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Java-like productivity, MPI-like performance 

Asychrony 

• async S 

Locality 

• at (P) S 

Atomicity 

• atomic S 

• when (c) S 
Order 

• finish S 

• clocks 

Global data-
structures 

• points, regions, 
distributions, 
arrays 

X10 2.2: An APGAS language  

 Basic model is now well established 
– PPoPP 2011 paper shows best known 

speedup numbers for UTS upto 3K 
cores. 

– Global Matrix Library shows substantial 
speedup over Hadoop for data analytics 
kernels. 

– Similar performance improvement for 
Main Memory Map Reduce engine 
(M3R) over Hadoop. 

– Class-based single-inheritance OO 
– Structs 
– Closures 
– True Generic types (no erasures) 
– Constrained Types (OOPSLA 08) 
– Type inference 
– User-defined operations 
– Structured concurrency 

class HelloWholeWorld { 

  public static def main(s:Array[String]) { 

     finish  

        for (p in Place.places())  

          async  

            at (p)  

              Console.OUT.println("(At " + p + ") "  

                                  + s(0)); 

  } 

} 
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But – how do we handle a billion threads? 

 X10 is (deliberately) low-level 
– Imperative – explicit 

mutation, hence very “PC 
centric” view of computation. 

– Explicit distribution 
 

 How do you debug a 100,000 
threads from a PC-centric 
point of view? 

 Our belief 
– Need to raise level of 

abstraction 
– Programming model needs to 

be closer to application 
domain 

– Implicitly concurrent 
– Statically type safe 
– Declarative 

• Support semantically-based 
tools, using symbolic 
reasoning 

– Determinate 
– Efficiently implementable! 
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Concurrent Constraint Programming 

 Shared store contains (open-
ended) set of locations. 
 

 Key idea: Accumulate 
constraints on shared 
variables. 
– X=Y, X=1, X > Y+Z, X = 

cons(Y, Z), 3 in X(“cat”) 
 

 Two basic operations (in lieu of 
Read and Write) 
– Tell -- c: Add c to the store 

 
– Ask -- if (c)  A: Suspend until 

the store is strong enough to 
entail c, then reduce to A.  

(Agents) A::= 

      c; 

   if (c)  {A} 

   A B 

  {val x:T; A} 

Use constraints for communication and control between concurrent agents 
operating on a shared store. 
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Semantics 

G, {val x:T; A}  G,A              (x not free in G) 

G, A B  G,A,B 

G,c1,…,cn,if (c) A  G,A            (c1,…,cn |- c) 

(Config) G ::= A,…, A (multiset of agents)  

[[A]] = function mapping initial store to final store (or limit) 

Observation: Function is a closure operator (monotone, extensive, 
idempotent) 

Observation: Closure operator representable by a single set (its fixed 
points). (P(a) is just the least fixed point of P above a.) 

Observation: Parallel composition is just set intersection! 

Denotation 

Reduction Rules 

Configuration 

Determinate! 

No messy interleavings! 
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Example program: quicksort 
class Cons[T](h:T, t:List[T])  

  implements List[T] { 

  def qsort() { 

    val x=tail.split(h);  

    x.a.qsort() 

     .append(Cons(h,x.b.qsort())) 

  } 

  def split(i:T){T <: Comparable[T]}  

   : Pair(List[T], List[T]) { 

    val x=t.split(i); 

    h < t ?  

      Pair(Cons(h,x.a), x.b)  

      : Pair(x.a, Cons(h,x.b)) 

  } 

  def append(L:List[T])  

     = Cons(h,t.append(L)); 

  … 

} 

val B:Cons[Int]; 

A=B.qsort();  

B=Cons(1,C); 

C=Cons(45,D); 

D=Null[Int](); 

Invocation 

class Null[T] implements List[T] { 

  def qsort()=this; 

  def append(L:List[T])=L; 

  def split(i:T)=this; 

… 

} 

Method invoked with 
target an 
unbound promise 

Information about 
target computed 
incrementally; 

triggers evaluation of  
qsort body 

struct Pair[S,T](a:S,b:T) {} 
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Expressiveness 

 Supports very rich 
communication patterns 
– Capturing domain-specific 

inference rules. 
 Supports mutually recursive 

processes 
 Supports dynamic memory 

allocation (“new”) 
 Subsumes  

– Concurrent logic programming 
– First-order functional 

programming 
– Kahn data-flow networks 
 

 Supports usual concurrent 
logic programming idioms 
(Shapiro 83) 
– “logical variables” 
– Short-circuits for quiescence 

detection (PODC 88) 
– Difference lists 
– Incomplete messages 
– Streams, trees, arrays, hash-

tables 
– … all are refinable, not 

updatable. 
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Declarative Debugging of CCP 

def sift(Ns:List[Int]):List[Int] 

  = Ns.null() ? Null[Int]() 

     : Cons(Ns.head, sift(filter(Ns.tail, Ns.head))); 

def filter(Ns:List[Int], N:Int):List[Int] { 

  = Ns.null() ? Null[Int]() 

     : 0==x % N ? Cons(Ns.head, filter(Ns.tail,N)) 

         : Cons(Ns.head, filter(Ns.tail,N)); 

sift(X)=Y {X=[2, 3,4,5], Y=[2,3,4,5]} 

sift(Z1)=Y1 {X1=[3,4,5], Y1=[3,4,5]} filter(X1,2)=Z1 {X1=[3,4,5], Z1=[3,4,5]} 

filter(X2,2)=Z2 {X2=[4,5], Y2=[4,5]} 

filter(X3,2)=Y3 {X3=[5], Y3=[5]} 

filter(X4,2)=Y4 {X4=[], Y4=[]} 
Data associated with node is 

just a constraint! 

