/\‘ ASC Working Group on Exascale Tools MINVVSE

National Nuclear Security A mAm‘smmoa

ASC Defense Programs

Activities in the ASC WG on Tools

Martin Schulz, LLNL (lead)

Atinuke Arowojolu, DOE

Sean Blanchard, LANL

James Brandt, SNLs

Scott Futral, LLNL

John Mellor-Crummey, Rice University
Barton Miller, University of Wisconsin
David Montoya, LANL

Mahesh Rajan, SNLs

Kenneth Roche, PNNL

Allan Snavely, UCSD/SDSC

Mary Zosel, LLNL

/\‘ History: ASC exascale planning efforts ,/,”i,:‘,:d&!:‘.‘?ég

ASC Defense Programs

* NNSA formed five working groups in June 2010

— Architectures, System SW, Programming Models & Tools, Viz/Data, 1/0
— Planning meeting in Washington DC
— Exercised showed that tools and PM needed to be separate groups

* Subsequent planning meeting in September 2010 in Albuquerque

— Added working groups for application side
— Later refined to: applications & Solvers/Libraries, total of eight WGs
— Outbriefs on challenges and gaps

* Working group leads represented NNSA in March 2011 ASCR meeting

* ASC exascale meeting in San Francisco, March 2011

— Added members from ASCR labs and academia chosen by ASCR
— Joint working group discussions on cross-cutting issues
— Started with September outbriefs

— Outbriefs for each working group with ASCR input
Recommendations for next steps/PathForward investments

/\‘ Scope of the Tools WG //;f!:":&!f‘jfé

ASC Defense Programs

* Major Software Stack Elements the Group is Responsible for:

— Tools for application development (debugging, correctness, performance)
« Wide spectrum: memory, power, locality, resilience, ...
 Static analysis tools for code evaluation
— Tools for SSW to evaluate the exascale stack itself
« SSW, I/O, Network, File systems, Scheduler, ...
» Need to get away from ad-hoc tools, need whole system solution
— Shared infrastructure for measurement, data gathering and presentation
* Online analysis, data aggregation, shared across the system stack
* Post-mortem, online, in site and batch tools
— HW and SW APIs / information exchange with other WGs
* APIs that we want to wrap and monitor
* Introspection APIls (HW and SW)
» Guidance for other system components (targeted, information isolation)
* APIs exposing semantic information from the users to tools

— Resources for testing/validation of the system (incl. tools)

* Not in scope: compilers (vendors!), resiliency techniques, runtimes

Za State of the Art (Sep. 2010) /",A‘,'Ia%l
ASC Defense Programs

* Some successful tools all the way to Petascale class machines

— Many successes with brute force scaling
— Still evolving and often brittle
— Mostly focused on single paradigm codes

* BUT: traditional paradigms are starting to break down

— Applications are turning towards hybrid models

— Traditional debuggers don'’t scale

— Performance analysis has to deal with flood of data
— Full tracing at Petascale is not feasible anymore

— Fragmented runtime systems and environments

* New approaches most include the following principles

— Data reduction and on-line analysis

— Flexible infrastructures for prototype tools

— Integration and sharing across topic areas and WGs
— Integrated runtimes avoiding stove pipes

/\‘ Exascale Challenges for/around Tools MINVVSE

National Nuclear Security Admlnlsrmﬂon

ASC Defense Programs

e
* Challenges in providing new capabilities

— Scalability of measurement, analysis, and presentation
* Incl. new metrics: memory, power, ...
— Turning information into insight
» Despite flood and complexity of data from billions of threads
— Dealing with new programming methodologies
» Heterogeneous systems/architectures (HW and SW)
« Coupled systems and applications
— “What if” tools for Co-Design

* Challenges for tool implementations

— Quick design of prototype tools for new scenarios

» Agile development to keep up with PMs

« Need them early, enable specialized tools in this and other areas
— Getting right interfaces with the right abstractions

« To SSW, HWA, Apps, Libraries, Runtimes, Compilers, ...
— Resiliency for tools and tool infrastructures

>\, Technical Goals to Provide Efficient Tools J\VS3,

mmlwmmyamrwmum

ASC Defense Programs

Gaps that other groups look for the Tools WG to fill:

* Understand and evaluate node level resources

— Memory and threading
— Global understanding of node local data
— Scalable analysis algorithm (on-line/in-situ)

* Support new high-level abstractions in new PM approaches

— Understand the performance impact of their abstractions
— Match performance <-> PM abstractions
— Code refactoring/translation support

* Ability to correlate HW, SW, System, App Events/Data

— Understand/distinguish impact of system events
— Errors/faults incl. silent errors
— Map it to common domains

* Root cause analysis for performance and correctness

— Construct and understand dependency chains
— Track data flowing through the system

