaic materials to understand and improve upon the limitations in device per-
formance, or to study geopolymers as a low carbon alternative to Portland cement. Bragg di raction with 
a focused beam as a local structural probe is one of the most recent techniques to transition to nanoscale 
microscopy, and can probe local structure in a crystal, orientation, morphology, and both elastic and plas-
tic strain in single crystal, polycrystalline, composite, or deformed materials in 3D. The ability to easily 
alternate between polychromatic and tunable monochromatic di raction modes enables studies of a wide 
range of randomly oriented or polycrystalline, “real” materials—this makes possible a direct and quanti-
tative comparison of real samples to theory and simulation on the mesoscopic length scales of crystalline 
materials. 

A key limitation today is our ability to analyze and visualize the acquired data due to its volume, velocity 
and variety. For example, consider the example of mapping trace elemental content in a zebrafsh em-
bryo. [239] 

A key limitation today is our [in]ability to analyze and visualize the acquired data due 
to its [increasing] volume, velocity and variety. 

This particular data set (see Figure 18.1) was acquired at a lateral spatial resolution of 2 µm and only 60 
projections. A signifcant challenge in its reconstruction was the very low signal levels, which led to the use 
of (slow and computationally expensive) iterative reconstruction methods. Current methods rely on frst 
geometrically aligning individual projections (because measurement geometries are uncertain), and then 
carrying out reconstructions. Therefore, the quality of the end result very heavily depends on suÿcient 
signal statistics to align individual projections. Also consider the potential gains o ered by techniques 
such as dose fractionation, [240, 241] which demonstrate that 3D data sets could be acquired in essentially 
the same amount of time as a 2D data set, as long as individual projections can be aligned. The spatial res-
olution in a reconstructed tomographic data set depends on both the lateral resolution of the microscope 
employed for its acquisition as well as the size of the sample and the number of projections used to image 
it. The implication is that to achieve the highest spatial resolution for a data set as the one mentioned 
above one wants to both acquire at the highest resolution as well as over many more projections. The re-
solving power of the above data set was limited to about 5µm, due to signal levels. With the upgraded APS 
and improvements in detectors, we will be able to acquire the data set at a 200nm spatial resolution, but 
without advances in data analysis methods, due to poor signal-to-noise levels it is impossible to align and 
reconstruct the model parameters for data comprised of roughly 4200 projections having 4200x7810 datum 
each. Assuming conventional data acquisition approaches where one might acquire full X-ray fuorescence 
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spectra, one would have at each scan point 4 spectra with 2048 values each, assuming 4 bytes per channel, 
this data set corresponds to about 4 petabytes worth of data. In order to fully exploit the principle such as 
dose fractionation and to reconstruct the highest fdelity 3D tomographic data sets that are solely limited 
by radiation damage, we need to develop and implement approaches that are able to combine reconstruc-
tion and alignment into a single step, and use all the available information (e.g., numerous di erent X-ray 
fuorescence channels) simultaneously. 

Figure 18.1: Visualization of the elemental distribution in a zebrafsh embryo by X-ray fuorescence tomog-
raphy (MLEM reconstruction). (A) 3D rendering of the embryo indicating the spatial orientation of the 
virtual slices that are displayed in panels (B) and (C). Slices include a sagittal and transverse section (top), 
a coronal section (middle), and a sagittal section o set to the left (bottom). (B) Elemental distributions 
of Zinc (Zn), Iron (Fe), and Copper (Cu) for each of the 4 slices. Individual concentration scales for each 
element are displayed at the bottom of each column. (C) False-color overlays of the elemental distribu-
tions of Zn, Fe, and Cu indicating regions of colocalization. The concentration scales of each element were 
normalized and color-coded as follows: Zn (green), Fe (blue), and Cu (red). Areas of colocalization appear 
in the corresponding mixed hues. Reprinted from Bourassa, et al., Metallomics 6(9): 1648-1655. [239]. 
The signifcantly improved performance of advanced approaches such as MLEM is directly visible in the 
comparison with more standard approaches such as fltered-back projection, in particular when looking at 
noisy data such as the Cu signal. Even then, signifcant further improvements could be achieved by using 
all the available information in the reconstruction and inverting the data set as a whole as opposed to frst 
aligning individual projections and then carrying out a reconstruction piece by piece. Today we are missing 
corresponding software tools able to carry out these tasks. 

In addition, recent progress in coherent lensless imaging clearly points to the ability to combine one such 
approach (ptychography) routinely with scanning probe microscopies to extend spatial resolution for the 
imaging of structures well beyond the limitations set by optics. [242, 243] While signifcant improve-
ments have been made in the parallelization of reconstruction methods, [244] a key challenge will be to 
apply these methods to the simultaneous inversion of a full 3D data set, in particular when acquired using 
approaches such as dose fraction as outlined above. For example, consider the sample Chlamydomonas rei-
hnahrdtii reconstructed in Deng, J., et al. [242] where a 2D ptychographic data set was reconstructed from 
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more than 25,000 individual coherent di raction patterns each recorded in images with about 100,000 
pixels each. Assuming a four-byte precision per pixel, the data set corresponds to about 9 GB in size. A 
3D tomographic data set of this kind would constitute about 1 TB. Again simultaneous 3D reconstruction 
is required to provide best results, and ultimately enable 3D spatial resolution only limited by radiation 
damage on the sample, but we are far from able to address these problems with today’s software and ap-
proaches. 

Lastly, some experimental errors in data acquisition (e.g., uncertainties in object or detection geometry) 
are unavoidable, hence the need for post-collection alignment of projections, or better models of the object 
that can capture these dynamical e ects. With suÿciently advanced algorithms it is possible to attempt to 
correct these placement errors through appropriate modeling, in the actual reconstruction of the data set, 
since one has multiple measurements of the same sample, however it becomes a very large and diÿcult 
problem. 

Advancements in area detector technology allow collecting full-size (2048×2048) images at kHz and faster 
speeds. At this unprecedented rate, the integration of fast continuous (fy) scans observed via comple-
mentary metal-oxide semiconductor (CMOS) detectors and the high X-ray fux available at synchrotron 
facilities, allow for tomography of dynamic systems, i.e. to collect multiple full-size tomographic data sets 
per second and to generate 3D movies of evolving samples. When collecting tomographic data of fast evolv-
ing samples, the data collection is set at the highest speed required to capture the transient phenomena of 
interest that is still compatible with a sample and its environment. In these circumstances, to prevent un-
desired sample shrinking or movement during data collection, the instrument operator usually reduces the 
number of projections and the exposure time to reduce the sample motion artifacts, at the cost of angular 
undersampling and reduced detector signal-to-noise. The choices of scan parameter selection is often based 
on the operator experience. Very short exposure time and noisy data emphasize the detector non-linearity, 
scintillator defects and beam motion, leading to extreme artifact and making the 3D reconstruction and 
segmentation very challenging. 

Predicting the optimal scanning parameters, such as the detector exposure time, num-
ber and optimal angular position of the projections could optimize data collection 
schemes and ultimately provide better quality data. . . . Besides predicting the opti-
mal scanning parameters, the analysis of the resulting data then becomes the next 
bottleneck preventing near-real-time error detection or experiment steering. 

Predicting the optimal scanning parameters, such as detector exposure time, number and optimal angular 
position of the projections could optimize data collection schemes and ultimately provide better quality 
data. This approach can lead to novel X-ray tomographic technique with improved temporal resolution 
by more than an order of magnitude compared to conventional data collection schemes and has been of 
great interest to a wide range of communities, looking at an out-of-equilibrium pattern forming system, 
like growth morphology of metallic dendrites (see Figure 18.2) and battery failure processes and material 
characterization since the material morphology sets the properties of many metallic alloys. [245] 

Besides predicting the optimal scanning parameters, the analysis of the resulting data then becomes the 
next bottleneck preventing near-real-time error detection or experiment steering. Rapid tomographic im-
age reconstruction via large-scale parallelization is a new approach that leverages highly parallel comput-
ers to improve the performance of iterative tomographic image reconstruction applications. These methods 
have been applied to the conventional per-slice parallelization approach, but these are limiting the number 
of cores to the number of sinograms (typically 2048). A recently developed in-slice parallelization ap-
proach, [246] can use many more processors and has been demonstrated to reduce the total reconstruction 
times for large data sets by more than 95% on 32000 cores relative to 1000 cores. Moreover, the aver-
age reconstruction times are improved from 2 hours (256 cores) to 1 minute (32000 cores), thus enabling 
near-real-time use. We still need multi-level optimization approaches to further improve the accuracy and 
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Figure 18.2: Interfacial shape distributions (ISD) for two 75µm thick slices normal to the growth direction 
of the nearly free-growing dendrite at 9.0 seconds after nucleation. The blue section is centered at 125µm 
from the dendrite tip and corresponds to the ISDs in b and d. The red section is centered at 250µm from 
the tip and corresponds to the ISDs c and e. The ISDs in d and e have their vertical axes scaled by the 
average curvature. 

accelerate solution of the problems. 

18.2.2 Facility Overview: Computing in Near Term 

XSD computing is performed as part of our mission to enable research using X-rays and develop scientifc 
methodologies utilizing X-rays [247]. As part of that, computation may be employed for any or all of the 
following processes, depending on the beamline in question: 

• to conduct the experimental measurements, 

• to verify that beamline operation is progressing properly, 

• to reduce raw data to a form for optimal interpretation, 

• to analyze raw or reduced data, including the ftting of models to observations, 

• to simulate expected experimental results from a model, and 

• to catalog raw, reduced and/or transformed data sets and provide them to users. 

Most of the software utilized for the above is developed within the APS. While most experimental research 
is done by external facility users, XSD scientists often initially develop X-ray science data analysis method-
ologies. XSD scientists also perform their own research utilizing APS beamlines and may also collaborate 
with users on data analysis. The software for this comes from a multitude of sources, but a large amount is 
developed by APS beamline sta for their own use. This software is sometimes supported at a level that al-
lows it to become more widely used.2 In recent years, professional software engineers have also developed 

2Scientifc software packages developed at the APS are documented online at https://www1.aps.anl.gov/Science/ 
Scientific-Software/. 
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or reworked a few scientifc software packages for use at APS beamlines. In coming years, it is expected 
that teams consisting of computational engineers and scientists together with beamline scientists will have 
a greater role in this process. 

Experimental data reduction and analysis computation is usually done either on beamline workstations, 
which can be micro-clusters, or on a 53-node cluster run centrally by the APS. Nodes on this cluster are 
confgured for and dedicated to specifc APS beamlines, so that hardware is always available on demand. 
While some beamlines have piloted use-cases on leadership-scale computing for data reduction and anal-
ysis [248, 249, 246], at present these facilities are not utilized on a regular basis for any part of APS oper-
ations. We plan to migrate some of our o�ine tomography reconstruction computations to Mira (ALCF) 
in the next year, but most beamlines require computational resources within minutes or perhaps seconds 
when data are available and cannot abide with the queued structure employed on leadership machines. 
Argonne’s Laboratory Computing Resource Center plans to prototype a virtualized on-demand compute 
service in the coming year, which we hope can be useful for beamline operations. 

. . . in the next year, but most beamlines require computational resources within min-
utes or perhaps seconds when data are available and cannot abide with the queued 
structure employed on leadership machines. 

With the throughput demanded by the pace of experiments and the requirements for scientists to manually 
perform workfow tasks, beamline sta are left with little time to directly work with users on data analysis 
and interpretation tasks. How much data is “left on the table” can only be guessed upon. It certainly 
depends on the feld and the beamline. Certainly, as greater automation of experiments and data analysis 
is implemented, sta time is freed for a greater involvement in science, which can only improve facility 
productivity. 

The biggest challenge to the facility is how to create the scientifc software needed to 
run it: software for improving the experimental process; for implementing beamline 
data movement and reduction workfows; to perform preliminary quality assurance, 
visualization and reduction; for data analysis and interpretation; for automating anal-
ysis workfows and distribution to users. 