Observed fixed 
points 

Intended fixed 
points 
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Live Debugging 

def sift(Ns:List[Int]):List[Int] 

  = Ns.null() ? Null[Int]() 

     : Cons(Ns.head, sift(filter(Ns.tail, Ns.head))); 

def filter(Ns:List[Int], N:Int):List[Int] { 

  = Ns.null() ? Null[Int]() 

     : 0==x % N ? Cons(Ns.head, filter(Ns.tail,N)) 

         : Cons(Ns.head, filter(Ns.tail,N)); 

sift(X)=Y {X=[2, 3,4 |Xr], Y=[2,3,4 |Yr]} 

sift(Z1)=Y1 {Z1=[3,4|Zr], Y1=[3,4|Yr]} filter(X1,2)=Z1 {X1=[3,4|Xr], Z1=[3,4|Zr]} 

filter(X2,2)=Z2 {X2=[4|Xr], Y2=[4|Zr]} 

filter(X3,2)=Y3 {X3=Xr, Y3=Zr} 

gen(Xr)   

Stores can be incomplete!  
Can debug a subcomputation even with live concurrent agents   

stuck for now 

Observed fixed 
points 
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Default CCP 

 A ::= unless(c) A 

– Run A, unless c holds at end 
– ask c \/ A 
– Leads to nondet behavior 

 unless(c) c; 

– No behavior 
 unless(c1) c2;  unless(c2) 

c1; 

– gives c1 or c2 
 

 unless(c) d; : gives d 
 c; unless(c) d; : gives c 

 [A] = set S of pairs (c,d) 
satisfying 
–  Sd = {c | (c,d) in S} denotes 

a closure operator. 
– We still have a simple 

denotational semantics! 
 Operational implementation: 

– Backtracking search 
– Compile-time determinacy 

analysis (not implemented) 
– Open question:  

• Efficient compile-time 
analysis (cf causality 
analysis in Esterel) 

• Use negation as failure 

 non-monotonicity 
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Discrete Timed CCP 

 Synchronicity principle 
– System reacts instantaneously to the 

environment 
 Semantic idea 

– Run a (bounded) default CCP 
program at each time point to 
determine instantaneous response 
and program for next time instant 
(resumption) 

– Add: A ::= next A 
– No connection between the store at 

one point and the next. 
– Future cannot affect past. 

 Semantics 
– Sets of sequences of (pairs of) 

constraints 
– Non-empty 
– Prefix-closed 
– P after s =d= {e | s.e in P} must 

be denotation of a Default CC 
program 

 
 Determinacy guaranteed if 
unless used only with next:  
– unless (c) next A;  

system 

environment 

Berry’s Synchrony Hypothesis 

Reintroduces “mutation” but in a controlled way – only when the clock ticks! 
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Hybrid Systems 

 Hybrid Systems combine 
both 
– Discrete control 
– Continuous state evolution 
– Intuition: Run program at every 

real value. 
• Approximate by:  

– Discrete change at an 
instant 

– Continuous change in an 
interval 

 Primary application areas 
– Engineering and Control systems 

• Paper transport 
• Autonomous vehicles… 

– Biological Computation. 
– Programmable Matter? 

Emerged in early 90s in the work of Nerode, Kohn, Alur, Dill, Henzinger… 

 Traditional Computer Science 
– Discrete state, discrete change 

(assignment) 
– E.g. Turing Machine 
– Brittleness 

• Small error  Major impact 
• Devastating with large code 
• Primary application areas 

 Traditional Mathematics 
– Continuous Variables (Reals) 
– Smooth state change 

• Mean-value theorem 
• E.g. computing rocket trajectories 

– Robustness in the face of change 
– Stochastic systems (e.g. Brownian 

motion). 
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HCC: Move to Continuous time 

 No new combinator needed 
– Constraints are now permitted to 

vary with time (e.g. x’=y) 
 

 Semantic intuition 
– Run a Default CC computation  

at each real time instant, starting 
with  t=0. 

– Evolution of system is piecewise 
continuous: system evolution 
alternates between point phase 
and interval phase.  

– In each phase a Default CC 
program determines output of 
that phase and program to be 
run in next phase. 

 Point phase 
– Result determines initial 

conditions for evolution in the 
subsequent interval phase 

 Interval phase 
– Any constraints asked of the 

store recorded as transition 
conditions. 

– ODE’s integrated to evolve 
time-dependent variables. 

– Phase ends when any 
transition condition potentially 
changes status. 

– (Limit) value of variables at the 
end of the phase can be used 
by the next point phase. 
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Volterra-Lotka model – non-linear differential equations 

class Volterra { 

 public def static main(Array[String]){ 

  #SAMPLE_INTERVAL_MAX 0.005 

  val py=8;  // prey 

  val pd=2;   // predator 

  val pd'=0.2; 

  always py'= py*(0.08-0.04*pd);  

  always { 

    cont(pd); 

    pd’ = -pd*(pd >=0.5*py?0.1:0.06 

               -0.02*py); 

  } 

  sample(pd); sample(py); 

}} 

Exponential term (natural 
growth, assuming enough food) 

Decay proportional to the rate at 
which predator eats prey 

Growth proportional to the rate 
at which prey are consumed. 

Decay (=death) proportional to 
population size. 