\

I ildi I YA T a5
s \ Technical Gaps for Building Tools ///M'm&!mw‘fé
ASC Defense Programs

Gaps that need to be filled to provide the requested tools:

* Access to the necessary data from across the system

— Standardized interfaces to HWA & SSW & PMs
— New hardware features to get more data on memory
— Low overhead is essential

* Scalable data collection and processing
— Online and/or in-situ analysis
— Requirements for scripting languages (?)
* Management and allocation of extra resources

— Application launching
— Launching and controlling tool/support daemons
— Hide system differences

* Common service daemon architecture that is shared and reused
— Tool component frameworks

\

. l YA I =l
s \ Tool Needs: Modular Infrastructure N M&!m,, m‘fé
ASC Defense Programs

* Common infrastructure across WGs

Apps/SAL

— Distributed/Cross-node architecture

— Gather/Aggregate data

— Online/In-situ analysis

— Wiring up infrastructure "

— Easy to deploy and maintain) <DE g -

— Easily reusable modules - 7| F | &
* Use cases for tools (+related issues)

e bebngg st | Modular Infrastructure il
_ Process/Debugging state Modular Infrastructure

— Status/Health monitoring SSW (per node)
— Dynamic resource management
— Fault detection and mitigation Arch

— Online steering

/\‘ Key Dependencies with Other 7 WGs (1) MINVVSE

National Nuclear Security Administration

ASC Defense Programs

- HWA
» Measures of resource consumption: power, network, memory bandwidth, issue slots, ...
« Raw measures of inefficiency (exposed latency, lack of memory parallelism)
 |dentification of resources (e.g., for heterogeneous nodes, GPU versions)
» Hardware instrumentation to emulate 2018 machine costs with 2015 machine

— SSW
* Right APIs incl. RAS and debugger interfaces (incl. testing)

« Expose all hardware features, don’t hide anything
incl. counters, power, resiliency, faults, HW topology

« Timely reporting and precise attribution of asynchronous events
» Interfaces to scheduler, scheduling of tool resources
« SSW runtime monitoring, runtime must expose right abstractions
— 1/O & I/O Networks
» For tools: interfaces to capture and measure performance (MP1_T like)
» Capture network and storage topologies
* Tool needs: load balancing and striping, detect link contention
* modeling vs. measurement to find bottlenecks
» Tracing data movements and separate between system and user traffic
» Provide building blocks to enable specialized 1/O tools (generic tracers/profilers)
* More discussion needed: storage approaches and formats for tools (SQL DBs?)

>\ Key Dependencies with Other 7 WGs (2) J\VVS&

ASC Defense Programs

— Visualization and Data Analysis (VDA)
« Common needs, requirements on SSW (online analysis and data storage)
« Exploit application knowledge available in Viz tools (data layout, ...)
* Provide building blocks to enable specialized VDA tools (e.g., in situ analysis)
» Need VDA techniques for performance data analytics and visualization
(outlier detection, equivalence groups, compression/data reduction, feature detection, ...)
— Programming Models (PMs)
» Compiler and runtime must provide information for tools to map costs back to PM abstractions
« Translators/PMs/Compilers must expose abstractions to tools
* PM runtime monitoring, runtimes must expose right abstractions
— Applications, Solvers, Algorithms, Libraries (Apps, SAL)
« We are treating libraries as apps (exception: potential API interception)
 List of expectations on tools — information that Apps/SAL people want to see
— Data centric profiling — away from flop centric tools to memory centric tools
— Memory locality and consumption
— Data structures and access patterns
— Opportunity analysis (concurrency, offload to accelerators, compiler feedback)
— Delivering information on power and resiliency
« Mini-Apps for testing of tools (for performance, complexity, SSW, ...)
« Application internal monitoring interfaces to capture semantic and performance data

/\‘ Suggested PathForward Projects NS
ASC Defense Programs

e
* Memory Tools
— New generation of tools to explore memory related metrics
Tool Building Blocks / Infrastructure
— Modular and Separable Tool Components
Application-Tool Interfaces

— Interfaces to exchange performance and semantic information
Mini/Skeleton Applications

— Aid in the definition of the collection of Mini-Apps
Power Tools

— Inclusion of power metrics into application oriented tools
Correctness Tools

— Verification of correct usage of PM abstractions
Support for New Models

— Investigation of support for new programming models

A 9 P NYSH
i Big Picture Issues N

T
* Coordination — must be a continuous, agile process

— Among tool developers
« Coordinate on common interfaces and components
* Maintenance models
— With Apps/SAL teams
* Ensure their needs are met
» Establish interfaces
— With SSW, 1/O, VDA
« Share infrastructures
» Avoid ad-hoc tools
— With vendors
» Need interfaces and documentation
» Co-Design interactions on getting the right system hooks

* Test beds

— Essential, need sufficient access for tools research
— Work around security concerns (e.g., for power sensors)