The biggest challenge to the facility is how to create the scientifc software needed to run it: software for 
improving the experimental process; for implementing beamline data movement and reduction workfows; 
to perform preliminary quality assurance, visualization and reduction; for data analysis and interpretation; 
for automating analysis workfows and distribution to users. The process of software development has been 
eased in part through languages such as Python, which has a high adoption rate amongst experimental 
scientists, but the process of adapting working algorithms to utilize continually new parallel computing 
architectures has only become a more demanding process. It is not enough to simply create software. 
Packages will never see their full potential without user outreach, written guides, and worked-through 
examples/tutorials. As soon as maintenance and development of a package ceases, rigor mortis will soon 
set in. Thus, software projects carry with them a mortgage for as long as they will be utilized. Further, each 
APS beamline has its own unique portfolio of data reduction and analysis packages, so the total number of 
codes needed is quite large. 

A lesser, but still pressing problem relates to handling the ever-increasing volumes of data generated by 
beamlines due to advancing detection technologies. As one example, we expect a technique that is already 
a high-data volume generator, X-ray photon correlation spectroscopy (XPCS), to see an order of magnitude 
increase in data rates in the coming months as a new detector is delivered. A still faster detector is already on 
the market and even faster detectors for XPCS are being developed. At present, XPCS data are processed in 
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near-real time, but it will be a signifcant challenge to continue to move these data and process them at that 
pace as the volume increases. For XPCS, the reduced data are much smaller than the raw images and there 
is little need to provide the latter to users. This is di erent for many other techniques, where large data sets 
are provided to users. For example, in tomography the resulting tomogram is of comparable size to the raw 
images, which are also usually retained so that di erent reconstruction algorithms can be compared. 

Every APS beamline can identify signifcant software needs, enough to keep at least one professional busy 
on an ongoing basis; in addition there is a signifcant backlog of unfulflled facility-wide needs. However, 
not even in the most optimistic budget scenarios will staÿng for scientifc computation development at 
the PAS approach a level of even 0.5 FTE per beamline. Clearly, only part of the challenges can be met, 
but work can be most e ective through collaboration, and by implementing integration that allows for 
greater code reuse. The development of tool kits that speed code development also need to be a part of this 
strategy. 

Every APS beamline can identify signifcant software needs, enough to keep at least 
one professional busy on an ongoing basis; in addition there is a signifcant backlog of 
unfulflled facility-wide needs. . . . Clearly, only part of the challenges can be met, but 
work can be most e ective through collaboration, and by implementing integration 
that allows for greater code reuse. 

Beamline computing falls into four categories. (A) On-the-spot computations to examine measurements 
as they are collected; (B) after-the-fact transformation and data reduction; (C) post-experiment data in-
terpretation; (D) simulation and modeling based on experimental fndings. This last case is most readily 
accessible for leadership-scale computing, for example with molecular dynamics (MD) or Density Func-
tional Theory (DFT) calculations to simulate model systems, but this is not a typical use case and is also not 
a facility focus. The other types of beamline computing cannot be discussed without considering schedul-
ing demands. There is little point in predicting yesterday’s weather. Likewise, beamlines need to provide 
feedback to experimenters as to how their measurement is working while the experiment is in progress 
and entering such computations into a queue means that measurements may be conducted “in the dark.”3 

Only a small fraction of computing can tolerate delays on the scale of hours, and even then beamline sci-
entists will still choose the computing strategy that provides the fastest throughput and requires the least 
e ort. 

To date, computing user facilities have not been utilized to any signifcant level in 
routine APS operations. The key to changing this is in establishing mechanisms that 
allow beamline computing to preempt the long-running batch jobs that provide the 
main demand for these large machines. 

To date, computing user facilities have not been utilized to any signifcant level in routine APS operations. 
The key to changing this is in establishing mechanisms that allow beamline computing to preempt the 
long-running batch jobs that provide the main demand for these large machines. It should be noted that 
the most e ective beamline computing will be scaled to use the largest amount of resources that can be 
deployed e ectively in order to provide a result to a user within minutes if not seconds of completion of 
the measurement. This means that the ideal use cases (when parallelization is possible) will employ large 
numbers of processors for short periods, with potentially long delays between tasks as the next set of data 
are collected. Thus, by design, these computations will optimally use only a small fraction of the facility’s 
capacity, making shared use a high priority. 

3See https://www.alcf.anl.gov/articles/boosting-beamline-performance for an example of how spotting a trivial problem 
early can spell the di erence between a successful outcome and a wasted week of beam time and associated travel costs. 
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18.2.3 Facility Overview: Future 

In the near future, we expect to see signifcant expansion of data rates due to improvements in detector 
technology, which is progressing at a rate far outstripping Moore’s law. An even larger dislocation is an-
ticipated due to the APS upgrade, which will allow a growth in data rates for some instruments by factors 
of 102 to 103. The APS upgrade will permit multiple techniques to be applied to a single sample concur-
rently. Analysis of such multimodal techniques will produce extremely complex data streams, which will 
require complex reconstruction techniques to be “knit together” and sophisticated analysis techniques to 
help users fnd meaning from multidimensional data sets that are too large and complex for humans to 
mentally integrate. The assessment report that is nearing completion will review the computing needs for 
each APS beamline as well as sizes of current and anticipated data streams. 

Simulations of experiments, in advance of measurements, are not commonly performed. Facilitating this 
process will improve facility e ectiveness in two ways: (A) Proposal reviewers can judge if an instrument 
has the required sensitivity to perform the intended experiment; (B) users can come to the beamline pre-
pared, knowing what aspects of the measurement will best di erentiate between anticipated models. 

18.2.4 Data Lifecycle 

At present, most raw data are collected at beamlines as collections of related images, often on computers 
dedicated to detector operations with limited software capabilities; additional information may be dis-
tributed across multiple other computers and databases. Images may be collected in bursts as fast as 2000 
single-megabyte image frames per second, but several orders of magnitude improvement will be expected 
in the coming 5–10 years. The data are typically reduced and in some cases only the reduced data are 
retained, but in other cases the raw images are kept. The data of record are provided to users who have 
the responsibility for archiving them, as determined by the data management plan associated with the 
user’s funding program. When data sets are large, data are typically provided to users on removable hard 
disk drives, but an increasing number of users are employing Globus Transfer [15, 16]4 to move data over 
networks. 

One particular area of interest is in workfow tools. These are of need for beamline task integration/data 
management and for data analysis pipelines. A related need is for HPC scripting, for which the Swift 
language [250]5 has proven quite useful for certain classes of problems. Workfow programming represents 
a common need across all science user facilities, and resources devoted to a tool that satisfes a large cross-
section of beamline needs would be welcomed by the APS. 

The APS is currently improving data pipelines to ease the e ort required to transfer data between storage 
facilities, including staging for computing within the ALCF and to a facility-run Globus endpoint. At 
present, the APS does not provide a centralized and robust long-term data archive, as this is categorized as 
a user responsibility. The facility may be called upon to provide this as a service in the future. 

4http://www.globus.org. 
5http://swift-lang.org. 
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18.3 Impediments, Gaps, Needs, Challenges 

The most serious impediment the APS encounters is a lack of a DOE-wide view of 
software needs across the BES mission. Since each lab has its own portfolio of respon-
sibilities, it devotes resources to those goals. For software development, in some cases 
the most e ective mechanism for accomplishing them is for facilities to join together 
with coordinated programs. 

The most serious impediment the APS encounters is a lack of a DOE-wide view of software needs across 
the BES mission. Since each lab has its own portfolio of responsibilities, it devotes resources to those 
goals. For software development, in some cases the most e ective mechanism for accomplishing them is for 
facilities to join together with coordinated programs. In many cases, due to lack of staÿng with appropriate 
specialized knowledge or facility prioritization, it makes more sense to have a team at a single laboratory 
develop a package that suits needs of all of BES. Two very e ective examples of this from Argonne have been 
TomoPy [251] and GSAS/EXPGUI [252], which are both used world-wide. In fact, EXPGUI is at present 
cited approximately 500 times/year, but it is also no longer being supported due to staÿng requirements. 
As budget pressure on labs becomes more severe, software development from facility operational funds 
by necessity must be more focused on internal priorities. DOE-wide needs will not be properly met unless 
experimental data analysis software development projects are resourced outside of facility operation and unless 
projects have development metrics encompassing needs of all facilities. 

DOE-wide needs will not be properly met unless experimental data analysis software 
development projects are resourced outside of facility operation and unless projects 
have development metrics encompassing needs of all facilities. 

There is a tremendous potential synergy for ASCR to collaborate with BES science user facilities for the gain 
of both communities. In fact, as discussed previously, the APS will not be able to make full use of future 
multimodal types of data without considerable involvement from computer scientists. However, creating 
manageable and highly productive e ort profles for such cooperative projects is a tricky problem to man-
age. Involvement from scientists from both communities is required. Without participation from beamline 
scientists from the targeted facility(s), there is a high likelihood of a carefully designed tool that no one 
wants will be produced. A successful project will have clear deliverables that include a working, though 
likely incomplete, version of the software as a deliverable within the frst third of the intended project du-
ration. A functionally complete version of the code is needed in the second third of the project, allowing 
the remainder of the time for documentation, user-demanded improvements and user outreach. Regular 
workshops are needed with members of the intended user community. In the early stages, these will be 
design and user interface reviews. Towards the end they become educational outreach. The plan must also 
address how the software will evolve over an extended duration and how maintenance and outreach will 
continue. As soon as this ends, rigor mortis sets in; to build software without a plan that encompasses the 
intended lifetime of use is akin to demolishing a building as soon as construction is complete. 

Coordinated prioritization and production of core tools that would aid software de-
velopment across multiple science user facility organizations would be a very wise 
investment for the user facilities. 

The software development process is greatly benefted by the ability to utilize libraries and programming 
environments. When programmers utilize common standards and toolkits, it also encourages interoper-
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ability between packages. Examples of tools that speed the development of code include Doxygen and 
Sphinx, which build developer’s documentation from source code, NumPy and SciPy, which provide a 
scientifc computation toolkit, and HDF5, a robust hierarchical fle format. However, when it comes to 
development of HPC code, there are fewer tools that ease the process for scientist-software developers (as 
opposed to computational experts) to transition from prototype code to HPC production code. Given that 
Python is a particularly welcome environment for scientifc code development, improving the process of 
porting from Python to exascale will greatly aid the utilization of leadership-level computing for X-ray sci-
ence. Coordinated prioritization and production of core tools that would aid software development across 
multiple science user facility organizations would be a very wise investment for the user facilities. High-
quality extensible workfow development tools appropriate for workstations through HPC deployment are 
also very much in need. Likewise, well-developed and supported data standards would very much bene-
ft facilities. At least at our facility, the NeXus format has failed to achieve much penetration due to lack 
of adequate software toolkits and basic tools. The most powerful driver for adoption of a standard is a 
“killer app” associated with the standard that entices users to demand compatibility throughout the sci-
entifc food chain. Tools that allow domain scientists without HPC skills to easily develop parallelizable 
code in a programming environment they prefer, is at present most commonly Python. Many scientists are 
very comfortable translating their data analysis concepts to computer code, but are most comfortable and 
productive doing so in an interpreted language environment like Python, Matlab or R, but not in Java or 
C++. At present, signifcant e orts from HPC experts are needed to adapt such codes to make e ective use 
of even the multi-core processors found in laptops. 

As discussed before, for beamline computing to share hardware with the traditional use of leadership 
computing requires that beamline needs preempt long-running tasks for short periods. This requires new 
approaches for scheduling and requires rapid task startup and switching. Without on-demand access, 
most beamline computing will not be deployed at SC user facilities; without preemptive scheduling, such 
use will not be e ective or welcome. Ideally, this use case would also be combined with containerized or 
virtualized computing, as this eases the confguration process, which can become complex as the number 
of packages in use at a facility grows. 

