
IBM Research: Software Technology

© 2005 IBM Corporation

P
ro

gr
am

m
in

g
Te

ch
no

lo
gi

es

1

The return of logic

Vijay Saraswat
IBM TJ Watson
July 27, 2011

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

2

Java-like productivity, MPI-like performance

Asychrony

• async S

Locality

• at (P) S

Atomicity

• atomic S

• when (c) S
Order

• finish S

• clocks

Global data-
structures

• points, regions,
distributions,
arrays

X10 2.2: An APGAS language

 Basic model is now well established
– PPoPP 2011 paper shows best known

speedup numbers for UTS upto 3K
cores.

– Global Matrix Library shows substantial
speedup over Hadoop for data analytics
kernels.

– Similar performance improvement for
Main Memory Map Reduce engine
(M3R) over Hadoop.

– Class-based single-inheritance OO
– Structs
– Closures
– True Generic types (no erasures)
– Constrained Types (OOPSLA 08)
– Type inference
– User-defined operations
– Structured concurrency

class HelloWholeWorld {

 public static def main(s:Array[String]) {

 finish

 for (p in Place.places())

 async

 at (p)

 Console.OUT.println("(At " + p + ") "

 + s(0));

 }

}

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

3

But – how do we handle a billion threads?

 X10 is (deliberately) low-level
– Imperative – explicit

mutation, hence very “PC
centric” view of computation.

– Explicit distribution

 How do you debug a 100,000
threads from a PC-centric
point of view?

 Our belief
– Need to raise level of

abstraction
– Programming model needs to

be closer to application
domain

– Implicitly concurrent
– Statically type safe
– Declarative

• Support semantically-based
tools, using symbolic
reasoning

– Determinate
– Efficiently implementable!

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

4

Concurrent Constraint Programming

 Shared store contains (open-
ended) set of locations.

 Key idea: Accumulate
constraints on shared
variables.
– X=Y, X=1, X > Y+Z, X =

cons(Y, Z), 3 in X(“cat”)

 Two basic operations (in lieu of
Read and Write)
– Tell -- c: Add c to the store

– Ask -- if (c) A: Suspend until

the store is strong enough to
entail c, then reduce to A.

(Agents) A::=

 c;

 if (c) {A}

 A B

 {val x:T; A}

Use constraints for communication and control between concurrent agents
operating on a shared store.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

5

Semantics

G, {val x:T; A}  G,A (x not free in G)

G, A B  G,A,B

G,c1,…,cn,if (c) A  G,A (c1,…,cn |- c)

(Config) G ::= A,…, A (multiset of agents)

[[A]] = function mapping initial store to final store (or limit)

Observation: Function is a closure operator (monotone, extensive,
idempotent)

Observation: Closure operator representable by a single set (its fixed
points). (P(a) is just the least fixed point of P above a.)

Observation: Parallel composition is just set intersection!

Denotation

Reduction Rules

Configuration

Determinate!

No messy interleavings!

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

6

Example program: quicksort
class Cons[T](h:T, t:List[T])

 implements List[T] {

 def qsort() {

 val x=tail.split(h);

 x.a.qsort()

 .append(Cons(h,x.b.qsort()))

 }

 def split(i:T){T <: Comparable[T]}

 : Pair(List[T], List[T]) {

 val x=t.split(i);

 h < t ?

 Pair(Cons(h,x.a), x.b)

 : Pair(x.a, Cons(h,x.b))

 }

 def append(L:List[T])

 = Cons(h,t.append(L));

 …

}

val B:Cons[Int];

A=B.qsort();

B=Cons(1,C);

C=Cons(45,D);

D=Null[Int]();

Invocation

class Null[T] implements List[T] {

 def qsort()=this;

 def append(L:List[T])=L;

 def split(i:T)=this;

…

}

Method invoked with
target an
unbound promise

Information about
target computed
incrementally;

triggers evaluation of
qsort body

struct Pair[S,T](a:S,b:T) {}

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

7

Expressiveness

 Supports very rich
communication patterns
– Capturing domain-specific

inference rules.
 Supports mutually recursive

processes
 Supports dynamic memory

allocation (“new”)
 Subsumes

– Concurrent logic programming
– First-order functional

programming
– Kahn data-flow networks

 Supports usual concurrent
logic programming idioms
(Shapiro 83)
– “logical variables”
– Short-circuits for quiescence

detection (PODC 88)
– Difference lists
– Incomplete messages
– Streams, trees, arrays, hash-

tables
– … all are refinable, not

updatable.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

8

Declarative Debugging of CCP

def sift(Ns:List[Int]):List[Int]

 = Ns.null() ? Null[Int]()

 : Cons(Ns.head, sift(filter(Ns.tail, Ns.head)));

def filter(Ns:List[Int], N:Int):List[Int] {

 = Ns.null() ? Null[Int]()

 : 0==x % N ? Cons(Ns.head, filter(Ns.tail,N))

 : Cons(Ns.head, filter(Ns.tail,N));

sift(X)=Y {X=[2, 3,4,5], Y=[2,3,4,5]}

sift(Z1)=Y1 {X1=[3,4,5], Y1=[3,4,5]} filter(X1,2)=Z1 {X1=[3,4,5], Z1=[3,4,5]}

filter(X2,2)=Z2 {X2=[4,5], Y2=[4,5]}

filter(X3,2)=Y3 {X3=[5], Y3=[5]}

filter(X4,2)=Y4 {X4=[], Y4=[]}
Data associated with node is

just a constraint!