Execution introduces adaptive discretization 
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State dependent rate equations 

 Expression of gene x 
inhibits expression of gene 
y; above a certain threshold, 
gene y inhibits expression 
of gene x: 

if (y < 0.8)  

  x’= -0.02*x + 0.01; 

if (y >= 0.8) { 

  x’=-0.02*x;  

  y’=0.01*x; 

} 

Bockmayr and Courtois: Modeling biological systems in hybrid concurrent 
constraint programming 
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Spatial HCC: Move to continuous space 

 Add  A::= atOther A 
– Run A at all other points. 

(atAll A = A, atOther 
A) 

– Constraints may now use 
partial derivatives. 

– All variables now implicitly 
depend on space 
parameters (e.g. x,y,z) 

 Semantic intutions 
– Computation now uniformly 

extended across space. 
– At each point, run a Default 

CC program. 
– Program induces its own 

discretization of space (into 
open and closed regions). 

 Programming intuition 
– Program with vector fields, specifying 

how they vary across space-time. 
 Programming Matter realization 

– Atoms represent dense computational 
grid. 

– Signals represented as memory cells 
in each Atom 

– Atoms use epidemic algorithms to 
diffuse signals (possibly with non-zero 
gradients) across space. 

– Atoms use neighborhood queries to 
sense local minima 

– Atoms integrate PDEs by using 
chaotic relaxation (Chazan/Mirankar). 

– Compiler produces FSA for each atom 
from input program. 
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Implementation Challenges 

 Need coarsening techniques 
– Formalism exposes very fine-

grained concurrency 
– async for every argument 

evaluation creates excessive 
overhead 

 Need analysis to eliminate 
unnecessary promise 
creation. 

 Need efficient 
implementation of 
suspension 
 

 Implementation can reuse  
– X10 scheduler 

• Currently fork-join, later 
work-stealing 

– X10’s concurrent allocator, 
garbage collector 

– X10’s implementation across 
multiple nodes 
 
 

Results should be achievable quickly, building on X10 (e.g. annotations) 
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Research Agenda 

 Develop “broad”  
programming framework 
– Declarative programs (CCP) 
– Fundamentally integrates 

space and time 
– Compiles to high-

performance imperative 
programs 
 

 
 

 

 Develop tools that exploit 
declarative semantics 
– Correctness at scale 
– Correct by construction 
– Partial programs, sketching 
– Declarative debugging 
 

 Directed at substantially 
raising level of 
programmer/productivity 
– (cf R, Matlab, … but at scale) 
– “domain” programmer: HPC, 

machine learning/BA 
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Background 
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Constraint systems 

 Any (intuitionistic, classical) 
system of partial information 
 

 For Ai read as logical 
formulae, the basic 
relationship is:  
– A1,…, An |- A 
– Read as “If each of the A1,…, 

An hold, then A holds” 
 

 |- is axiomatized through 
given rules. 
 

 Require conjunction, 
existential quantification 
 

A,B,D ::= atomic formulae | A&B |X^A 

G ::= multiset of formulae 

(Id) A |- A  (Id) 

(Cut) G |- B   G’,B |- D  G,G’ |- D  

(Weak) G |- A  G,B |- A  

(Dup) G, A, A |- B  G,A |- B  

(Xchg) G,A,B,G’ |- D  G,B,A,G’ |- D 

(&-R) G,A,B |- D  G, A&B |- D 

(&-L) G |- A   G|- B  G |- A&B 

(^-R) G |- A[t/X]  G |- X^A 

(^-L,*) G,A |- D  G,X^A |- D 
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Constraint system: Examples 

 Gentzen 
– G |- A iff A in G. 

 
 Herbrand  

– uninterpreted first-order terms 
(labeled, fixed-arity trees) 

 
 Finite domain 

 
 Propositional logic (SAT) 

 
 Arithmetic constraints 

– Naïve, linear, nonlinear 
 

 Interval arithmetic 
 
 

 Orders  
 Temporal Intervals 
 Hash-tables 
 Arrays 

 
 Graphs 

 
 

 Constraint systems (as systems 
of partial information) are 
ubiquitous in computer science 
– Type systems 
– Compiler analysis 
– Symbolic computation 
– Concurrent system analysis 
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Logic 

Proposition: Operational 
Semantics is complete for 
constraint entailment. 
(Saraswat, Lincoln 1994, 
unpublished) 
 

 CCP is simply a fragment of 
first-order logic. 
– Computation == Deduction 
– Unlike “Logic Programming”, 

CCP employs “forward 
chaining”. 
 

 RCC (Jagadeesan, Nadathur, 
Saraswat, FSTTCS 2005)  
– Unifies and subsumes CCP 

and LP (forward- and 
backward-chaining). 

– Provides logical expression 
for recursive nested guards 
• i.e. “finish” 

– Localized augmentation of 
programs (“assume-if” 
reasoning, (P=>Q)=>R) 

– Backtracking and search 



ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011 

© 2009 IBM Corporation 

IB
M

 R
es

ea
rc

h 

24 

xcc: CCP in X10 

 Basic idea 
– Concrete language is just like X10 – 

classes, inheritance, interfaces, 
structs, functions, fields, methods, 
constructors, user-defined operators, 
type inference etc. 

– No var permitted, no need for 
atomic, when, finish, async, at. 
• Initially, finish, async, at may be 

introduced as annotations to permit 
efficient execution while compiler is 
being developed. 

 
 Every variable of type T is initialized 

with a promise of type T.   
– A promise is a “logical variable” – 

nothing is known about it. 
– (Herbrand) Two objects are equal iff 

they are instances of the same class 
and their corresponding fields are 
equal. 