New approaches to data set management and storage are needed. Conceptually, one thinks of data as a sin-
gle or perhaps a hierarchical set of fles in a single place. In practice, at our facility a data set is accumulated 
as a set of fles and sometimes database entries that are dispersed amongst multiple computers, as they are 
collected. After the experiment and during data reduction and analysis, these fles are migrated to other 
locations and additional intermediate results are added. Further, if one considers the frequent occurrence 
that multiple researchers work on analysis with periodic restarts and overlapping approaches, a data set 
looks more like a distributed github project than a hierarchical directory. Another welcome addition in the 
data universe would be a centralized DOE facility that provides a Globus-integrated mechanism for data 
archival and retrieval, that could be provided as an option to users at cost. The Petrel system at ANL6 is 
used for this purpose at present. 

In conclusion, the APS has many unmet needs, but the ones of greatest concern are now to create, support 
and port software to use HPC facilities. 

6http://petrel.alcf.anl.gov. 
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19.1 Science Use Case 

19.1.1 The Deep Underground Neutrino Experiment 

The Deep Underground Neutrino Experiment (DUNE) will provide a unique, world-leading program for 
the exploration of key questions at the forefront of particle physics and astrophysics. Chief among its 
potential discoveries is that of matter-antimatter symmetry violation in neutrino favor mixing. Other 
exciting physics objectives include the possible detection of supernova bursts and the search for nucleon 
decay. DUNE is the successor of the Long-Baseline Neutrino Experiment, which is documented in detail in 
“Oxygen octahedron reconstruction in the srtio(3)/laalo(3) heterointerfaces investigated using aberration-
corrected ultra-high-resolution transmission electron microscopy” [253]. 

DUNE has been conceived around three central components: 

• An intense, wide-band neutrino beam (700kW upgradeable to 2.3MW), 

• A fne-grained Near Neutrino Detector (NND) just downstream of the neutrino source, and 

• A “Far Detector” based on a massive, 40000 ton Liquid Argon Time-Projection Chamber (LArTPC) 
deep underground, but still 1300 km downstream from the source of neutrinos. There will be ap-
proximately 1.5 million channels in the device. The TPC will also incorporate an integrated photon 
detector. 
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The DUNE Far Detector will consist of four individual LArTPC modules 100000 ton each. A conceptual 
diagram of these modules placed in the cavern is shown in Figure 19.1. 

Figure 19.1: DUNE Far Detector schematic. 

The LArTPC volume is instrumented with wires spaced at about a 5mm pitch, which are attached to rectan-
gular supporting frames to form “induction” and “collection” planes. Each collection plane is accompanied 
by two induction planes confgured as a stereo pair at a certain angle (§19.1.2). The planes are aggregated 
into units called “Anode Plane Assemblies,” or APA. The wires are read out as individual channels, with 
waveforms recorded at a two-megahertz digitization frequency. A set of parameters of the DUNE detector 
relevant to characteristics of its data stream is listed in Table 19.1. 

These parameters create a unique large-scale and highly granular detector, but also bring about an array 
of challenges due to characteristics of the data being produced. For example, if one was to record all 
the data coming from the detector, corresponding data sets would be in hundreds of exabytes worth of 
data annually. However, since the detector is well shielded from cosmic rays, most of the data will be 
due to noise. Of specifc importance is the decay of 39Ar (see §19.1.5) naturally present in Argon in trace 
quantities, which is a beta emitter with the endpoint of 565 keV. However, most of such signals can be 
rejected by applying “zero suppression” (ZS) techniques whereby portions of the digitized waveform which 
are consistently below a certain threshold are discarded. 

While ZS does reduce the rate and amount of data signifcantly, there are science objectives in DUNE such 
as the detection of supernova bursts (SNB) which require continuous recording of data at low thresholds 
for a considerable amount of time. This requires the careful design of the online farm which is needed 
to implement corresponding logic, data bu ering and transmission strategies, and thorough Monte Carlo 
studies to optimize the system. 

19.1.2 Near-Term View 

In the near term, DUNE must address a few related but distinct work areas which require computing at 
scale. Most important of these are covered below, followed by examples of datafow in DUNE. 
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Parameter Value 
Full height (module) 12.0m 
Full width (module) 14.5m 
Full length (module) 58.0m 
# of detector modules 4 

channels per APA 2,560 
APAs per module 150 
Active height (APA) 6.0m 
Active width (APA) 2.3m 

Drift distance in Liquid Argon 3.6m 
Drift velocity 1.6mm/µs 
Drift time 2.25ms 

bytes/sample 1.5 
sample rate 2.0MHz 
# drifts/readout 2.4 

readout time 5.4ms 
samples/readout 10,800 

Total # of channels 1,536,000 

Table 19.1: Fundamental parameters of DUNE Far Detector LArTPC. 

LArTPC prototypes 

The 35t prototype 

There is a LArTPC prototype built at FNAL, with capacity of 35t of Liquid Argon (hence commonly referred 
to as “the 35t prototype”). It will start taking data with cosmic rays in early 2016. In addition to validation 
of a few engineering solutions, it will generate data which will help to test elements of reconstruction 
algorithms for LArTPC. 

protoDUNE 

The name “protoDUNE” was given to the full-scale single-phase LArTPC prototype to be deployed at 
CERN in 2017 for measurements with a test beam provided by a special target and purpose-built beamline 
from CERN Super Proton Synchrotron (SPS). It will serve to validate various DUNE technology aspects 
before proceeding with the construction of the principal DUNE detector, and will also provide an impor-
tant platform for realistic LArTPC detector characterization (e.g., PID, shower response, etc.) utilizing 
controlled conditions of a test-beam experimental setup. 

It is foreseen that the total amount of data to be produced in protoDUNE will be of the order of 1PB (in-
cluding commissioning runs with cosmic rays). Processing these data and conducting Monte Carlo studies 
connected to the experiment will require substantial resources and planning. The protoDUNE experiment 
will not be shielded like DUNE (to be built in a deep cavern) and thus will be subject to substantial oc-
cupancy from the cosmic ray muons, resulting in background conditions and data characteristics quite 
di erent from those of the eventual full detector. 

Reconstruction methods R&D 

Time Projection Chambers used in experiments like STAR at Relativistic Heavy Ion Collider (RHIC) and A 
Large Ion Collider Experiment (ALICE) at the LHC [254] feature pad-based readout scheme, which allows 
for a relatively straightforward reconstruction of 2D patterns in a given time slice. However, using pads in 
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larger detectors is not practical due to power consumption considerations (and requisite cooling require-
ments), excessive cost of readout electronics and other factors. For this reason, due to its sheer size, the 
DUNE LArTPC features wire-based readout to cover its extremely large fducial volume while keeping the 
channel count realistic. This makes its large scale possible, but also leads to a loss of spatial information 
being available for reconstruction (when compared to pads). This creates challenges for disambiguation of 
ionization signal loci and therefore for event reconstruction. Reliability and thorough characterization of 
the algorithms employed in this area will be critical for the systematics and other performance character-
istics of DUNE. 

There are a few approaches currently in development for event reconstruction. The “Pandora” toolkit, 
which originated as R&D for fne-grained calorimetry at ILC [255], is being adopted to reconstruct LArTPC 
events. In addition, there is a “projection matching algorithm” which will be used for studies with LArTPC 
prototypes. 

There is also a promising toolkit under development (called “Wire Cell”) based on a di erent approach. It 
performs three-dimensional imaging of events using the principles commonly applied in tomography. As 
is frequently the case in tomographic reconstruction with sparse data, this may require the use memory-
and CPU-intensive computing platforms. 

It is very likely that meeting the demands of such calculations will require adopting emerging technologies 
that are now becoming more common in HEP, such as GPU or other co-processor acceleration and/or 
massively parallel systems such as HPC facilities. It will be important for this software to be ready in 
time for the protoDUNE operation, as described in the above item. More details on this are presented in 
Section 19.1.2. 

Near detector R&D 

The Near Detector is a signifcant component critical to the overall physics performance of DUNE. It will 
combine elements of fne-grained tracking and calorimetry and will be placed underground at FNAL. It 
is currently in initial stages of R&D, which will certainly require substantial Monte Carlo studies and 
appropriate computing resources. 

DUNE distributed computing: an outlook 

At present, DUNE depends on facilities provided by FNAL for the bulk of its computing power. FNAL is 
also expected to host a full replica of data recorded by protoDUNE. As a result of protoDUNE processing 
needs that will materialize within the next two years, as well as a new CPU-intensive reconstruction algo-
rithms (such as “Wire Cell”) that will be applied to protoDUNE and other DUNE data, this architecture is 
likely to shift in the direction of a more distributed network of data centers. There are plans to keep full or 
partial replicas of protoDUNE data at NERSC and BNL in addition to the “master copy” at FNAL, and to 
use distributed HPC resources on the Grid, including those available on an opportunistic basis. 

Distributed computing in DUNE will also incorporate HPC facilities to cover specifc needs of those parts 
of workfows which beneft the most from application of these technologies. Plans for the HPC component 
are now in a preliminary stage since the DUNE software makes use of such a capability is now being 
developed and will take some time to mature. Contacts have been established with the Computational 
Science Initiative (CSI) at BNL in order leverage relevant expertise at BNL and to explore options regarding 
HPC resources that may become available through that venue. 

In parallel to establishing all the elements of infrastructure necessary for protoDUNE, there will be vig-
orous science tools and R&D programs in the near- to medium-term, such as the near detector, beam and 
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target optimization, photon detector etc. Success of these tasks will depend on the availability of ade-
quate computing resources. In addition, the engagement of multiple institutions and researchers who are 
members of DUNE will be facilitated (and their resources better leveraged) if the collaboration manages to 
maintain portable and accessible software that can be used at any particular institution, and run transpar-
ently on modern Grid and cloud resources. 

Hierarchy of datafows in DUNE 

DUNE has to deal with datafows at a few di erent levels of scale and complexity. For example, high-
bandwidth transmission and extremely fast (but relatively basic) transformations of data are taking place 
within the DAQ and its associated computing farms. Portions of the data coming out of the DAQ undergo 
quick processing to render monitoring information crucial for the experiment diagnostics and operations, 
thus there is a distinct monitoring datafow. Then, there is the distribution of raw data to mass storage 
facilities and processing centers where it undergoes multiple transformations which typically fall into the 
“production” category and involve the application of calibration data (which are themselves subject to a 
separate and potentially complex datafow), and reconstruction of event features such as tracks, energies, 
particle identities etc. The data thus derived is fed to yet another chain of transformations usually described 
as “analysis.” 

Any of these “macro” datafows typically include the manipulation of data elements, their dependencies 
and transformations on a smaller scale (but sometimes perhaps with greater complexity), such as during 
the reconstruction of a single event or searching for an event in a TPC readout window. In the following, 
examples of both types of datafows are presented. 

Data fow example 1: protoDUNE 

As one example of datafows relevant for DUNE in near-term, the fow of data in protoDUNE experiment is 
schematically represented in the diagram in Figure 19.2. The diagram refects only the experimental data 
as it progresses from being recorded in the data acquisition system, to mass storage, distribution across 
participating sites, processing and reconstruction, and does not include Monte Carlo and other studies 
done in preparation for the experiment. 

It is worth noting that there are several similarities between protoDUNE and the DUNE experiment as a 
whole, such as 

• Remote location of the detector with regards to the primary processing center (FNAL) 

• Replication of data to multiple storage locations 

• Multiple sites involved in processing the data, and a federation of storage across sites 

• Likely inclusion of HPC in the technology portfolio 

The top third of the diagram (labeled “A”) depicts data undergoing transformation and movement on site 
at CERN, and this confguration is conceptually similar to what is currently used in ATLAS and CMS, 
although at a smaller scale and with less complexity. After the readout via DAQ and the subsequent appli-
cation of Zero Suppression (ZS), the data is then distributed to a few bu er nodes at the same location as the 
DAQ to ensure suÿcient bandwidth to disk and redundancy to prevent outages. There will be a dedicated 
network connection to CERN Central Services of about 10Gbps in order to ensure adequate headroom in 
data transmission and allow experimentation with zero-suppression thresholds and other online parame-
ters which could result in rates higher than nominal. 

