
Why compilers have failed
and

What we can do about it

Keshav Pingali
The University of Texas at Austin

Organization

• Two successes of compilers
• Two failures of compilers
• Three lessons
• Learning from failures

– Galois system

Successes of past 25 years(I)

• Instruction-level parallelism (ILP)
– Resources: processor pipeline

• Functional units
• Registers

– Optimization scope:
• Basic blocks (Hardware:IBM Stretch)
• Instruction sequences: trace scheduling (Josh Fisher)
• Innermost loops: software pipelining (Bob Rau)
• Loops with conditionals (Bob Rau)
• DAGs: super-blocks, hyper-blocks (Wen-Mei Hwu)

– Key ideas:
• Speculation: it’s all about probabilities
• Dynamic branch prediction

Accomplishments of past 25 years (II)

• Memory-hierarchy optimization
– Resources:

• Caches and registers
• Functional units

– Optimization scope:
• Perfectly nested DO-loops + dense arrays
• Imperfectly nested DO-loops + dense arrays

– Key ideas:
• Loop transformations:

– UIUC (Kuck, Padua,..), Rice (Kennedy,Cooper,..), IBM (Fran Allen,
Sarkar,..)

• Program abstractions:
– polyhedral methods (French school: Feautrier et al)

Itanium MMM (–O3)

From Wei Li (Intel)

GFLOPS relative to -O2; bigger is better

0

5

10

15

20

25

30

-O
1

-O
2

+ p
ref

etc
h

+ i
nte

rch
an

ge

+ u
nro

ll-j
am

+ b
loc

kin
g =

 -O
3

gc
c -

O4

fa
c
to

r
fa

s
te

r
th

a
n

 -
O

2

92% of Peak

Performance

• Auto-parallelization
– Some success with vectorization of dense matrix

programs
– Complete failure otherwise

• Dusty-deck rejuvenation
– Complete failure

Bad news: we failed on the big ones

Other communities

• Although we have failed
with parallelism, other
communities have
succeeded
– Databases: (Codd)

• SQL
– Numerical linear algebra:

(Dongarra, Demmel,
Gropp,…)

• ScaLAPACK, PetSc, etc.

Lesson 1
• Compilers

– Good at lowering abstraction level of program
• conventional code generation from HLL programs
• ILP exploitation

– Bad at raising abstraction level
• dusty-deck rejuvenation
• auto-parallelization

• Lesson
– Solution to auto-parallelization problem must not require compiler to

raise abstraction level to uncover high level structure
– Examples: databases, NA, FFTW

• Wrong question:
– Can dusty-deck program written in FORTRAN or C be parallelized?

• Right question:
– Given the state of the art of program analysis and runtime systems, can

we invent
• sequential descriptions of algorithms + minimal amount of explicitly parallel

code/annotations/directives such that
• performance of the resulting program ' performance of explicitly parallel program for

the same algorithm?

Lesson 2
• Domains that have harnessed parallelism successfully have at

least two distinct classes of programmers
– Databases:

• SQL programmers: Joe programmers
• DBMS implementers: Stephanie programmers

– Numerical linear algebra:
• MATLAB users: Joe programmers
• LAPACK implementers: Stephanie programmers
• BLAS implementers: Kazushige Goto programmer

• Strategy
– Small number of Stephanies to support large number of Joes
– Software contract between Joes and Stephanies

• Lesson:

– Multicore programs and programmers will not be monolithic
– Languages and tools for Joe may be very different from those for

Stephanie or Goto
– Need to figure out levels and software contracts between levels

Lesson 3
• Static dependence graphs are not useful

abstractions for many algorithms
– In many algorithms, dependences are

functions of runtime values
• For these algorithms, compile-time

parallelization and scheduling is not
possible
– Much if not most of the work for

parallelization must be done at runtime
• Inspector-executor approach
• Interference graph approach
• Speculative or optimistic execution

– Analogy: VLIW vs. superscalar processors
• Lesson:

– auto-parallelization cannot mean just
compile-time parallelization

– must take a broader view of auto-
parallelization in terms of binding time of
scheduling decisions

Delaunay mesh refinement

Binding time of scheduling decisions

• Analogies:
– Type checking

• Compile-time: languages like Java
• Runtime: languages like MATLAB and Python

– Number of times a loop executes
• Compile-time: “DO I = 1, 100”
• Just-in-time: “DO I = 1, N”
• Runtime: “while (true) do”

• Parallelization: when do we know dependences?
– Compile-time: dense matrix codes, FFT, stencils,Barnes-Hut,..
– Just-in-time (inspector-executor): sparse MVM, tree walks
– Runtime: irregular codes like DMR, event-driven simulation

• Lesson:
– auto-parallelization requires fusion of compiler and runtime

systems

12

Galois approach
• Algorithm = repeated application of

operator to graph
– active element:

• node or edge where computation is needed
– neighborhood:

• set of nodes and edges read/written to
perform activity

• distinct usually from neighbors in graph
– ordering:

• order in which active elements must be executed
in a sequential implementation

– any order
– problem-dependent order

• Amorphous data-parallelism
– parallel execution of activities, subject to

neighborhood and ordering constraints

i1

i2

i3

i4

i5

: active node

: neighborhood

Galois programming model (PLDI 2007)

• Layered architecture
• Joe programmers

– sequential, OO model
– Galois set iterators: for iterating over unordered and

ordered sets of active elements
• for each e in Set S do B(e)

– evaluate B(e) for each element in set S
– no a priori order on iterations
– set S may get new elements during execution

• for each e in OrderedSet S do B(e)
– evaluate B(e) for each element in set S
– perform iterations in order specified by OrderedSet
– set S may get new elements during execution

• Stephanie programmers
– Galois concurrent data structure library

• (Wirth) Algorithms + Data structures = Programs
• (cf) SQL and database programming

13

14

Concurrent
Data structure

main()
….
for each …..{
…….
…….
}
.....

Master

Joe Program

Parallel execution model:
– shared-memory
– optimistic execution of Galois

iterators
Implementation:

– master thread begins execution
of program

– when it encounters iterator,
worker threads help by executing
iterations concurrently

– barrier synchronization at end of
iterator

Independence of neighborhoods:
– software TLS/TM variety
– logical locks on nodes and edges

Galois parallel execution model

i1

i2

i3

i4

i5

15

ParaMeter Parallelism Profiles

• DMR: input mesh
– Produced by Triangle

(Shewchuck)
– 550K triangles
– Roughly half are badly

shaped
• Available parallelism:

– How many non-conflicting
triangles can be expanded
at each time step?

• Parallelism intensity:
– What fraction of the total

number of bad triangles
can be expanded at each
step?

Barnes-Hut

Performance of Galois system

Barnes-Hut Delaunay Mesh Refinement

Asynchronous Variational Integrator Metis

“Pessimism of the intellect, optimism of the will”
 Antonio Gramsci (1891-1937)

Patron saint of parallel programming