 Assignment (=) is re-interpreted as 
Tell: 
– e1=e2 is executed as: evaluate e1 to 

get a value v1, e2 to get v2, and 
equate the two. 

 if (and ? : conditional expression 
evaluator) suspends until condition 
evaluates to true or false  
– if = when, because of monotonicity. 

 
 e.m(e1,..,en) 

– e, e1,..,en evaluated in parallel 
– Once enough is known about e to 

determine the class, use dynamic 
lookup to determine method body 

– Body executed  in parallel with arg 
evaluation 
• Return value is an anonymous 

promise constrained by return 
statements. 

 



ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011 

© 2009 IBM Corporation 

IB
M

 R
es

ea
rc

h 

25 

Can computations deadlock? 

 Yes. 
– when(a) b is canonical 

deadlocked agent. 
– Intuitively, program quiesces 

but can produce more when 
given more. 

 Deadlock is a “natural” state. 
– Simply means the system 

has quiesced. 
– If you supply more 

information, you may get 
more information back. 

– E.g. almost all interesting 
programs would deadlock on 
true. 

 Semantic characterization: 
– P does not deadlock on input 

a if all fixed points of P above 
a are stable.  
• b >= P(a) implies b in P 

– Observation: if P does not 
deadlock on d, then for any b, 
P(d&b)=P(d)&P(b) 

 

Open problem:  
Identify static type system 
that guarantees deadlock-
freedom and permits useful 
idioms to be expressed.  
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Declarative Debugging 

 Declarative debugging 
techniques can be applied to 
logic programs, functional 
programs, CCP. 
– Ueda 98 (CCP) 
– Fromherz 93 
– Falaschi et al ICLP 07 
 

 Basic idea is to summarize an 
execution through an execution 
tree 
– Node = procedure call 
– Children = calls made in the 

body. 
– Node associated with some data 

about subtree, e.g. pair of 
input/output constraints. 

 Debugging  
– Query oracle (user, 

specification) whether data with 
node is correct. 

– Identify node with incorrect data 
whose children have correct 
data …. BUG! 

   

http://www.ueda.info.waseda.ac.jp/~ueda/pub/LPP-ueda2.ps
http://hal.inria.fr/inria-00201065/en/
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Timed CCP: Basic Results 

 TCC = fragment of first-order 
linear temporal logic 
 

 Rich algebra of defined temporal 
combinators (cf Esterel): 
– always A 
– do A watching c 
– whenever c do A 
– time A on c 
 

 
 

 A general combinator can be 
defined 
– time A on B: the clock fed to A is 

determined by (agent) B 

 Discrete timed synchronous 
programming language with 
the power of Esterel 
– present is translated using 

defaults 
 
 

 Proof system 
 
 
 

 Compilation to automata 
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Programming matter 

 Vijay Saraswat, IBM Research 

 Radha Jagadeesan, De Paul University 

 

 May 2006 



ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011 

© 2009 IBM Corporation 

IB
M

 R
es

ea
rc

h 

29 

Programmable matter 

 Large collection of 
“computing atoms” (catoms) 
that can 
– Compute 
– Communicate locally 

(wireless) 
– Sense 
– Move 
– Adhere to each other (bond) 
– Change physical/chemical 

properties based on state 
 

 cf sensor networks 
 

 Desired computations 
– Form a particular shape 
– Sense a particular shape 

How do you compute with 106 computers/cubic centimeter? 
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The computational substrate 

 No shared clock. 
 No shared gobal coordinate 

system. 
 No unique ids (but random 

variables permitted). 
 No shared mutable state (shared 

memory). 
 Catoms randomly distributed in 

3D (2D). 
 Some small subset are “dead on 

arrival”.  

 Catoms can sense connections 
with neighboring catoms and 
send/receive messages.  

 Catoms can broadcast locally. 
 Assume boundary conditions 

are supplied in some fashion. 
 Catoms are (re-)programmed by 

“beaming in” code. 
 
 

 Catoms have limited power? 

Cf Amorphous computing 
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The programming matter challenge 

 What is the programming 
model for programmable 
matter? 

 Global program 
– Specifies constraints on 

desired interactions of system 
with environment. 
 

 Local program: Catom’s view 
– Specifies how each catom in 

ensemble initiates/responds to 
messages received from the 
environment. 

 Our approach: Program globally, 
implement locally 
– Treat programmable matter as 

matter 
– Study how matter  “computes” 

• Physics 
• Chemistry 
• Biology – developmental biology 

– Study mathematical descriptions of 
these processes (continuous 
space, time, differential eqns, 
stochasticity) 

– Build programming model on these 
descriptions 

– Compile such global programs to 
local catom programs: “correct” by 
construction! 

How do you move from a global description to local actions? 