CERN EOS (a high performance distributed storage system) serves as the next destination for the data, 
from which it is committed to tape (CASTOR at CERN) and also replicated to FNAL (as a full copy) and 
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Figure 19.2: Data fow in protoDUNE. 

to a few auxiliary sites such as NERSC and BNL (section “B” of the diagram). This will be done reusing 
tools previously developed for other experiments and facilities (e.g., IFDH/SAM maintained by FNAL or 
“Spade” used in the Daya Bay Experiment). The middle tier of the diagram represents distributed and 
permanent (tape) storage facilities in the United States, which will serve the production and analysis need 
of protoDUNE. 

Finally, as shown on the bottom section “C” of the diagram, computing workfows will then be deployed 
on the resources available which will include “traditional” high-throughput systems such as Fermigrid or 
resources federated through the Open Science Grid (OSG), and also HPC facilities. In the analysis stage, 
data is expected to be shared through a federation built upon XRootD. 

Data fow example 2: Wire Cell 

The Liquid Argon Time Projection Chamber 

In order to properly describe the problem of event reconstruction in DUNE, it is helpful to frst introduce 
a few facts about operation of the apparatus. We start with a diagram in Figure 19.3, the meaning of which 
will be detailed in the following. 
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Figure 19.3: Liquid Argon TPC with wire readout: principle of operation. 

The Liquid Argon Time Projection Chamber (LArTPC) is in essence a specially instrumented ionization 
chamber. Charges (electrons and positive ions) created due to passage of ionizing particles through the 
sensitive medium (argon in this case) are subject to the e ect of a uniform electrostatic feld which is 
created in Liquid Argon by a system of cathode and anode electrodes, which causes them to move (drift) 
along the feld lines. If there is an additional electrode within the Liquid Argon volume in the vicinity of 
the drifting charge, there will be a signal induced on it. Multiple such electrodes (sensors) provide means 
for spatial characterization of the ionization charge distribution in the sensitive volume (which for example 
may correspond to a particle track). Importantly, the shape of the signals on the electrode vs. time is used 
to measure charge localization along the drift direction (hence the term “Time Projection Chamber”). For 
example, ionization electrons which are closer to the collection electrode will arrive to it sooner than more 
distant ones, therefore time evolution of the signals on the a ected wires will refect distribution of the 
charge along the drift axis. 

As mentioned in Section 19.1.2, current design of large-scale LArTPC devices features planar arrays of wire 
electrodes supported by frames. Such design contains an essential element called Anode Plane Assembly 
(APA), which includes the “collection plane” (anode) and two planes of sensor wires, called “induction 
planes,” oriented at stereo angles with respect to each other and the collection plane. Due to stereo angles, 
such an arrangement allows for the 2D measurement of the charge density distribution in the APA plane. 
This is illustrated in Figure 19.3, which schematically shows the drift volume (to the left), the induction 
planes “U” and “V” and the collection plane “Y.” An important feature of such arrangement is that the same 
drifting charge is measured three times as it is detected by the three wire planes. This is further illustrated 
in Figure 19.4 as a schematic of drifting charge creating signals on wires, represented conceptually as a 
view along the direction of the drift. 
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Figure 19.4: Three projections of an object in a TPC with wire-based readout. 

The Inverse Problem 

The LArTPC acts an imaging device, i.e. the physics information about the processes taking place in the 
detector volume is extracted by analyzing the 3D structures (images) of ionization patterns produced by 
particles participating in these processes. The only source of information available for the reconstruction 
of these images are amplitudes of signals coming from the wires in (U,V,Y) recorded as a function of time. 
It follows that the event reconstruction problem in DUNE TPC is a fairly typical case of the Inverse Problem, 
where a 3D structure must be calculated based on a set of observables. 

Because of time quantization inherent in the operation of analog-to-digital conversion, the 3D image ef-
fectively becomes an assembly of 2D slices. In a given time slice, the 2D charge density distribution is 
observed via three di erent projections along the axes (U,V,Y) (see Figure 19.4). There is signifcant simi-
larity between this type of inverse problem and Computed Tomography (CT) with limited projection data. 
This similarity becomes even more prominent as we observe that in a given slice the charge signals on wires 
are essentially linear integrals of the 2D charge density along each of the three observation axes. Common 
with many tomographic applications, the reconstruction strategy then consists of calculating patterns in 
each 2D slice and then combining them into a full 3D structure. There are many event types and topologies 
in DUNE, one example of a simulated neutral-current event in presented in Figure 19.5. 

It is easy to see that (again, similar to the majority of tomographic applications) the reconstruction problem 
in DUNE is an ill-posed one, due to the very limited set of observation angles (three). At the most basic 
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Figure 19.5: An example of a neutrino-induced reaction in Liquid Argon (simulation) 

level, this issue manifests itself as “ghost hits” (well known in HEP), which is an ambiguity inherent in 
stereo projection measurements. 

The “Wire Cell” approach to the problem is based on the following: 

• “Voxelization” of the TPC volume by treating each 2D slice as a tessellation (i.e., consisting of polygon-
shaped tiles); 

• Solving an optimization problem which maximizes the likelihood of a given confguration of tiles 
(with charge associated with them) producing the observed signal distribution on the wires; and 

• In reference to the optimization problem described above: regularization based on testing hypotheses 
about the object topology, e.g. that it is a track in a given portion of the volume. 

To make this approach possible, there is one prerequisite that must be met, and that is a precise measure-
ment of charge on each wire. This involves proper calibration of the detector as well as a solution of yet 
another inverse problem—deconvolution of the detector and electronics response while reconstructing the 
original shape of the charge signal. This is done in conditions of non-zero noise and involves the application 
of digital fltering techniques. 

Flow of data in Wire Cell 

The fow of data in Wire Cell is presented in Figure 19.6. 

For the elements of the datafow for the Wire Cell, which are signifcant or present most computational 
challenges are as follows: 

Slicer: takes one “time frame” or a “readout” of raw data from the DAQ (or simulated source) and separates 
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Figure 19.6: Datafow in Wire Cell. 

it in time bins. Each bin contains ADC values for all the channels (i.e., wires) with signal above a 
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certain threshold that span the time bin. 

Cell Finder: takes data as a time bin and identifes “cells” (groups of adjacent tiles). 

Optimization Solver (a.k.a. a matrix solver): optimizes the likelihood of the charge contained in contigu-
ous groups of cells with respect to producing the observed signals on wires, utilizing a model where 
this relationship is expressed as a matrix. 

Clustering: aggregates groups of cells over multiple time bins, thus creating 3D objects (“clusters”). 

Tracking: connects clusters according to certain geometry rules, forming track candidates. 

PID: determines the type of particle based on the ionization pattern, as defned by charge depositions 
along the particle trajectory. 

Elements listed above are computationally complex for a number of di erent reasons. For example, the Cell 
Finder performs a search on an array of tiles and given the large number of those may face a combinatorial 
challenge. The Matrix Solver has to solve an optimization problem involving a sparse matrix. The Tracking 
component has again to fnd the relations between multiple pieces of data based on the applications of 
certain rules. 

Visualization 

Wire Cell has a companion visualization toolkit called BEE, which provides an interactive graphic rep-
resentation of various elements of Wire Cell reconstruction process to the user. An example is given in 
Figure 19.7, depicting a 3GeV νe which interacts in argon and produces a vertex with an outgoing 190MeV 
electron (going downward in this display) and a 559 MeV K+, (long hooked track) and also a proton and 
π− track. The activity away from the vertex is a K-long decay. The BEE is Web-based, receives data from a 
server and renders it using WebGL. 

19.1.3 Future 

The DUNE experiment will be commissioned in the mid-2020s, and will utilize expertise and lessons 
learned from protoDUNE. There will be a signifcant evolution of software and computing components 
as the experiment nears its commissioning milestones. Some of the more important changes are: 

• Flexible and well-characterized methods of the DAQ and online data reduction, and compression will 
be put in place (some of this work is being done currently but more improvements are expected in 
the following years). This functionality will be deployed in the DAQ system and its online farm. 

• Data rates and volume of data expected in DUNE will depend on what is attainable in the online 
systems, which will have natural limitations due to space, power and cooling requirements which are 
at a premium given its location deep underground at the Sanford facility. This item is now a subject 
of R&D and not all the answers are known. Even though some estimates for DUNE indicate that it 
will nominally generate tens of petabytes of data annually, it is all but certain that capabilities of 
DAQ developed in the run up to the experiment will be suÿcient to reduce this volume by an order 
of magnitude (see comments in §19.1.5). 

• By the time DUNE is getting ready to record experimental data, it will be important to have in place a 
fully distributed computing infrastructure which would facilitate access to data and software physics 
tools for all members of the collaboration. 

• Reconstruction methods currently being develop are meant to be automatic, and this is achievable 
in many but not all cases due to intrinsic limitations of the wire-based design of the detector which 
sometimes creates ambiguities in mapping wire signals to anticipated event features. This can be 
mitigated by computer-assisted visualization analysis tools, where an operator would use his or her 
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Figure 19.7: Event display in Wire Cell visualization component (“BEE”): a 3GeV νe interaction in argon. 

pattern recognition capabilities based on the reduced, processed and 3D-rendered data coming from 
the reconstruction chain. 

Figure 19.8 presents a simplifed datafow diagram for the DUNE Far Detector. Apart from the obvious 
di erence in scale with regards to protoDUNE, there will be other di erences such as: 

• Adequate bu er-type storage at ‘the ‘Far Site” according to current plans, but no tape (section “A” of 
the diagram) storage. 

• The number of sites to which data is distributed will be larger than just two or three, to ensure ease 
and speed of access to the data by most research centers of the Collaboration (section “B”). 

• By the time of its commissioning, DUNE will have a functional Workload Management System (WMS), 
based on a federation of Grid or cloud sites (section“C”). 

19.1.4 Data Lifecycle 

DUNE incorporates a few subsystems, such as the Near Detector, Photon Detector built into the Far De-
tector TPC and a number of others. For the sake of brevity, only the LArTPC of the Far Detector will be 
considered here from the datafow point of view, since it is by far the largest source of raw data in DUNE 
and likely presents most challenges for data handling. 
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Figure 19.8: Datafow in DUNE (concept). 

The DUNE data lifecycle starts with amplifed signals collected from individual wires being digitized by 
ADCs at about a 2MHz frequency. Within the DAQ, the data is processed in two parallel streams—the 
“trigger” stream and the “data” stream, whereby the processors in the data stream are reading out only 
those portions of data in the short-term bu er which were considered of interest according to algorithms 
running on the processor’s the trigger stream. In order to deal with unusual event signatures such as 
supernova candidates (when the whole volume of the TPC “lights up” with clusters of moderate energy 
dispersed throughout the volume), there is also a ring bu er which keeps data long enough for the trigger 
farm to run corresponding algorithms and retrieve the data in case there is a suspected positive. 

Next, there are three basic design elements in the data transmission and storage chain, motivated by the 
need to preserve data which is precious due to the high cost of operating both the facility at FNAL and the 
detectors that are part of DUNE. These elements are: 

Bu ering in the cavern at (4850 feet below ground level) for the DAQ systems to mitigate possible down-
time or outage of the network connection to the surface facility, and also at the surface facility to 
mitigate the downtime of the network connection between the Far Site and FNAL. 

Robust transmission —data transfer needs to be instrumented with redundant checks (such as checksum 
calculation), monitoring, error correction and retry logic. 
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Redundant replicas are a common practice in industry and research (cf. the LHC experiments) to have 
a total of three copies of precious data, which are geographically distributed. Such geographical 
distribution of the replicas may include countries other than the United States, where the data will 
be collected. This provides protection against catastrophic events (such as natural disasters) at any 
given data center participating in this scheme, and facilitates rebuilding (“healing”) lost data should 
such an event occurs. 

Once the data is transmitted from the Far Site to FNAL and committed to mass storage (tape), additional 
replicas are created at other selected DUNE sites for redundancy and optionally, to allow for the wider 
distribution of the production workload over participating facilities. The XRootD storage federation will 
be deployed to facilitate the following elements of the datafow: 

• Improved eÿciency of Grid jobs by providing an on-demand source of data in addition to centrally 
managed and more static data distribution; 

• Better shared access to data in the analysis stage. 

