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Organization

Two successes of compilers
Two failures of compilers
Three lessons

Learning from failures
— Galois system



Successes of past 25 years(l)

* Instruction-level parallelism (ILP)

— Resources: processor pipeline
* Functional units
* Regqisters
— Optimization scope:
« Basic blocks (Hardware:IBM Stretch)
 Instruction sequences: trace scheduling (Josh Fisher)
* Innermost loops: software pipelining (Bob Rau)
» Loops with conditionals (Bob Rau)
« DAGs: super-blocks, hyper-blocks (\Wen-Mei Hwu)
— Key ideas:
» Speculation: it’s all about probabilities
« Dynamic branch prediction



Accomplishments of past 25 vears (ll)

 Memory-hierarchy optimization

— Resources:

« Caches and registers

« Functional units
— Optimization scope:

» Perfectly nested DO-loops + dense arrays

» Imperfectly nested DO-loops + dense arrays
— Key ideas:

» Loop transformations:

— UIUC (Kuck, Padua,..), Rice (Kennedy,Cooper,..), IBM (Fran Allen,
Sarkar,..)

* Program abstractions:
— polyhedral methods (French school: Feautrier et al)
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Bad news: we failed on the big ones

* Auto-parallelization

— Some success with vectorization of dense matrix
programs

— Complete failure otherwise
« Dusty-deck rejuvenation
— Complete failure



Other communities

 Although we have failed

with parallelism, other
communities have
succeeded

— Databases: (Codd)
« SQL

— Numerical linear algebra:
(Dongarra, Demmel,
Gropp,...)

« ScaLAPACK, PetSc, etc.



L esson 1

Compilers
— Good at lowering abstraction level of program ¢’ ik, A~
« conventional code generation from HLL programs e\ ,m
* ILP exploitation ' e WR ST
— Bad at raising abstraction level
» dusty-deck rejuvenation
» auto-parallelization
Lesson

— Solution to auto-parallelization problem must not require compiler to
raise abstraction level to uncover high level structure

— Examples: databases, NA, FFTW
Wrong question:

— Can dusty-deck program written in FORTRAN or C be parallelized?
Right question:

— Given the state of the art of program analysis and runtime systems, can
we invent

« sequential descriptions of algorithms + minimal amount of explicitly parallel
code/annotations/directives such that

» performance of the resulting program ~ performance of explicitly parallel program for
the same algorithm?
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Lesson 2

Domains that have harnessed parallelism successfully have at
least two distinct classes of programmers
— Databases:

« SQL programmers: Joe programmers
+ DBMS implementers: Stephanie programmers

— Numerical linear algebra:
 MATLAB users: Joe programmers
« LAPACK implementers: Stephanie programmers
* BLAS implementers: Kazushige Goto programmer

Strategy
— Small number of Stephanies to support large number of Joes
— Software contract between Joes and Stephanies

Lesson:
— Multicore programs and programmers will not be monolithic

— Languages and tools for Joe may be very different from those for
Stephanie or Goto

— Need to figure out levels and software contracts between levels



Lesson 3

Static dependence graphs are not useful
abstractions for many algorithms
— In many algorithms, dependences are
functions of runtime values
For these algorithms, compile-time
parallelization and scheduling is not
possible
— Much if not most of the work for
parallelization must be done at runtime
* Inspector-executor approach

 Interference graph approach
» Speculative or optimistic execution

— Analogy: VLIW vs. superscalar processors

Lesson:

— auto-parallelization cannot mean just
compile-time parallelization

— must take a broader view of auto-
parallelization in terms of binding time of
scheduling decisions

Delaunay mesh refinement



Binding time of scheduling decisions

* Analogies:
— Type checking
« Compile-time: languages like Java
* Runtime: languages like MATLAB and Python

— Number of times a loop executes
« Compile-time: “DO 1 =1, 100”
o Just-in-time: “DO 1 =1, N’
* Runtime: “while (true) do”
« Parallelization: when do we know dependences?
— Compile-time: dense matrix codes, FFT, stencils,Barnes-Hut,..
— Just-in-time (inspector-executor): sparse MVM, tree walks
— Runtime: irregular codes like DMR, event-driven simulation

e Lesson:

— auto-parallelization requires fusion of compiler and runtime
systems



(Galois approach

« Algorithm = repeated application of
operator to graph

— active element:
* node or edge where computation is needed

— neighborhood:

» set of nodes and edges read/written to
perform activity

« distinct usually from neighbors in graph
— ordering:

* order in which active elements must be executed
in a sequential implementation

— any order
— problem-dependent order

« Amorphous data-parallelism

— parallel execution of activities, subject to
neighborhood and ordering constraints

- neighborhood
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Galois programming model (PLDI 2007)

Layered architecture

Joe programmers
— sequential, OO model
— Galois set iterators: for iterating over unordered and
ordered sets of active elements

« foreachein SetS do B(e)
— evaluate B(e) for each element in set S
— no a priori order on iterations
— set S may get new elements during execution

» for each e in OrderedSet S do B(e)
— evaluate B(e) for each element in set S
— perform iterations in order specified by OrderedSet
— set S may get new elements during execution

Stephanie programmers
— Galois concurrent data structure library

(Wirth) Algorithms + Data structures = Programs
(cf) SQL and database programming
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Galois parallel execution model

Parallel execution model:
— shared-memory
— optimistic execution of Galois
iterators
Implementation:
— master thread begins execution
of program
— when it encounters iterator,
worker threads help by executing
iterations concurrently
— barrier synchronization at end of
iterator
Independence of neighborhoods:
— software TLS/TM variety
— logical locks on nodes and edges

main()

for each ..... [

Joe Program
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ParaMeter Parallelism Profiles

 DMR: input mesh o

— Produced by Triangle '
(Shewchuck)

— 550K triangles
— Roughly half are badly
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Performance of Galois system

Barnes-Hut Delaunay Mesh Refinement

Barnes-Hut

Asynchronous Variational Integrator Metis




Patron saint of parallel programming

“Pessimism of the intellect, optimism of the will”
Antonio Gramsci (1891-1937)