From analysis to programming 
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Constraint systems 

 Any (intuitionistic, classical) 
system of partial 
information 

 For Ai read as logical 
formulae, the basic 
relationship is:  
– A1,…, An |- A 
– Read as “If each of the 

A1,…, An hold, then A 
holds” 

 Require conjunction, 
existential quantification 
 

A,B,D ::= atomic formulae | A&B |X^A 

G ::= multiset of formulae 

(Id) A |- A  (Id) 

(Cut) G |- B   G’,B |- D  G,G’ |- D  

(Weak) G |- A  G,B |- A  

(Dup) G, A, A |- B  G,A |- B  

(Xchg) G,A,B,G’ |- D  G,B,A,G’ |- D 

(&-R) G,A,B |- D  G, A&B |- D 

(&-L) G |- A   G|- B  G |- A&B 

(^-R) G |- A[t/X]  G |- X^A 

(^-L,*) G,A |- D  G,X^A |- D 

          Saraswat, LICS 91 
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Constraint system: Examples 

 Gentzen 
 Herbrand 

– Lists 
 Finite domain 
 Propositional logic (SAT) 
 Arithmetic constraints 

– Naïve 
– Linear 
– Nonlinear 

 Interval arithmetic 
 Orders  
 Temporal Intervals 

 

 Hash-tables 
 Arrays 
 Graphs 
 Constraint systems are 

ubiquitous in computer 
science 
– Type systems (checking, 

inference) 
– Static analysis 
– Symbolic computation 
– Concurrent system 

analysis 
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Concurrent Constraint Programming 

 Use constraints for 
communication and control 
between concurrent agents 
operating on a shared store. 

 Two basic operations 
– Tell c: Add c to the store 
– Ask c then A: If the store is 

strong enough to entail c, 
reduce to A.  

(Agents) A ::= c 

          if (c) A 

          A,B 

          {x:T; A} 

(Config) G ::= A,…,A 

G,{x:T;A}  G,A (x not free in G) 

G, if (c) A  G,A     (s(G) |- c) 

[[A]] = set of fixed points of a closure 
operator 

Operational semantics is complete 
for logical entailment of constraints. 

Saraswat 89; POPL 87, POPL 90, POPL 91 
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Default CCP 

 A ::= unless(c) A 

– Run A, unless c holds at end 
– ask c \/ A 
– Leads to nondet behavior 

 unless(c) c 

– No behavior 
 unless(c1) c2,  unless(c2) 

c1 

– gives c1 or c2 
 unless(c) d : gives d 
 c, unless(c) d : gives c 

 [A] = set S of pairs (c,d) 
satisfying 
–  Sd = {c | (c,d) in S} denotes 

a closure operator. 
– We still have a simple 

denotational semantics! 
 Operational implementation: 

– Backtracking search 
– Compile-time determinacy 

analysis (not implemented) 
– Open question:  

• Efficient compile-time 
analysis (cf causality 
analysis in Esterel) 

• Use negation as failure 

 non-monotonicity 
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Discrete Timed CCP (1993) 

 Synchrony principle 
– System reacts instantaneously to 

the environment 
– Implemented by ensuring 

computation at each time instant is 
bounded. 

 
 Semantic idea 

– Run a Default CCP program at each 
time point 

– Add a single new combinator:                
A ::= hence A (run A at every 
subsequent instant.) 

– No connection between the store at 
one point and the next. 

– Semantics: Sets of sequences of 
(pairs of) constraints 

 The usual temporal combinators can be 
programmed: 
– always(A) = {A; hence A;} 

– do A watching c 

– time A on B:  the clock fed to A is 
determined by (agent) B 

 unless can be used to retract 
hence constraints 
– next(A) =   

 {X:boolean;             

   hence {                   

    unless(X=true) A;                                                                                                                               

    hence X=true; 

   } 

 } 
Proof system                                             Compilation to automata 
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Hybrid Systems 

 Traditional Computer Science  
– Discrete state, discrete 

change (assignment) 
– E.g. Turing Machine 
– Brittle:  

• Small error  major impact  
• Devastating with large code! 

 Traditional Mathematics 
– Continuous variables (Reals), 

with continuous functions 
(e.g. sum, multiplication). 

– Smooth state change  
• Mean-value theorem 
• e.g. computing rocket 

trajectories 
– Robustness in the face of 

change 
– Stochastic systems (e.g. 

Brownian motion) 

 Hybrid Systems combine both 
– Discrete control 
– Continuous state evolution 
– Intuition: Run program at 

every real value. 
• Approximate by:  

– Discrete change at an instant 
– Continuous change in an interval 

 Primary application areas 
– Engineering and Control 

systems 
• Paper transport 
• Autonomous vehicles… 

 
– Biological Computation. 
– Programmable Matter 

Emerged in early 90s in the work of Nerode, Kohn, Alur, Dill, Henzinger… 
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HCC: Move to Continuous time (1995) 

 No new combinator needed 

– Constraints are now permitted to 
vary with time (e.g. x’=y) 

 Semantic intuition 
– Run default CCP at each real time 

instant, starting with  t=0. 
– Evolution of system is piecewise 

continuous: system evolution 
alternates between point phase 
and interval phase.  

– In each phase program determines 
output of that phase and program 
to be run in next phase. 

 Point phase 
– Result determines initial conditions for 

evolution in the subsequent interval 
phase and hence constraints in effect 
in subsequent phases. 

 Interval phase 
– Any constraints asked of the store 

recorded as transition conditions. 
– ODE’s integrated to evolve time-

dependent variables. 
– Phase ends when any transition 

condition potentially changes status. 
– (Limit) value of variables at the end of 

the phase can be used by the next point 
phase. 
 

Gupta, Jagadeesan, Saraswat   SCP 1998 
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Systems Biology 

 Work subsumes past work on 
mathematical modeling in 
biology: 
– Hodgkin-Huxley model for 

neural firing 
– Michaelis-Menten equation 

for Enzyme Kinetics 
– Gillespie algorithm for 

Monte-Carlo simulation of 
stochastic systems. 

– Bifurcation analysis for 
Xenopus cell cycle 

– Flux balance analysis, 
metabolic control analysis… 

 
 Why Now? 