It is anticipated that similarly to HEP experiments fnal stages of analysis will be done using compact sets of 
processed data which are easily accessible over the network using interactive user facilities and computing 
devices (laptops etc). 

19.1.5 Data-centric Requirements: Capabilities, Speeds, and Feeds 

Specifc DUNE use cases were introduced in Sections 19.1.2 and 19.1.3 as: 

• Near-term: protoDUNE (the CERN-based prototype) and Wire Cell (event reconstruction software) 

• Long-term: the full DUNE detector 

Data-centric characteristics and requirements for both are presented in Table 19.2. It provides a brief high-
level summary of the distinct stages of data lifetime: during data acquisition, near-term processing, and 
creation of metadata. There are important caveats in this table that need to be explained: 

• The di erence in background conditions between protoDUNE and DUNE is tremendous (as already 
mentioned) due to the former being placed on Earth’s surface and the latter at a signifcant depth 
inside a mine. For that reason, there is no real reason for the data rates and volumes to scale with the 
detector size or channel count, when looking at the data in the respective columns. 

• The 53PB annual volume in DUNE is due to be revised downward by an order of magnitude, due to 
the following: most of these data would be due to the fraction of signals from 39Ar decays which are 
above the ZS threshold chosen based on some metrics of signal-to-noise in the baseline design. It does 
not take into account the future capability of DAQ (now being developed) which will reject di use, 
very low energy signals lying outside of any regions of interest associated with localized activity. 

• Not included in the experiment-side processing are express calibrations that will be necessary for 
monitoring and data QA purposes—this item is now in the initial stages of development and there is 
no metric yet available for reference. 

While the simulation’s datafow was not included in this discussion for the sake of brevity, it is helpful 
to note that it will present an additional set of data-centric requirements such as considerable storage 
space and the eÿcient handling of metadata. Monte Carlo data in HEP experiments are typically larger in 
size than raw data, and this can be expected to be the case in DUNE due to necessary detailed studies of 
backgrounds and systematics etc. This will lead to creation of data sets of total size of perhaps O(PB). 

In summary, both protoDUNE and DUNE will have challenging data-centric requirements at more than 
one level of its datafow hierarchy. The most important are: 
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Processing stage 

Data acquisition rate: 
maximum rate(s) 
and totals 

Present/Near-term 
(protoDUNE) 

• 1 GB/s max. instantaneous 
• 200 MB/s sustained 
• ∼1 PB total for the run 

Long-term 
(DUNE) 

• 1.7 GB/s sustained data rate 

• 53 PB annually 

Experiment-side 
processing • Online ZS, 

10 GB/s ⇒ 1 GB/s 
• Compression 

• Online ZS, 
4.6 TB/s ⇒1.7 GB/s 

• Compression 

Real-time constraints, 
turnaround time from 
collection to result for 
experimental control 

• “Near-time” express 
analysis streams ∼O(10 min) 

• “Near-time” express 
analysis streams, ∼O(10 min) 

• Supernova Burst trigger, 
decision time <1 s 

• 46 TB at full stream rate, 
recorded over ∼30 s. 

Metadata/provenance 
capture • Automatic tagging by online 

systems, refecting run con-
ditions. 

• Automatic tagging by online sys-
tems, refecting run conditions. 

• Tagging of readout frames of spe-
cial interest based on DAQ indica-
tions. 

Table 19.2: Summary of data-centric requirements. 

protoDUNE 

• Speedy analysis of incoming data for purposes of QA and the adjustment of reconstruction al-
gorithms 

DUNE 

• Real-time data reduction beyond ZS by defeating di use persistent background from 39Ar de-
cays. 

• Bu ering of data for SNB detection and the application of real-time algorithms to identify the 
signature of such an event. 

19.2 Impediments, Gaps, Needs, Challenges 

There are multiple issues that need to be resolved in the computing sector of DUNE that di er widely 
in nature, so the list below is meant to be an inclusive sample which contains items from di erent cate-
gories. 

• Mechanisms of real-time data bu ering in DAQ systems for the purposes of recording SNB events 
(high bandwidth) are yet to be developed. 

• Power and cooling requirements of DAQ systems located in the cavern of the DUNE LArTPC will 
be the limiting factor for real-time noise rejection, the quality of trigger decision and data reduc-
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tion, which will have consequences for computing architectures downstream (o�ine). Low power 
consumption in front-end computing systems could mitigate this problem. 

• Tomographic event reconstruction in LArTPC: the optimal choice of techniques and their application 
is a challenge. 

• Potentially signifcant CPU and storage requirements for Monte Carlo studies to enable determination 
of the experiment’s systematic errors, especially when utilizing sophisticated event reconstruction 
techniques. 

• Implicit reliance on eventual HPC deployment for computationally intensive reconstruction tech-
niques (e.g., Wire Cell). There is currently very little expertise in the Collaboration as a whole in the 
application of accelerators (GPU and others), message passing interface (MPI) and HPC in general for 
solving those problems where parallelization can be exploited. Application of advanced reconstruc-
tion techniques in real (or “near”) time is impeded by diÿculties in just-in-time scheduling of the 
available HPC resources. 
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Case Study 20 

Open Numerical Laboratories 

Alexander S. Szalay 
The Johns Hopkins University 

20.1 Science Use Case 

20.1.1 Present or Near Term 

There is an ongoing e ort to build an exascale computer—a substantial scale-up from current systems. Few 
codes scale to run well on the millions of cores available today. As fewer and fewer researchers will be able 
to use these ever larger systems eÿciently, it will become increasingly important to create usable science 
products from numerical simulations accessible to a broader pool of users. Data products from the largest 
simulations must be released, shared, reanalyzed and archived over extended periods. 

It will become increasingly important to create usable science products from numer-
ical simulations accessible to a broader pool of users. Data products from the largest 
simulations must be released, shared, reanalyzed and archived over extended peri-
ods. 

Indeed, scientists in many disciplines would like to compare the results of their experiments to data emerg-
ing from numerical simulations based on frst principles. This requires not only that we can run sophis-
ticated simulations and models, but that at least a selected subset of the results of these simulations are 
available publicly, through an easy-to-use portal. We have to turn the simulations into open numerical 
laboratories in which anyone can perform their own experiments. Integrating and comparing experiments 
to simulations is a non-trivial data management challenge. Not every data set from the simulations has the 
same lifecycle. Some results are just transient and need to be stored for a short period to analyze, while 
others will become community references, with a useful lifetime of a decade or more. 

As we have learned over the years, once the data volume is too large, we have to move the analysis to the 
data rather than the traditional approach, which moved the data where our computers were. With these 
large data volumes one has to approach the data in a fully algorithmic fashion manual exploration of small 
(or large) fles is no longer feasible, we need novel access methods to deal with scientifc data at scale. 
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Some of our simulations have been run at various locations, at ORNL, on the Jaguar system, at the Texas 
Advanced Computing Center, and currently we are running experiments at NERSC. Furthermore, we have 
an ongoing collaboration and data exchanges with Los Alamos National Laboratory. 

There are various data analysis tasks, which can be categorized by the access patterns to data. There are 
analyses requiring global access, where we have to touch every data item in a given snapshot. These typically 
require a facility that can keep the whole snapshot in memory, like a large 3D Fast Fourier Transform. 

In order to perform the uncertainty quantifcation (UQ), we also need ensemble access to a potentially large 
number of simulations where the fnite volume e ects can be averaged over, and we can see how results 
from simulations with identical physics, but di erent random numbers scatter. 

There are analyses that are quite similar to the rendering of a large subvolume. This do not necessarily 
mean visualization, rather the collection of lower dimensional aggregates which are quite similar to projec-
tions onto a virtual “screen.” Such patterns are typically well implemented in hardware accelerators, like 
GPUs. 

Then we have localized access, where we need the data from the simulation in several small volumes, typi-
cally the size of an interpolation kernel. Here an eÿcient spatial indexing can have large implications for 
the speed of access. 

Finally, a very scalable novel access method is where the users can insert immersive virtual sensors into 
the simulation. These sensors can then feed data back to the user. These sensors can provide a one-time 
measurement, they can be pinned to a physical (Eulerian) location or they can “go with the fow” as co-
moving Lagrangian particles. In this case, assuming that the sensors can access the data server side quickly, 
the only scaling is related to the number of immersive particles. 

Figure 20.1: The simulation is run at a supercomputer, and the results are stored locally. The data is trans-
ferred to the site Open Numerical Laboratory site, and is transformed and indexed for database ingestion. 
Then the data and its indexes are loaded into a database. Finally the analysis services perform their data 
access through database queries, and perform additional value-added computations on the server side. 

Today we use of the order of 64–128 snapshots of the simulations, typically containing on the order of a 
billion particles or grid points. This of course is not necessarily scalable as the memory footprint of future 
simulations will grow. For example, the Millennium XXL simulation with its 300 billion particles was only 
able to save 4 snapshots of the particle data, and had to settle on storing 64 snapshots of the much smaller 
subhalo catalogs. Our current databases range between 30 TB to 150 TB per simulation, although we have 
two simulations potentially exceeding a petabyte in the queue. 
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20.1.2 Future 

Even though the largest simulations today are approaching hundreds of billions of particles or grid points, 
the total size of the output generated rarely exceeds 100 TB and almost never reaches a petabyte. There are 
many reasons for this. The larger the computer, the more cumbersome check—pointing becomes. Although 
the biggest machines have a terabyte-per-second of sequential bandwidth to the secondary storage, copying 
100 TB takes too long to do frequently. In practice, this limits the number of snapshots captured. As the 
interconnect speeds are not going to increase by a factor of 30–100, it is likely that this limitation remains 
in place. Even with exascale machines, the outputs will remain in the range of a few petabytes. 

When the primary consideration is restart, it is enough to have a small number of snapshots. On the other 
hand, if the goal is to be able to reconstruct the fne-grained spatial and temporal history of the simulation, 
and look at any part in detail, it is important to match the high-spatial resolution with an appropriate 
number of snapshots. For example, if we simulate a Milky-Way-like galaxy, and want to study its dynamics 
in detail in our laboratory, we need to save outputs more frequently than the rotational period of 108 years. 
This means that even the simulations need to be designed and run di erently if the target is to create a 
long-lived numerical laboratory used by hundreds of scientists. 

As a result, in the exascale world only a small fraction of the complete output can ever be saved for later 
reuse and much of the analysis will have to be done in situ. If we cannot store all the data, it is of utmost 
importance to save at least the subsets with the highest information content and make these available for a 
wide audience. 

. . . in the exascale world only a small fraction of the complete output can ever be saved 
for later reuse and much of the analysis will have to be done in situ. 

Much of the scientifc objective remains the same, except we have to make some very hard tradeo s in how 
we get there. Experimental particle physics has been forced to make these a decade ago. One can draw a 
good parallel to exascale simulations in order to predict what sort of thinking will be required. 

At the Large Hadron Collider (LHC), the main facility is the collider ring, which provides several taps for 
the di erent experiments to place their detectors. At the detectors there is an enormous data rate. There 
are hardware triggers used to perform in situ computations on the data, and decide which events should 
be stored. These only fre for 1 out of 10,000,000 events, and the resulting data stream is still tens of 
petabytes. 

The particle physicists would love to store all the event data, but they cannot. So they store the events with 
the greatest information content, a small enough fraction that their storage is still doable, but carefully 
selected so that all the important science can still be done without a compromise. 

This is the way large simulations need to evolve towards: do as much as you can in situ, and then carefully 
select a small enough subset for posterior analyses that can be shared with a broader community. 

We expect to work with several of the SC facilities, namely Los Alamos National Laboratory (LANL), ORNL, 
ANL and NERSC in the future. We currently have an active collaboration with Jim Ahrens at LANL. 

Today we use typically about 100 snapshots out of thousands of timesteps taken. This is largely dictated 
from one end by the cost of checkpointing, from an other end about the details of the physical analyses, i.e. 
do we need to consider a temporal sequence of the snapshots, and interpolate across, or are they analyzed 
in isolation? In any case, we typically store all the data from a snapshot. 

