Why compilers have failed
and
\What we can do about it

Keshav Pingali
The University of Texas at Austin

Organization

Two successes of compilers
Two failures of compilers
Three lessons

Learning from failures
— Galois system

Successes of past 25 years(l)

* Instruction-level parallelism (ILP)

— Resources: processor pipeline
* Functional units
* Regqisters
— Optimization scope:
« Basic blocks (Hardware:IBM Stretch)
 Instruction sequences: trace scheduling (Josh Fisher)
* Innermost loops: software pipelining (Bob Rau)
» Loops with conditionals (Bob Rau)
« DAGs: super-blocks, hyper-blocks (\Wen-Mei Hwu)
— Key ideas:
» Speculation: it’s all about probabilities
« Dynamic branch prediction

Accomplishments of past 25 vears (ll)

 Memory-hierarchy optimization

— Resources:

« Caches and registers

« Functional units
— Optimization scope:

» Perfectly nested DO-loops + dense arrays

» Imperfectly nested DO-loops + dense arrays
— Key ideas:

» Loop transformations:

— UIUC (Kuck, Padua,..), Rice (Kennedy,Cooper,..), IBM (Fran Allen,
Sarkar,..)

* Program abstractions:
— polyhedral methods (French school: Feautrier et al)

ltanium MMM (-0O3)

factor faster than -O2

30

25

20

15

10

GFLOPS relative to -O2; bigger is better

92% of Peak
Performance

From Wei Li (Intel)

Bad news: we failed on the big ones

* Auto-parallelization

— Some success with vectorization of dense matrix
programs

— Complete failure otherwise
« Dusty-deck rejuvenation
— Complete failure

Other communities

 Although we have failed

with parallelism, other
communities have
succeeded

— Databases: (Codd)
« SQL

— Numerical linear algebra:
(Dongarra, Demmel,
Gropp,...)

« ScaLAPACK, PetSc, etc.

L esson 1

Compilers
— Good at lowering abstraction level of program ¢’ ik, A~
« conventional code generation from HLL programs e\ ,m
* ILP exploitation ' e WR ST
— Bad at raising abstraction level
» dusty-deck rejuvenation
» auto-parallelization
Lesson

— Solution to auto-parallelization problem must not require compiler to
raise abstraction level to uncover high level structure

— Examples: databases, NA, FFTW
Wrong question:

— Can dusty-deck program written in FORTRAN or C be parallelized?
Right question:

— Given the state of the art of program analysis and runtime systems, can
we invent

« sequential descriptions of algorithms + minimal amount of explicitly parallel
code/annotations/directives such that

» performance of the resulting program ~ performance of explicitly parallel program for
the same algorithm?

g IL
yowchuan@meshio.cdm

Lesson 2

Domains that have harnessed parallelism successfully have at
least two distinct classes of programmers
— Databases:

« SQL programmers: Joe programmers
+ DBMS implementers: Stephanie programmers

— Numerical linear algebra:
 MATLAB users: Joe programmers
« LAPACK implementers: Stephanie programmers
* BLAS implementers: Kazushige Goto programmer

Strategy
— Small number of Stephanies to support large number of Joes
— Software contract between Joes and Stephanies

Lesson:
— Multicore programs and programmers will not be monolithic

— Languages and tools for Joe may be very different from those for
Stephanie or Goto

— Need to figure out levels and software contracts between levels

Lesson 3

Static dependence graphs are not useful
abstractions for many algorithms
— In many algorithms, dependences are
functions of runtime values
For these algorithms, compile-time
parallelization and scheduling is not
possible
— Much if not most of the work for
parallelization must be done at runtime
* Inspector-executor approach

 Interference graph approach
» Speculative or optimistic execution

— Analogy: VLIW vs. superscalar processors

Lesson:

— auto-parallelization cannot mean just
compile-time parallelization

— must take a broader view of auto-
parallelization in terms of binding time of
scheduling decisions

Delaunay mesh refinement

Binding time of scheduling decisions

* Analogies:
— Type checking
« Compile-time: languages like Java
* Runtime: languages like MATLAB and Python

— Number of times a loop executes
« Compile-time: “DO 1 =1, 100”
o Just-in-time: “DO 1 =1, N’
* Runtime: “while (true) do”
« Parallelization: when do we know dependences?
— Compile-time: dense matrix codes, FFT, stencils,Barnes-Hut,..
— Just-in-time (inspector-executor): sparse MVM, tree walks
— Runtime: irregular codes like DMR, event-driven simulation

e Lesson:

— auto-parallelization requires fusion of compiler and runtime
systems

(Galois approach

« Algorithm = repeated application of
operator to graph

— active element:
* node or edge where computation is needed

— neighborhood:

» set of nodes and edges read/written to
perform activity

« distinct usually from neighbors in graph
— ordering:

* order in which active elements must be executed
in a sequential implementation

— any order
— problem-dependent order

« Amorphous data-parallelism

— parallel execution of activities, subject to
neighborhood and ordering constraints

- neighborhood

12

Galois programming model (PLDI 2007)

Layered architecture

Joe programmers
— sequential, OO model
— Galois set iterators: for iterating over unordered and
ordered sets of active elements

« foreachein SetS do B(e)
— evaluate B(e) for each element in set S
— no a priori order on iterations
— set S may get new elements during execution

» for each e in OrderedSet S do B(e)
— evaluate B(e) for each element in set S
— perform iterations in order specified by OrderedSet
— set S may get new elements during execution

Stephanie programmers
— Galois concurrent data structure library

(Wirth) Algorithms + Data structures = Programs
(cf) SQL and database programming

13

Galois parallel execution model

Parallel execution model:
— shared-memory
— optimistic execution of Galois
iterators
Implementation:
— master thread begins execution
of program
— when it encounters iterator,
worker threads help by executing
iterations concurrently
— barrier synchronization at end of
iterator
Independence of neighborhoods:
— software TLS/TM variety
— logical locks on nodes and edges

main()

for each [

Joe Program

14

Master

Concurrent
Data structure

ParaMeter Parallelism Profiles

 DMR: input mesh o

— Produced by Triangle '
(Shewchuck)

— 550K triangles
— Roughly half are badly

IsSm

30000

20000

Available Parallel
=
—
—
—
| |

L]
| L B

shaped

* Available parallelism: 2 W

— How many non-conflicting Computation Step
triangles can be expanded

=1

—
[
(=]

at each time step?

» Parallelism intensity:

— What fraction of the total
number of bad triangles
can be expanded at each
step?

S [=r] [==]
(] (]
T[T 1T Tl Trrrrri

Parallelism Intensity
]
1 l T

=
T 1

=

20 40
Gomputation Step

Performance of Galois system

Barnes-Hut Delaunay Mesh Refinement

Barnes-Hut

Asynchronous Variational Integrator Metis

Patron saint of parallel programming

“Pessimism of the intellect, optimism of the will”
Antonio Gramsci (1891-1937)