– Exploiting genomic data 
– Scale  

• Across the internet, across 
space and time. 

– Integration of computational 
tools 

– Integration of new analysis 
techniques 

– Collaboration using markup-
based interlingua (SBML) 

– Moore’s Law! 

This is not the first time… 
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Chemical Reactions 

 Cells host thousands of 
chemical reactions (e.g. citric 
acid cycle, glycolis…) 

 Chemical Reaction 
– X+Y0 –k0 XY0  
– XY0 –k-0  X+Y0 

 Law of Mass Action 
– Rate of reaction is 

proportional to product of 
conc of components 

– [X]’= -k0[X][Y] + k-0[XY0] 
– [Y]’=[X]’ 
– [XY]’=k0[X][Y]-K-0[XY0] 
 

 Conservation of Mass 
 When multiple reactions, sum 

mass flows across all sources 
and sinks to get rate of change. 

 Same analysis useful for 
enzyme-catalyzed reactions 
– Michaelis-Menten kinetics 

 May be simulated  
– Using “deterministic” 

means. 
– Using stochastic means 

(Gillespie algorithm). 
 

At high concentration, species concentration can be modeled as a 
continuous variable. 
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Quorum sensing (V. fischeri) 

 

Model due to Alur et al 
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Cell division: Delta-Notch signaling in X. Laevis 

 Consider cell differentiation in 
a population of epidermic cells. 

 Cells arranged in a hexagonal 
lattice. 

 Cells interacts concurrently 
with its neighbors. 

 Delta and Notch proteins in 
each cell vary continuously. 

 Cell can be in one of four 
states: {Delta, Notch} x 
{inhibited, expressed} 

 Experimental Observations: 
– Delta (Notch) concentrations 

show typical spike at a 
threshold level. 

– At equilibrium, cells are in 
only two states (D or N 
expressed; other inhibited). 
 

Ghosh, Tomlin: “Lateral inhibition through Delta-Notch signaling: A piece-
wise affine hybrid model”, HSCC 2001 
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Delta-Notch Models 

 Model: 
– VD, VN: concentration of Delta 

and Notch protein in the cell. 
– UD, UN: Delta (Notch) production 

capacity of cell. 
– UN=sum_i (neighbors) VD(i) 
– UD = -VN 
– Parameters:  

• Threshold values: HD,HN 
• Degradation rates: MD, MN 
• Production rates: RD, RN 

– Cell in 1 of 4 states: {D,N} x 
{Expressed (above), Inhibited 
(below)} 

 Stochastic variables used to 
set random initial state. 

 
 
 
 

if (UN(i,j) < HN) VN’= -MN*VN, 

if (UN(i,j)>=HN) VN’=RN-MN*VN, 

if (UD(i,j)<HD)   VD’=-MD*VD, 

if (UD(i,j)>=HD) VD’=RD-MD*VD, 

Results: Simulation confirms observations. Tiwari/Lincoln prove that 
States 2 and 3 are stable. 
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Other examples 

 Bouncing ball 
 Thermostat controller 
 Square waves 
 Sine waves… 

 

 Paper path model 
 

 Aercam model 
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Concrete HCC language 

 Arithmetic variables are interval valued. 
  Arithmetic constraints are non-linear 

algebraic equations,  over +, *, ^, etc.  
 Users can add own operators as C 

libraries. 
 Various combinators translated to basic 

combinators e.g.  
     do A watching c    execute A, abort it 

when c becomes true 
     when c do A  start A at the first 

instant when c holds  
     wait N do A  start A after N time units 
     forall C(X) do A(X)  execute a copy of 

A for each object X of class C 
 

 Arithmetic expressions compiled to byte 
code  
 Further compiled to machine code.   
 Common sub-expressions are recognized. 

 Copying garbage collector  
 Speeds up execution 
 Allows snapshotting of state. 
 
 
 

 API from Java/C to use Hybrid cc as a 
library.  System runs on Solaris, Linux, 
SGI and Windows NT. 
 

Carlson, Gupta “Hybrid CC with Interval Constraints” 
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HCC Implementation outline 

 Constraint  techniques 
Use constraints  to narrow intervals of variables, 

one variable at a time. Suppose f(x,y) = 0. 
Indexicals:  Rewrite  as x = g(y).  Set x  I  g(J) , 

where x  I and y  J. (y can be a vector of 
variables.)  

Interval splitting:  If x  [a, b], use binary search 
to find min c in [a,b] such that 0  f([c,c], J), 
where y  J.  Similary determine max such d in 
[a,b], and set x  [c,d]. 

Newton-Raphson: Get min and max roots of f(x,J) 
= 0, where y  J.  Set x as above. 

Simplex: Given the constraints on x, find its min 
and max values, and set it as above.  Treat 
non-linear terms as separate variables. 

 Integration techniques 
 Treat differential equations as ordinary algebraic 

equations on variables and their derivatives e.g. f 
= m * a’’, x’’ + d*x’ + k*x = 0. 

 Various integrators are provided --- Euler, 4th 
order Runge Kutta, 4th order Runge Kutta with 
adaptive stepsize, Bulirsch-Stoer with 
polynomial extrapolation.  Others can be added if 
necessary. 

  
 Integrators modified to integrate implicit 

differential equations, over interval valued 
variables. 

  
 Determine points of discrete changes (end of an 

interval phase)  using cubic Hermite 
interpolation.  

Carlson, Gupta “Hybrid CC with Interval Constraints” 
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Integration of symbolic reasoning  

 Use state of the art 
constraint solvers 
– ICS from SRI 
– Shostak combination of 

theories (SAT, Herbrand, 
RCF, linear arithmetic over 
integers). 