In the future, mostly we will not be able to do this. We will need to use clever machine learning algorithms 
to identify the scientifcally most interesting (but small) localized regions, and save them at regular inter-
vals, until they remain interesting. We will also need to save random samples of the volume, to be able to 
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Figure 20.2: The simulation is defned by the whole community, and run at an exascale supercomputer. 
The participating science teams defne a set of in situ triggers and tools. The output of the triggers and the 
checkpoints go to the local burst bu ers. The checkpoints and some of the triggered (sparse) outputs are 
analyzed there. The sparse (much smaller) data migrates to an analysis facility, consisting of an indexed 
fle storage (FileDB) and an index database, for tracking the regions of interest. These data sets form the 
Open Numerical Laboratory, available by the whole community. 

characterize the “boring,” predictable parts of the simulation. 

Finally in some cases we need to create a very frequent, but very localized data dump for some special 
science cases, like computing a “light-cone” in a cosmological simulation, where the di erent parts of the 
cone are seen by a distant observer at di erent times. 

20.1.3 Data Lifecycle 

• In situ analysis 

Most truly large numerical simulations are analyzed on the fy. The analysis tools are integrated with 
the simulation, and the derived data products are computed while the simulation is running. As 
these quantities represent only a small fraction of the data, it is easy to save these values often to disk. 
Full restart snapshots are thus only generated quite infrequently. The disadvantage is that if a new 
analysis idea emerges after the run is fnished the whole simulation needs to be redone. 

• Private reuse 

Sometimes a few tens of snapshots are saved to scratch disks, tightly coupled to the supercomputers, 
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and occasionally a segment of the simulation can be regenerated later from restarting from the nearest 
snapshot. This is typically done by the same team who ran the original simulation. 

• Public reuse 

There are a few cases when the simulation outputs are made available. This is usually done through 
sharing the limited number of snapshot fles. These are typically placed in a public fle server, and 
can be downloaded at will. However, this practically limits data downloads to a few terabytes at most. 
The limiting factor is usually the network bandwidth, although the available storage at the user’s end 
is also a problem. 

• Public service portal 

In a few cases the simulation outputs are made available through publicly available services, enabling 
the users to perform either some extractions or computations over the data. This idea of “virtual data” 
has been around for more than a decade, but it has found limited uses. The Earth sciences community 
has used OpenDAP to expose large data sets (OpenDAP 2010) and enable a RESTful URL to subset 
and aggregate the data. In astrophysics, the Millennium Database has been the forerunner of such 
e orts. In this scenario, the creation of the public service portal and its complex functionalities 
requires a substantial e ort, thus it is only worth doing if the data set will remain public for an 
extended period—at least a few years. 

In a few cases the simulation outputs are made available through publicly available 
services, enabling the users to perform either some extractions or computations over 
the data. . . . In astrophysics, the Millennium Database has been the forerunner of 
such e orts. In this scenario, the creation of the public service portal and its complex 
functionalities requires a substantial e ort, thus it is only worth doing if the data set 
will remain public for an extended period, at least a few years. 

• Archiving and long-term curation 

There are very few data sets that have reached this stage of their lifecycle. Here, the biggest issue is 
that not every simulation will be equally used by the public, and over the years some of them will fade 
into irrelevancy while others emerge as a community reference. It is these latter simulations which 
need to be kept for a long time, even if just for comparison and reference. For such collections, used 
my many di erent refereed publications, reproducibility of these analyses will become another reason 
to keep the data, even when better and higher resolution alternatives become available. However, 
as the price of both storage and computation are expected to follow the current trend of becoming 
cheaper, these “legacy” data sets will comfortably ft in the shadow of the latest and best simulations. 

. . . over the years some [data sets produced by simulation will] emerge as a commu-
nity reference. . . . For such collections, used by many di erent refereed publications, 
reproducibility of these analyses will become another reason to keep the data, even 
when better and higher resolution alternatives become available. 

20.2 Impediments, Gaps, Needs, Challenges 

There are several needs for this approach to be successful. These involve architectural components as well 
as software components. 
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Processing stage Present/Near term Long term 
Data acquisition rate: maximum 

10 GB/s maximum data rate; 
rate(s) and monthly or annual to-

500-800 TB annually 
tals 

100 GB/s maximum data rate; 
10-20 PB annually 

some in-situ analysis, some near-
Experiment-side processing 

line posterior analysis 

in situ triggers, posterior com-
munity analysis using immer-
sive tools, comparisons to exper-
imental data 

Real-time constraints, turn 
around time from collection to N/A today 
result for experimental control 

Metadata/provenance capture Limited info in fle headers 

15 mins for large-scale interac-
tive analyses, 6 hours for batch 
jobs 
Fully automated metadata and 
provenance and capture, stored 
in easy to search databases 

Table 20.1: Summary of data-centric requirements for Open Numerical Laboratories. 

• We need to defne an easy-to-use generic API to plug in in situ triggering code into large simulations. 
These should enable the eÿcient use of machine learning, pattern recognition tools for identifying 
the regions of interest. 

• Need for community-(or facility-)centric data repository for data archival, sharing; with substantial 
bandwidth to the stored data, and easy interface for interacting with the data analytics. This needs to 
be massively parallel, a combination of visualization and various analysis tools. 

• Need for scalable analysis metaphors, like virtual sensors, immersive tools 

• Currently we have insuÿcient ability to move, or very diÿcult to move data from experiment/acquisition 
to elsewhere for further processing, sharing, archival, etc.; we need a highly eÿcient multi-tier hier-
archy for the analysis, consisting of burst bu ers, near-line storage, cold storage, with various levels 
of Amdahl numbers. 
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Case Study 21 

DOE HEP Cosmic Frontier Use Cases 

Salman Habib3 

Contributors (from the ASCR/HEP Exascale Requirements Review): 
S. Bailey1, D. Bard1, A. Borgland2, J. Borrill1, K. Heitmann3, P. Nugent1, N. Padmanabhan4, D. Petravick5 

1 Lawrence Berkeley National Laboratory 
2 SLAC National Accelerator Laboratory 
3 Argonne National Laboratory 
4 Yale University 
5 National Center for Supercomputing Applications 

The material presented here aims to concisely present data-related challenges in the DOE HEP Cosmic 
Frontier program. The information is largely abstracted from a number of recent planning meetings and 
requirements reviews. References are provided to enable access to broader background material as well as 
to more in-depth resources. Only the primary author is responsible for any accuracies or wrong opinions 
presented in the document. 

21.1 Introduction 

Scientifc activities within DOE HEP can be broadly categorized within the Energy, Intensity, and Cosmic 
Frontiers. The three frontiers together address the following fve science drivers recently identifed in the 
P5 report [256]: 

• Use the Higgs boson as a new tool for discovery 

• Pursue the physics associated with neutrino mass 

• Identify the new physics of dark matter 

• Understand cosmic acceleration: dark energy and infation 

• Explore the unknown: new particles, interactions, and physical principles 

The Energy and Intensity Frontiers are predominantly accelerator-based and focus on the physics of very 
small scales. The Cosmic Frontier covers two programs. The frst focuses on the detection and mapping 
of galactic and extra-galactic sources of radiation utilizing a variety of well-instrumented telescopes, both 
ground- and satellite-based, with the purpose of a better understanding of the fundamental nature of the 
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dynamics and constituents of the Universe. The primary science thrusts within this frontier are under-
standing the nature of cosmic acceleration (investigating dark energy), discovering the origin and physics 
of dark matter, the dominant matter component in the universe, and investigating the nature of primor-
dial fuctuations, which is also a test of the theory of infation. In addition, these surveys can also provide 
unique probes of the sum of neutrino masses. 

Figure 21.1: LSST (under construction): cutaway of the dome showing the telescope within. 

A number of sky surveys in multiple wavebands are now scanning the sky to shed light on these problems, 
such as the Dark Energy Survey (DES) [257]. Near-future observations will be carried out by the Dark En-
ergy Spectroscopic Instrument (DESI) [258] and the Large Synoptic Survey Telescope (LSST) [259] surveys 
in the optical, and by the CMB-S4 (Cosmic Microwave Background–Stage 4) survey [260] in the microwave 
band. These surveys will generate extremely large data sets in the hundreds of petabytes. Very large radio 
surveys, such as the Square Kilometer Array (SKA) [261], are also in planning stages, although there is no 
direct DOE (or indeed the United States) involvement at this point. 

The second type of experiments under the Cosmic Frontier are dark matter detection experiments. These 
include direct detection experiments with cryogenic detectors (e.g., LZ [262] and SuperCDMS [263]) and 
indirect detection using high energy particles from space (e.g., Fermi [264] and HAWC [265]). Computa-
tional requirements in this sector are small to medium scale and do not reach the extreme requirements 
of large-scale sky surveys. Furthermore, the types of computational requirements are much closer to those 
for precision Intensity Frontier experiments (covered separately) than they are to sky surveys. Therefore 
the focus here will be on sky survey requirements. 

21.2 Current Use Cases 

21.2.1 Science Objectives and Motivations 

The fundamental approach in sky surveys is to obtain wide and deep images of the sky, including spectra 
of selected objects, and to search for transient sources (e.g., supernovae). Depending on the nature of the 
survey (e.g., photometric vs. spectroscopic), the types of data and the required data pipelines, as well as the 
type of fnal analysis, can vary considerably. Despite the fact that a given survey may be focused on a few 
key science missions, usually a diverse set of science activities can be carried out with substantial discovery 
potential, since cosmological surveys are, by defnition, surveys. This is to be contrasted with experiments 
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where a large amount of the data may have to be fltered or rejected in order to focus on a necessarily fnite 
set of tasks. 

Photometric surveys (e.g., DES) obtain galaxy images through a relatively modest number of flter bands 
(4–5). The main science goals of these surveys include measurements of gravitational weak and strong 
lensing, cluster abundance, supernova searches, and probes of galaxy clustering. Spectroscopic surveys 
obtain detailed spectra of a set of target galaxies (but they can also be done blind). This information enables 
the surveys to target 3D galaxy clustering probes and to study redshift space distortions. Because of the 
cost associated with redshift observations, photometric surveys are typically much deeper, and contain a 
much larger number of sources than spectroscopic surveys. 

Surveys of the cosmic microwave background map the temperature and polarization of the microwave sky 
using ground-, balloon-, and space-borne instruments. With increases in sensitivity and resolution, these 
instruments can detect individual sources and objects (e.g., clusters). Furthermore, gravitational lensing of 
the CMB sky by the foreground matter distribution can be detected via polarization-sensitive instruments. 
This is useful in its own right as well as serving as a way to increase the sensitivity of searches for primordial 
gravitational waves. 

21.2.2 User/Computing Facilities 

The DOE HEP Cosmic Frontier program in cosmological surveys has involved partnerships with the Na-
tional Aeronautics and Space Administration (NASA) and NSF. Unlike the Energy and Intensity Frontiers, 
DOE HEP does not run facilities analogous to LHC at CERN or the accelerator complex at Fermilab. Typi-
cally, the telescope, and the associated (on-site) frst level of data acquisition and (o -site) data management 
pipelines, have been the responsibility of NSF (e.g., data handling for DES is the primary responsibility of 
the National Center for Supercomputing Applications, NCSA). DESI is a counter-example, with NERSC 
taking on this role. In future, given previous experience, it is likely that DOE facilities will take on a larger 
role in survey data management roles. Current DOE facilities involved in data analysis and management 
for surveys include BNL (DES), FNAL (DES), and LBNL/NERSC (CMB surveys, DES, DESI, LSST) and this 
number is likely to grow in the future to include the LCFs at Argonne and Oak Ridge. 

