
Nested Parallelism and Hierarchical Locality

Dealing with locality has proved to be one of the largest challenges in
developing clean and scalable parallel codes, especially for
unstructured computations. This is complicated by the fact that
today's machines have multiple levels of hierarchy that need to be
considered: local per-core caches, shared chip caches, memory partitioned by
boards, and networks for which bandwidth varies based on
distance. These levels are likely to become ever more complicated and
important at the exascale. To have programmers worry about each of
these levels would be near impossible and likely not portable.

The question is whether it is possible to have a high level and highly scalable
model that allows one to program for and analyze hierarchical locality without
having to understand details of a machine.
I will suggest an approach based on fine-grained dynamic nested
parallelism. Similarly to the sequential cache-oblivious model,
locality is analyzed in terms of just two "cache" parameters that cannot
be used by the program. However the model accounts for parallelism
by allowing arbitrary nested forking and parallel loops, along with a collection
of parallel primitives. Appropriate compilers and runtime scheduler can then be
used for mapping the locality and parallelism available and analyzed in the code
to a variety of parallel memory hierarchies.