 Finite state analysis of 
hybrid systems 
– Generate code for HAL 

 Predicate abstraction 
techniques. 

 Develop bounded model 
checking. 

 Parameter search 
techniques. 
– Use/Generate constraints 

on parameters to rule out 
portions of the space. 

 Integrate QR work 
– Qualitative simulation of 

hybrid systems 
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Spatial HCC: Move to continuous space 

 Add  A::= atOther A 
– Run A at all other points. 

(atAll A = A, atOther 
A) 

– Constraints may now use 
partial derivatives. 

– All variables now implicitly 
depend on space 
parameters (e.g. x,y,z) 

 Semantic intutions 
– Computation now uniformly 

extended across space. 
– At each point, run a Default 

CC program. 
– Program induces its own 

discretization of space (into 
open and closed regions). 

 Programming intuition 
– Program with vector fields, specifying 

how they vary across space-time. 
 Programming Matter realization 

– Catoms represent dense 
computational grid. 

– Signals represented as memory cells 
in each catom 

– Catoms use epidemic algorithms to 
diffuse signals (possibly with non-zero 
gradients) across space. 

– Catoms use neighborhood queries to 
sense local minima 

– Catoms integrate PDEs by using 
chaotic relaxation (Chazan/Mirankar). 

– Compiler produces FSA for each 
catom from input program. 
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Some basic programming idioms 

// coord system 

R=(0,0,0),  

atAll grad(R)=(1,1,1) 

// define 

at(L) A :: at(R=L) A 

at(I:J) A:: at(I<R&R<J) A 

 

// vibrating 1-d string 

u=0, at(R=L)u=0,  

at(0<R && R<L)u=f  

atAll u''t = c*c*u''x  

 

Abbreviation:  
at(boolean b) A ::  

atAll if (b) A 

b may be true at 0 or more points 
in space. 

We will also use neighborhood queries:  

min {e | b} (max,…) 

e is an expression, b a boolean 

min evaluated over a sphere of radius r 
(execution-time parameter). Also max,… 
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Nagpal’s Origami Operator(1): perp 

agent perp(boolean isP0,  

   boolean isP1,  

   vec R, // global coord system 

   boolean line) { 

  at(isP0) { 

    vec(2) D0=R, atAll grad(D0)=0.0, 

    at(isP1) { 

       vec(2) D1=R, atAll grad(D1)=0.0, 

       at(norm(D1-D0)<=eps)             

         line=true 

     }}} 

agent perp(boolean isP0,  

           boolean isP1,  

            

           boolean line) { 

  at(isP0) { 

    vec(2) D0=0.0, atAll grad(D0)=1.0, 

    at(isP1) { 

       vec(2) D1=0.0, atAll grad(D1)=1.0, 

       at(norm(D1-D0)<= eps)  

              line=true 

     }}} 

Use global coordinate system.  Use local coordinate systems! 

Global coordinate systems can be banned by requiring initial agent is atAll A. 
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Nagpal’s Operator(1): perp 

agent perp(boolean isP0,  

           boolean isP1,  

           boolean line) { 

  at(isP0) { 

    vec(2) D0=0.0, atAll grad(D0)=1.0, 

    at(isP1) { 

       vec(2) D1=0.0, atAll grad(D1)=1.0, 

       at(norm(D1-D0) <= eps)  

              line=true 

     }}} 

agent perp(boolean isP0,  

           boolean isP1,  

           boolean line) { 

  at(isP0) { 

    vec(1) D0=0.0,atAll grad(D0)=(1.0,0.0), 

    at(isP1) { 

       vec(1) D1=0.0,atAll grad(D1)=(1.0,0.0),  

       at(norm(D1-D0) <= eps)  

              line=true 

     }}} 

Local coordinate system. 

Propagates 2-d vectors with 
unit gradient. 

Local polar coordinate system. 

Propagates scalars with unit radial 
gradient, zero angular gradient. 
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Nagpal’s Operator(2): conn 

agent conn(boolean isP0,  

           boolean isP1,  

           boolean line) { 

  at(isP1) { 

    vec(2) D1=0.0, atAll grad(D1)=1.0, 

    at(isP0) { 

       vec(2) D0=D1, atAll grad(D0)=0.0, 

       at(norm(D1.unit-D0.unit)<= eps)  

              line=true}} 

agent conn(boolean isP0,  

           boolean isP1,  

           boolean line) { 

  at(isP1) { 

    vec(2) D1=0.0,atAll grad(D1)=(1.0,0.0), 

    at(isP0) { 

      vec(2) D0=0.0,atAll grad(D0)=(1.0,0.0), 

      at(D0+D1-min{D0+D1})<= eps)  

              line=true}} 

Local coordinate system. 

Propagates 2-d vectors with 
unit gradient. 

Local coordinate system. 

Propagate scalars. 

Use neighborhood minima queries. 
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Nagpal Operator (3): alt 

 Find the point P1 on the line 
– that is closest to P0  
– in its local neighborhood, 

considering only points on 
the line. 

 Draw the line from P0 to P1 

agent alt(boolean isP0,  

           boolean isLine,  

           boolean line, boolean crossing) { 

  at(isP0) { 

    vec(2) D0=0.0,atAll grad(D0)=(1.0,0.0), 

    at(isLine &(D0-min{isLine | D0}<= eps)) { 

      crossing=true, atOther crossing=false, 

      conn(isP0,crossing,line)}} 

 

Local coordinate system. 