21.2.3 Process of Science 

The process of science involves, roughly speaking, a three-stage process, 1) data acquisition, 2) data process-
ing, 3) data analysis. Typically, the science collaborations (which would be the analog of facility “users”), 
are handed “cleaned/calibrated” data as the end-point of the second stage. The frst two stages are the 
responsibility of the project (analog of the “facility”), while the codes used for data analysis are the respon-
sibility of the science collaborations or individual PIs once the data is made publicly available. In practice, 
the barrier between the the second and third stages is porous and considerable collaboration can take place 
between the production teams and the scientists. In any case, even the production pipelines (stage 2) are 
often built on community-provided tools. The LSST is an example of a survey that is attempting to do 
everything from scratch (unlike DES). 

Stage 3 data analysis covers a multitude of tasks, such as galaxy shape measurements, the determination 
of photometric redshifts, transient searches, lensing shear determinations, and computation of various cor-
relation functions and power spectra. For the CMB, timestream data is converted to maps, and the maps 
are then analyzed (which may involve cross-correlations with optical surveys) to extract science. Convert-
ing the stage 3 measurements into scientifc inferences may involve another nontrivial computational step, 
based on either simulation or model-based approaches to statistical inverse problems (e.g., extraction of 
cosmological parameters). 

189 



Figure 21.2: Notional data fow for a Cosmic Frontier survey experiment. On-site processing can be viewed 
as a medium-scale resource, augmented by specialized hardware/software for handling real-time tasks 
such as discovery alerts. Project and analysis computing can be handled at multiple sites; DISC (Data-
Intensive Scalable Computing) resources include clusters, clouds, and HTC (High Throughput Computing) 
systems. Data can be archived and served from multiple sites. Both single and multi-user modes need to 
be supported. 

Stages 1 and 2 of this process may be thought of jointly as data acquisition, data management, and data 
curation. Although these steps are important, they do not consume the majority of computational resources 
(for DES, this is roughly the equivalent of about 1 million core-hours annually). The analysis component 
is the main consumer of resources (by more than an order of magnitude), and is itself dwarfed by the 
simulation requirements (another order of magnitude). 

Note that unlike some other use cases, there is very little of a feedback loop in survey observations—if some-
thing interesting is found, it is usually the task of other assets to carry out follow-up observations. 

21.2.4 Extent of Data Use 

Survey data is very valuable with a very long shelf-life and is mined and analyzed in a number of ways, 
depending on the science use case. Currently, very little data is left on the foor, as the data acquisition 
rates are not a problem (the exception here are large radio surveys, where only a small subset comprising 
of processed data can be stored on disk). Most surveys archive all the data taken, at least all that meets 
certain quality cuts, and make the data public. One case where data loss occurs is in studies of transients 
because of possible ineÿciencies in the detection technology, classifcation algorithms, and lack of follow-
up resources. Other issues that prevent making use of the complete data set are technical issues such as 
lack of understanding of foregrounds, modeling the atmosphere, detector noise, etc. 

The total raw data sizes range from small/medium scale (about 100TB–1PB) to large (about 100PB). How-
ever, a large fraction of the science analyses work with reduced data sets—catalogs of objects. These re-
duced catalogs, even in the most extreme cases, are unlikely to be larger than about 1 PB in size, i.e., roughly 
two orders of magnitude smaller than the largest of the raw data sets. At the same time, it is important 
to keep in mind that new science cases often emerge as computational capabilities improve, so one should 
view these numbers more as a statement of boundary conditions set by resource restrictions, rather than an 
absolute estimate. It is quite possible for the derived data sets to be signifcantly larger in the future. 
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21.3 Future Use Cases 

21.3.1 Science Objectives and Motivations 

Surveys operate on relatively long timescales, from a few years to decades (for example, the Sloan Digital 
Sky Survey, frst light in 1998 [266], is still operating, albeit with changing scientifc focii). The general 
scientifc directions and observational technologies for the Cosmic Frontier are more or less well defned 
on the timescale of the next decade, and have been listed in the previous section. Beyond that a number 
of possible new technologies may enter survey planning (e.g., 21cm, fast spectroscopic methods) but it is 
probably too early to speculate on the needs this far out. Future directions in the feld are set by community 
consensus and funding agency priorities, typically on a decadal timescale. 

21.3.2 User and Computing Facilities 

It is unlikely that the current model will change very much on the timescale of the next decade. As stated 
earlier, it is very likely that DOE facilities (both ASCR and HEP) will take on a signifcantly larger role 
in data archiving, transfer, and analysis. It is also possible that commercial cloud resources will become 
a major resource in these areas—although several outstanding questions remain (e.g., cost models, data 
archiving and transfer); this disruptive possibility needs to be continuously explored. The main new hard-
ware trend of interest for DOE facilities—in the relatively near-term—is the evolution and integration of 
HPC systems within a data-centric usage model. 

The main new hardware trend of interest for DOE [science user] facilities—in the 
relatively near-term—s the evolution and integration of HPC systems within a data-
centric usage model. 

21.3.3 Process of Science 

The actual process of science is unlikely to change in any signifcant manner over and above the current 
paradigm (large projects or collaborations) and increased public data access. One of the possible changes 
in the mode of operation is the continuing movement of available computational resources from local to 
remote facility-based (moving computing to the data). It is doubtful, however, that this change in the un-
derlying support technology will actually lead to a major change in the underlying scientifc process. 

21.3.4 Extent of Data Use 

The extent of data use is likely to evolve somewhat as better and larger computational resources become 
available, however, it is unlikely to change radically. The basic throughput requirement is essentially set 
by the data rate at the detectors, since the sky is not a high-intensity source, data rates are automatically 
limited. Even with LSST, the data rate is only about 15TB/night (CMB-S4 would be roughly 1TB/day), 
which in the early 2020s, is a very modest target requirement. Thus, the hope is that a very large fraction 
of the data generated by the instruments would be usable data. 
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21.3.5 Data Lifecycle 

Details of the data lifecycle vary considerably in implementation but more or less follow the description 
given in Section 21.2.3 (Cf. Figure 21.2). Individual experiments have widely di erent on-site computing 
requirements (from the “power workstation” to cluster level), but it is generally true that o -site computing 
and data-related requirements are signifcantly larger in all cases.1 

21.4 Impediments, Gaps, Needs, Challenges 

There are a number of areas for future work that have been identifed in several studies carried out by 
the HEP community. Here we list a set of the identifed issues; more details can be found in a number 
of references—the Snowmass Summer Studies [271], ASCR/HEP Data Summit Report [272], ASCR/HEP 
Exascale Requirements Review report [273], and the HEP-FCE Working Groups report [274]. 

Some of the issues that have been raised so far are: 

• Lack of trained manpower and career paths for computationally-oriented scientists; 

• Integration of automated data transfer, storage, and archiving within scientifc workfows; 

• Lack of standard data formats and data structures—data organization and data structures to optimize 
data selection, manipulation, and analysis; 

• Scalable and approximate algorithms for data analysis (e.g., anomaly detection, clustering); associ-
ated uncertainty quantifcation (UQ) and verifcation and validation (V&V); 

• Increased interactive access with data, including sophisticated analyses, use of cloud-like services 
(e.g., portals); 

• Evolution of software stack for next-generation architectures; 

• Machine learning/statistics methods for classifcation, regression, and solution of high-dimensional 
inverse problems; associated UQ and V&V; and 

• Data archiving and curation strategies. 

It is important to keep in mind that programmatic HEP activities are almost never “single investigator.” 
The projects are usually broad and involve a number of potentially complex issues. The HEP Energy and 
Intensity Frontier communities cover essentially everyone in the entire feld. While this is not true in the 
Cosmic Frontier, which is a subset of a broader astronomy/physics e ort, it is still the case that this is a 
large subset. Consequently, solutions to problems faced by this community will be quickly adopted by a 
much broader set of scientifc activities. 

1An overview descriptions of individual implementations and data fow organization are given in the following references: 
DES [267], LSST [268], DESI [269], and CMB [270]. 
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Appendix: 22 

Workshop Process and Agenda 

22.1 Before the Workshop: Gathering Data 

Prior to the workshop, the EOS representatives prepared science use cases that speak to several di erent 
specifc issues related to the overall workshop theme. These topics include: 

• Present- or near-term issues. We requested a description of the science facility, how the facility or 
experiment “does science” with the EOD they collect, a “fowchart” (verbal or pictorial) describing 
the data lifecycle starting with data acquisition and including all processing stages and going through 
dissemination. 

• Future issues. We requested information from the same categories as for the present- or near-term 
issues. 

• Data lifecycle. We requested information about how data is used and key issues throughout the data 
lifecycle at each of the primary data lifecycle stages in the present and future views. 

• Data requirements. For each stage in the data lifecycle, we requested information about data “speeds 
and feeds,” throughput requirements, and specifc data-centric capabilities needed for the specifc 
science use case. 

• Impediments, gaps, needs, challenges. We asked for 3–5 data-centric impediments or barriers facing 
each science project facing them now or going into the future. 

We provided each EOS representative with a LATEX template, which they used in preparing their science 
use case narrative. We distributed PDF versions of the science use cases to attendees prior to the work-
shop. 

22.2 At the Workshop: Identifying Themes 

At the workshop, we organized the agenda in a way so as to facilitate focused discussions around the 
science use cases and to facilitate dialogue between EOS and math/computer science representatives. We 
organized the set of EOS presentations roughly by program oÿce: BER, BES, and HEP, which resulted in 
approximately four presentations in each category. 

The pattern we used at the workshop is as follows: 

• For each of the BER, BES, and HEP EOS project groups: 
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– Science use case presentations (plenary). Each EOS representative gave an oral presentation 
describing their use case. 

– Focused discussion (breakouts). We had four breakout groups, each of which consisted of one 
or two EOS representatives and approximately one fourth of the math and computer science 
attendees. Each focused discussion group lasted about 15–20 minutes. Then, we would rotate 
the EOS representatives to the next group. This way, we facilitated in-depth discussion and 
question-answer about all of the science cases. 

– Lighting presentations (plenary). Next, an “area lead” for each major math or computer science 
group (roughly speaking, the major themes, which the workshop organizers determined before-
hand) would prepare a brief presentation that listed the top N research challenges for their area 
that would need progress in order to meet science objectives. 

– Science feedback (plenary). We gave the EOS representatives the opportunity to provide imme-
diate feedback so that the math and computer science representatives could “fne tune” their 
assessments. 

• Report drafting. After repeating the above process three times, once for each of BES, HEP, and BER 
group of EOS projects, each of the math and computer science areas had in-hand a list of the major 
research themes for their area. Also at this point, this list of themes had undergone a degree of vetting 
by the EOS representatives. The math and computer science attendees were given the opportunity 
to begin drafting their report sections. The drafting process included use of a LATEX template and a 
specifc writing formula intended to promote some level of consistency across the di erent sections. 

22.3 After the Workshop: Community Input 

In the weeks after the workshop, we engaged in a period of report writing, in which ideas were refned. The 
workshop organizers iterated with each of the area leads in a process aimed at clarifying ideas, improving 
the exposition, and so forth. 

As part of the report-writing process, we reached out into the math and computer science community to 
request community input on the report. Specifcally, we solicited comments about major thematic areas 
we may have missed. In this process, we reached out to approximately 80 persons who are math or com-
puter science subject matter experts. We revised the workshop report in response to their input, and have 
acknowledged their helpful input (24.5). 
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Appendix: 23 

Data Growth Rates from EOS Projects 

BER Use Cases 

Data management, Analysis and Dissemination at EMSL(§11) 

Processing stage Present/Near term Long term 

Data acquisition rate: maximum 
100Mbps maximum data rate; 1 GB/s maximum data rate; 18

rate(s) and monthly or annual to-
3.6 TB monthly TB monthly 

tals 
data reduction, preliminary data reduction, metadata collec-

Experiment-side processing 
analysis tion, collaborative analysis 

Real-time constraints, 
turnaround time from collec-

3 d 1 h 
tion to result for experimental 
control 

Fully automated metadata and 
provenance capture together 

Metadata from instruments and
Metadata/provenance capture with metadata from experi-

automated data processing 
mental protocols and sample 
generation 

Climate Simulation and Analysis (§12) 

Processing stage Present/Near term Long term 

Data rate for production simu-
lations on LCF standard output : 
maximum rate(s) and annual to-
tal assuming we could do this ev-
ery day of the year (we do not). 
no attempt to optimize strategies to 

5 TB/day maximum data rate; 
1.5 PB annually 

Assume increase by factor of 50 
over present day: 250 TB/day 
maximum data rate; 50 PB annu-
ally 

archive data (e.g. compression) 
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Current strategies assume data 
published at the rates above will 
be published (shared across net-
works routinely) 
Stage 1 processing: data reduc-
tion of LCF output, preliminary 
analysis 
Stage 2 processing: Routine vi-
sualization and analysis of mul-
tiple data sets output from Stage 
1 above 

We don’t do this now, but are try-
ing: Data is currently written to 
HPSS 

(input 5 TB/day → 50 GB/day 
output 

multiple 50 GB data sets daily 

We do not do this now, but wish 
we could 

250 TB/day → 5 TB/day output 

multiple 5 TB data sets daily. 

