Exascale, 2011

Nested Parallelism and
Hierarchical Locality

Guy Blelloch
Carnegie Mellon University



(Fine Grained) Nested Parallelism =

* Nested parallel loops and fork joins
* Desirably : built in “collective operations”
* NESL, Cilk+, X10, Open MP (perhaps)

— Support for collective operations differ



Quicksort

function quicksort(S) =
if (#S <= 1) then S
else let

a = S[rand(#S)1];

S1 = {e in S | e <

S2 = {e in S | e = a};

S3 = {ein S | e >

R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ RI[1];

Work = O(n log n)
Span = O(log? n)

{ .. } — means parallelism



Fourier Transform

function fft(a,w) =
if #a == 1 then a
else
let r = {fft(b, even elts(w)):
b in [even elts(a),odd elts(a)]}
in {a + b *w : ain r[0] ++ r[O0];
b in r[l] ++ r[1];
W in w};



Sparse Matrix Vector Multiply

function spmv (A, x) =
{sum({v * x[1i] :(i,v) in row} : row in A}

e.g. A= [[(3, 7.9), (11, 2.2), (14, -2.0)],
[(41 _1'0)1 (61 1'5)]1
[(01 1)/ (141-9)1 (221 _213)1 ]



Matrix Multiplication

Fun A*B { A A
. 11 12
if #A < k then baseCase.. A =
Cii = A;;*Bj; + A L,*B,y, _A21 A22_
Ci, = A;*B;, + A,*B,, 'B B T
Ca1 = Ry *By; + Ay*By B = H 12

return C

D = O(log?n)
W = O(n3)



Advantages of Nested Parallelism

Lots of parallelism

Flexibility in scheduling...good for both vector/
SIMD and asynchronous computing

Easy to reason about

Broadly applicable

Reasonably easy to make deterministic
Simple formal cost model (Work and Span)
Good for (hierarchical) locality



Current machines already have

deep hierarchies
* Xeon: 3 levels of cache + Memory, 32 cores

Memory: upto 1 TB

4 of these

24 MB L3 24 MB
«—» «—>
8 of these 8 of these
128 KB 128 KB |L2 128 KB 128 KB
32 KB 32 KB L1 32 KB 32 KB




...and deeper
* IBM z196: 4 |levels of cache + Memory

Memory: Up to 3 TB

A

4 of these
196 MB L4
) 6 of these g
24 MB 24 MB L3
«—> <«—>
4 of these 4 of these
1.5 MB 1.5 MB 1.5 MB 1.5 MB L2
128 KB 128 KB 128 KB 128 KB L1

®

®

O ®

v

196 MB

A

6 of these

v

24 MB

24 MB

<«—>
4 of these

«—>
4 of these

1.5MB

1.5MB

1.5MB 1.5MB

128 KB

®

128 KB

®

128 KB 128 KB

o ®



Problem

* Trying to write portable code to take
advantage of all levels of cache is near

impossible. Possibly more true on exascale
machines.

* Assuming two levels is unlikely to work.



Goal

* Give the user a high-level dynamically parallel
programming model.

* Give them a way to reason about the locality/
communication costs in their program that is
independent of details of the machine.

* Supply schedulers that take advantage of
locality on a wide variety of machines
(including exascale?).



ldeal Cache Model

Sequentially assume a machine Wemen
with two cache parameters
— Cache size M,B

— Block size d
P

If program does not use parameters

then it will be reasonably efficient across all
levels of the cache (the Cache Oblivious
Model)




Parallel Cache Oblivious Model (PCO)

Carry forward cache state according

to some sequential order

0

Exascale, 2011

Assuming
this task fits
in cache
All three
subtasks
start with
same state

Merge state
and carry
forward

13



Parallel Cache Oblivious Model (PCO)

e

Exascale, 2011

Task does
not fit in
cache
All three
tasks start
with empty
state

Strand starts
with empty
state

14



Summary of Bounds

Q(n) =

Scan Memory, prefix sums, merge, median, 0(%)
matrix transpose:
Matrix Multiply o n'’
BM.S

Matrix Inversion:
FFT: o(ﬁlogz n)

B
Mergesort, Quicksort, NNs, KD-trees: O(%logz(n/M))

Sample Sort: 0(%logM n)



Better Sort

Function sort(A) =

n = |A]
if n <= 1 return a
else
Pivots = sort sample of size sqrt n

For each B in partition(A,sqrt(n))
C = split(sort(B) ,Pivots)
D = transpose (C)
For each B in D
R = sort(flatten(B))
Return flatten (R) Q =0(n/B IogMn)
Instead of

Q = O(n/B log (n/M)0



Why?

How is the cost model useful



General Bounds

On a private cache [ABBOO]
Using work stealing

On shared caches [BG04]
for M, = M, + O(PD)

Using parallel depth first

Exascale, 2011 18



..but what about
* IBM z196: 4 |levels of cache + Memory

Memory: Up to 3 TB

A

4 of these
196 MB L4
) 6 of these g
24 MB 24 MB L3
«—> <«—>
4 of these 4 of these
1.5 MB 1.5 MB 1.5 MB 1.5 MB L2
128 KB 128 KB 128 KB 128 KB L1

®

®

O ®

v

196 MB

A

6 of these

v

24 MB

24 MB

<«—>
4 of these

«—>
4 of these

1.5MB

1.5MB

1.5MB 1.5MB

128 KB

®

128 KB

®

128 KB 128 KB

o ®



General Bounds (informal)

» Under some assumptions, can show with an appropriate
scheduler something like the following can be shown

>ie Qu(t: M /3, Bi)C;
#procs

Time = X overhead




Space-Bounded (SB) Scheduler

Assign tasks to caches that fit them.
e Do not allow tasks to move
Do not allow caches to overflow.__

—100MB
40||v||3 4OI!/IB
DIOIOND
:T . }Zermitte

processo
rs per

21



Preliminary Numbers

32

28

24
20
16
12
8
4
0
(&

s

< . \\
60 (&4 Q &‘Q . \QQQ {559 ég ‘o’b'& _‘:2‘0
OQ. Qép \Qq ‘Q@ & qﬁ& O&@ é @‘P ) f{&'
& @ & ,§ S G s 9 o>
I @ ¢« & &
X

Exascale, 2011 22



Conclusion

Reasoning about locality in exascale machines is
likely to be very difficult.

In addition to other important properties for
exascale computing:

— Lots of fine grained parallelism

— Various choices in scheduling

Nested parallelism can be good for taking
advantage of hierarchical locality