Propagate scalars. 

Use conditional neighborhood minima queries. 



ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011 

© 2009 IBM Corporation 

IB
M

 R
es

ea
rc

h 

54 

Nagpal Operator(4): Bisection 

agent bisect(boolean isLine1,  

           boolean isLine2,  

           boolean line) { 

  at(isLine1 & isLine2) { 

    boolean isP=true,  

    vec(1) P=0.0, atAll grad(P)=(1.0,0.0), 

    at(isLine1&(P0-5.0)<eps) { 

        boolean isPL1=true, 

        at(isLine2&(P0-5.0)<eps) { 

          boolean isPL2=true,atOther isPL2=false 

          boolean temp,  

          conn(isPL1,isPL2,temp), 

          alt(isP,temp,line)}}}} 

     

L1 L2

P

PL1 PL2

Local coordinate system. 

Propagate scalars. 

Use other constructions. 
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Nagpal Operator(5): PontoL 

agent bisect(boolean isP0,  

           boolean isP1,  

           boolean isLine, 

           boolean line) { 

  at(isP0) { 

    vec(1) P0=0.0, atall grad(P0)=(1.0,0.0), 

    at(isP1) { 

        vec(1) P1P0=P0, atAll grad(P1P0)=0.0, 

        vec(1) P1=0.0, atAll grad(P1)=(1.0,0.0), 

        at(isLine&(P1-P1P0)<eps) { 

          boolean isP0Image=true, 

          boolean temp, conn(isP0,isP0Image,temp), 

          alt(isP1,temp,line)}}}} 
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Nagpal Operator(6): P0P1ontoL0L1 

agent lineToLines(boolean isP0,  

                  boolean isP1,  

                  boolean isL0,  

                  boolean isL1,  

                  boolean isFold) { 

    at (isL0) { 

        boolean isI0=true, atOther isI0=false,  

        boolean isFoldC, perp(isP0, isI0, isFoldC), 

        boolean isAlt1, boolean isCross1,  

        alt(isP1, isFoldC, isAlt1, isCross1), 

         at(isAlt1&isL1) { 

             vec(1) orig=0.0,  

             atAll grad(orig)=(1.0,0.0), 

              at(isCross1) { 

                vec(1) K = orig,  

                atAll grad(cross1D)=0.0, 

                at(isP1&norm(orig-2*K)<eps)  

                  atAll isFold = isFoldC 

          }}} 
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Flocking 
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How do u realize this on Progg Matter? 

 Work in progress! 
 Basic intuitions 

– Require propagation over 
space takes time. 

– Dilate time, dilate space. 
– Try establishing 

computational substrate has, 
at each point, same velocity 
of flow (in a particular 
direction) over time, +/- delta, 
with some probability p. 
 

– Therefore from each point, 
sufficiently widely spaced 
waves are guaranteed to 
arrive at all other points in 
sequence. 
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Conclusion 

 We believe biological system 
modeling and analysis will be a 
very productive area for 
constraint programming and 
programming languages 

 Handle continuous/discrete 
space+time 

 Handle stochastic descriptions 
 Handle models varying over 

many orders of magnitude 
 Handle symbolic analysis 
 Handle parallel 

implementations 
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Controlling Cell division:  
The p53-Mdm2 feedback loop 

 1/  [p53]’=[p53]0 –[p53]*[Mdm2]*deg -dp53*[p53] 
 2/ [Mdm2]’=p1+p2max*(I^n)/(K^n+I^n)-dMdm2*[Mdm2] 

– I is some intermediary unknown mechanism; induction of [Mdm2] must be 
steep, n is usually > 10.  

– May be better to use a discontinuous change? 
 3/ [I]’=a*[p53]-kdelay*I 

– This introduces a time delay between the activation of p53 and the induction 
of Mdm2. There appears to be some hidden “gearing up” mechanism at 
work. 

 4/ a=c1*sig/(1+c2*[Mdm2]*[p53]) 
 5/ sig’=-r*sig(t) 

– Models initial stimulus (signal) which decays rapidly, at a rate determined by 
repair. 

 6/ deg=degbasal-[kdeg*sig-thresh] 
 7/ thresh’=-kdamp*thresh*sig(t=0) 

Lev Bar-Or, Maya et al “Generation of oscillations by the p53-Mdm2 feedback loop..”,2000 
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The p53-Mdm2 feedback loop 

 Biologists are interested in: 
– Dependence of amplitude 

and width of first wave on 
different parameters 

– Dependence of waveform on 
delay parameter. 

 Constraint expressions on 
parameters that still lead to 
desired oscillatory waveform 
would be most useful! 

 There is a more elaborate 
model of the kinetics of the G2 
DNA damage checkpoint 
system. 
– 23 species, rate equations 
– Multiple interacting 

cycles/pathways/regulatory 
networks: 
• Signal transduction 
• MPF 
• Cdc25 
• Wee1 

Aguda “A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system”, 
1999 
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Integration of symbolic reasoning techniques 

 Use state of the art 
constraint solvers 
– ICS from SRI 
– Shostak combination of 

theories (SAT, Herbrand, 
RCF, linear arithmetic over 
integers). 

 Finite state analysis of 
hybrid systems 
– Generate code for HAL 

 Predicate abstraction 
techniques. 

 Develop bounded model 
checking. 

 Parameter search 
techniques. 
– Use/Generate constraints 

on parameters to rule out 
portions of the space. 

 Integrate QR work 
– Qualitative simulation of 

hybrid systems 