Atmospheric Radiation Measurement Climate Research Facility (§13) 

Processing stage Present/Near term Long term 

Data acquisition rate: monthly 
or annual totals 

Network data transfer rates by 
site 

Archive download rate 

Example new large data stream: 
radar Doppler spectra at Azores 
site 

Searching, merging, and subset-
ting data 

Processing stage 

18 TB/mo. 

SGP 100 Mbps, anticipated in-
crease to 1 GB/s in FY16; most 
mobile facility sites around 1– 
2 Mbps satellite link; Antarctica 
bandwidth limited to 512 kbps 
Currently about 10–15 TB per 
month, most individual data or-
ders less than 100 GB 
Five months of spectra data had 
volumes: 6.9 TB, 7.3 TB, 737 GB, 
4.7 TB, 11 TB 
Data discovery tool can search 
and subset by variable, site, and 
measurement and will soon be 
able to merge some data streams 
into a common time using ADI 

BES Use Cases 

Advanced Light Source (§14) 

Present/Near term 

5 PB observational data annu-
ally, 1 PB model data annually 

May remain the same 

Expected to be much higher; in-
dividual LES model download 
rates may be of a few TB 
This data stream will soon be 
collected regularly at all 5–6 
sites 

Searching and subsetting by at-
mospheric state, cloud type, etc. 

Long term 

Data acquisition rate: maximum 
10 Gbps max; 140 TB/month av- 80 Gbps max; 1.5 PB/month 

rate(s) and monthly or annual to-
erage (raw data) (raw data) 

tals 
In addition, add higher-level fea-

data reduction, tomographic re-
Experiment-side processing ture extraction/identifcation to

construction, etc. 
guide experimental system 
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Real-time constraints, 
turnaround time from collec- varies among 40 beamlines from 
tion to result for experimental sub-second to minutes 
control 

Metadata/provenance capture Varies by beamline 

Linac Coherent Light Source (§15) 

Processing stage Present/Near term 

varies by beamline, increasing 
numbers of beamlines will need 
sub-second feedback 

Coordinated system for captur-
ing metadata and data from all 
beamlines 

Long term 

Data acquisition rate: maximum 
rate(s) and monthly or annual to-
tals 

Experiment-side processing 

Real-time constraints, 
turnaround time from collec-
tion to result for experimental 
control 

1-10 GB/s maximum data rate; 
1.5 PB annually 

Detector calibration, feature ex-
traction, histogramming, visual-
ization 

1–10 sec 

100 GB/s maximum data rate; 15 
PB annually 

Detector calibration, feature ex-
traction, histogramming, visual-
ization 

1–10 sec 

Use Case for Data at the Oak Ridge National Laboratory Neutron Sources (§16) 

Processing stage Present/Near term Long term 

Data acquisition rate: maximum 
rate(s) and monthly or annual to-
tals 

Experiment-side processing 

Real-time constraints, 
turnaround time from collec-
tion to result for experimental 
control 

Metadata/provenance capture 

500 MB/s maximum data rate; 
0.3 PB annually 

data reduction, traditional anal-
ysis 

5–15 minutes 

This is done for most automated 
experiment variables and for re-
duction 

5 GB/s maximum data rate; 1 PB 
annually 

data reduction, traditional anal-
ysis, electronic notebook meta 
data 

5 sec 

capture appropriate analysis 
meta data and notebook style 
information. 

Data and Analysis Requirements in Scanning Probe and Electron Microscopies (§17) 

Processing stage Present/Near term Long term 

Data acquisition rate: maximum ∼10–100 GB/day for movies, ∼10 Mb/s for SPM, ∼(1–10) GB/s 
rate(s) and monthly or annual to- ptychographic data sets, and for STEM in the full information 
tals Gmode SPM capture modes 
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Lossless compression, ex-

Experiment-side processing 

Real-time constraints, 
turnaround time from collec-
tion to result for experimental 
control 

Metadata/provenance capture 

ploratory data analy-
sis/multivariate statistics, de-
convolution, feature extraction, 
pan-sharpening, compressed 
sensing, image registration 
In most cases o�ine in the 
day-month interval for analyt-
ics, minutes-hours for micro-
scope operation 

Metadata from instrument and 
environmental parameters. Stor-
age of data analysis pathways 

data reduction, metadata collec-
tion, collaborative analysis, real 
time theory feedback 

Real-time analytics (unmixing, 
atom fnding, structure extrac-
tion) at imaging rates 

Capture appropriate analy-
sis meta data and notebook 
style information. Cross-
correlation of metadata with lit-
erature/web/data base searches 

Computing within the APS for Data Collection and Analysis (§18) 

Processing stage Present/Near term Long term 

Data acquisition rate: maximum 
rate(s) and monthly or annual to-
tals 

Approximately 5 TB/day maxi-
mum burst rate for some beam-
lines; approximately 2 PB raw 
data annually across all beam-
lines 

Experiment-side processing 

Over 30 facility-developed 
software packages available 
for imaging, spectroscopy, and 
scattering reduction, reconstruc-
tion, and analysis; simulations 
and modeling performed in-
dependent of data acquisition; 
near real-time analysis for MX 
and XPCS beamlines; most 
experiment collect data blindly 
with little or no acquisition time 
feedback 

Real-time constraints, 
turnaround time from collec-
tion to result for experimental 
control 

Near real-time processing avail-
able for XPCS 

Metadata/provenance capture 

Heterogeneous solutions depen-
dent on beamline community 
and technique; automated col-
lection for many MX and XPCS 
beamlines 

Approximately 1 PB/day maxi-
mum burst rate; 500 PB to 1,000 
PB annually across all beamlines 

High-performance and dis-
tributed computing enabled 
software for routine reduc-
tion, reconstruction, analysis, 
and visualization; frst-pass 
reduction, reconstruction, and 
analysis during data collection 
at most beamlines; simulations 
and modeling coupled with 
data acquisition for experiment 
steering 

Technique dependent; real-time 
processing needed within ms 
or less for time-dependent 
techniques, such as XPCS, and 
within seconds for dynamic 
imaging; order of 1 minute or 
less required for static imaging 
and some di raction techniques 

Facility-wide tools and infras-
tructure for electronic logbooks, 
and automated metadata and 
provenance collection 
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HEP Use Cases 

Data Challenges in the DUNE Experiment (§19) 
Summary information not available. Please refer to the use case itself. 

Open Numerical Laboratories (§20) 

Processing stage Present/Near term Long term 

Data acquisition rate: maximum 
rate(s) and monthly or annual to-
tals 

Experiment-side processing 

Real-time constraints, turn 
around time from collection to 
result for experimental control 

Metadata/provenance capture 

10 GB/s maximum data rate; 
500–800 TB annually 

some in-situ analysis, some near-
line posterior analysis 

N/A today 

Limited info in fle headers 

100 GB/s maximum data rate; 
10–20 PB annually 

in-situ triggers, posterior com-
munity analysis using immer-
sive tools, comparisons to exper-
imental data 
15 mins for large-scale interac-
tive analyses, 6 hours for batch 
jobs 
Fully automated metadata and 
provenance and capture, stored 
in easy to search databases 

DOE HEP Cosmic Frontier Use Cases (§21) 
Summary information not available. Please refer to the use case itself. 
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24.3 Science Use Cases 
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Appendix: 25 

Glossary of Common Acronyms 

ACME Accelerated Climate Modeling for Energy 
AFM Atomic force microscopy 
ALCF Argonne Leadership Computing Facility 
ALICE A Large Ion Collider Experiment 
ALS Advanced Light Source 
AMI Analysis and Monitoring Interface 
AMO Atomic, Molecular and Optical Science 
API Application programming interface 
ARM Atmospheric Radiation Measurement 
ASCR Advanced Scientifc Computing Research 
APS Advanced Photon Source 
BE PFM Band excitation piezoresponse force microscopy 
BEAM Bellerophon Environment for Analysis of Materials 
BEPS Band excitation piezoresponse spectroscopy 
BER Biological and Environmental Research 
CADES Compute And Data Environment for Science 
CAMERA Center for Advanced Mathematics for Energy Research Applications 
CCD Charge Coupled Device 
CMB Cosmic Microwave Background 
CMOS complementary metal-oxide semiconductor 
CNMS Center for Nanophase Materials Sciences 
CSI Computational Science Initiative 
CXI Coherent X-Ray Imaging 
DAQ Data acquisition system 
DISC Data-Intensive Scalable Computing 
DFT Density Functional Theory 
DMF Data Management Facility 
DMS Data management system 
DOE Department of Energy 
DUNE Deep Underground Neutrino Experiment 
EMSL Environmental Molecular Sciences Laboratory 
EO Experimental and observational 
EOD Experimental and observational data 
EOS Experimental and observational science 
EPICS Experimental Physics and Industrial Control System 

221 



ESnet Energy Sciences Network 
FEL Free electron laser 
FIB Focused ion beam 
FNAL Fermi National Accelerator Laboratory 
FORC First-order reversal curve 
FORC IV First-order reversal curves in current voltage measurements 
FTP File transfer protocol 
G-PFM General mode Piezoresponse Force Microscopy 
GB/s Gigabytes per second 
Gbps Gigabits per second 
HFIR High Flux Isotope Reactor 
HPC High performance computing 
HTC High Throughput Computing 
I/O Input/output 
IFIM Institute for Functional Imaging of Materials 
ISA-Tab Investigation, Study, and Assay Tabular Format 
ISD Interfacial shape distributions 
LArTPC Liquid Argon Time Projection Chamber 
LANL Los Alamos National Laboratory 
LES Large Eddy Scale 
LHC Large Hadron Collider 
kbps kilobits per second 
MEC Matter Extreme Conditions 
MB/s Megabytes per second 
Mbps Megabits per second 
MD Molecular dynamics 
MG-RAST Metagenomics Rapid Annotation using Subsystem Technology 
MPI Message passing interface 
NASA National Aeronautics and Space Administration 
NCSA National Center for Supercomputing Applications 
NERSC National Energy Research Scientifc Computing Center 
NMR Nuclear magnetic resonance 
OLCF Oak Ridge Leadership Computing Facility 
OPV Organic photovoltaic 
ORNL Oak Ridge National Laboratory 
PAD Pixel Array Detector 
PCDS Photon Controls and Data Systems 
PDFs Probability density functions 
PFS Parallel fle system 
PI Principal Investigator 
QA Quality Assurance 
RHIC Relativistic Heavy Ion Collider 
SASE Self-amplifed spontaneous emission 
SAXS Small-angle X-ray scattering 
SC Oÿce of Science 
SEM Scanning electron microscopy 
SNS Spallation Neutron Source 
SPM Scanning probe microscopy 
SPS Super Proton Synchrotron 
(S)TEM (Scanning) transmission electron microscopy 
SXR Soft X-Ray 
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TB/s Terabytes per second 
Tbps Terabits per second 
Tr-KPFM Time resolved Kelvin probe force microscopy 
USID unique sample IDs 
UQ Uncertainty quantifcation 
UX User experience 
V&V Verifcation and validation 
WAXS Wide-angle X-ray scattering 
XCS X-ray Correlation Spectroscopy 
XPP X-ray Pump Probe 
ZS Zero suppression 
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