Observed fixed
points

Intended fixed
points

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

9

Live Debugging

def sift(Ns:List[Int]):List[Int]

 = Ns.null() ? Null[Int]()

 : Cons(Ns.head, sift(filter(Ns.tail, Ns.head)));

def filter(Ns:List[Int], N:Int):List[Int] {

 = Ns.null() ? Null[Int]()

 : 0==x % N ? Cons(Ns.head, filter(Ns.tail,N))

 : Cons(Ns.head, filter(Ns.tail,N));

sift(X)=Y {X=[2, 3,4 |Xr], Y=[2,3,4 |Yr]}

sift(Z1)=Y1 {Z1=[3,4|Zr], Y1=[3,4|Yr]} filter(X1,2)=Z1 {X1=[3,4|Xr], Z1=[3,4|Zr]}

filter(X2,2)=Z2 {X2=[4|Xr], Y2=[4|Zr]}

filter(X3,2)=Y3 {X3=Xr, Y3=Zr}

gen(Xr)

Stores can be incomplete!
Can debug a subcomputation even with live concurrent agents

stuck for now

Observed fixed
points

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

10

Default CCP

 A ::= unless(c) A

– Run A, unless c holds at end
– ask c \/ A
– Leads to nondet behavior

 unless(c) c;

– No behavior
 unless(c1) c2; unless(c2)

c1;

– gives c1 or c2

 unless(c) d; : gives d
 c; unless(c) d; : gives c

 [A] = set S of pairs (c,d)
satisfying
– Sd = {c | (c,d) in S} denotes

a closure operator.
– We still have a simple

denotational semantics!
 Operational implementation:

– Backtracking search
– Compile-time determinacy

analysis (not implemented)
– Open question:

• Efficient compile-time
analysis (cf causality
analysis in Esterel)

• Use negation as failure

 non-monotonicity

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

11

Discrete Timed CCP

 Synchronicity principle
– System reacts instantaneously to the

environment
 Semantic idea

– Run a (bounded) default CCP
program at each time point to
determine instantaneous response
and program for next time instant
(resumption)

– Add: A ::= next A
– No connection between the store at

one point and the next.
– Future cannot affect past.

 Semantics
– Sets of sequences of (pairs of)

constraints
– Non-empty
– Prefix-closed
– P after s =d= {e | s.e in P} must

be denotation of a Default CC
program

 Determinacy guaranteed if
unless used only with next:
– unless (c) next A;

system

environment

Berry’s Synchrony Hypothesis

Reintroduces “mutation” but in a controlled way – only when the clock ticks!

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

12

Hybrid Systems

 Hybrid Systems combine
both
– Discrete control
– Continuous state evolution
– Intuition: Run program at every

real value.
• Approximate by:

– Discrete change at an
instant

– Continuous change in an
interval

 Primary application areas
– Engineering and Control systems

• Paper transport
• Autonomous vehicles…

– Biological Computation.
– Programmable Matter?

Emerged in early 90s in the work of Nerode, Kohn, Alur, Dill, Henzinger…

 Traditional Computer Science
– Discrete state, discrete change

(assignment)
– E.g. Turing Machine
– Brittleness

• Small error  Major impact
• Devastating with large code
• Primary application areas

 Traditional Mathematics
– Continuous Variables (Reals)
– Smooth state change

• Mean-value theorem
• E.g. computing rocket trajectories

– Robustness in the face of change
– Stochastic systems (e.g. Brownian

motion).

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

13

HCC: Move to Continuous time

 No new combinator needed
– Constraints are now permitted to

vary with time (e.g. x’=y)

 Semantic intuition
– Run a Default CC computation

at each real time instant, starting
with t=0.

– Evolution of system is piecewise
continuous: system evolution
alternates between point phase
and interval phase.

– In each phase a Default CC
program determines output of
that phase and program to be
run in next phase.

 Point phase
– Result determines initial

conditions for evolution in the
subsequent interval phase

 Interval phase
– Any constraints asked of the

store recorded as transition
conditions.

– ODE’s integrated to evolve
time-dependent variables.

– Phase ends when any
transition condition potentially
changes status.

– (Limit) value of variables at the
end of the phase can be used
by the next point phase.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

14

Volterra-Lotka model – non-linear differential equations

class Volterra {

 public def static main(Array[String]){

 #SAMPLE_INTERVAL_MAX 0.005

 val py=8; // prey

 val pd=2; // predator

 val pd'=0.2;

 always py'= py*(0.08-0.04*pd);

 always {

 cont(pd);

 pd’ = -pd*(pd >=0.5*py?0.1:0.06

 -0.02*py);

 }

 sample(pd); sample(py);

}}

Exponential term (natural
growth, assuming enough food)

Decay proportional to the rate at
which predator eats prey

Growth proportional to the rate
at which prey are consumed.

Decay (=death) proportional to
population size.

Execution introduces adaptive discretization

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

15

State dependent rate equations

 Expression of gene x
inhibits expression of gene
y; above a certain threshold,
gene y inhibits expression
of gene x:

if (y < 0.8)

 x’= -0.02*x + 0.01;

if (y >= 0.8) {

 x’=-0.02*x;

 y’=0.01*x;

}

Bockmayr and Courtois: Modeling biological systems in hybrid concurrent
constraint programming

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

16

Spatial HCC: Move to continuous space

 Add A::= atOther A
– Run A at all other points.

(atAll A = A, atOther
A)

– Constraints may now use
partial derivatives.

– All variables now implicitly
depend on space
parameters (e.g. x,y,z)

 Semantic intutions
– Computation now uniformly

extended across space.
– At each point, run a Default

CC program.
– Program induces its own

discretization of space (into
open and closed regions).

 Programming intuition
– Program with vector fields, specifying

how they vary across space-time.
 Programming Matter realization

– Atoms represent dense computational
grid.

– Signals represented as memory cells
in each Atom

– Atoms use epidemic algorithms to
diffuse signals (possibly with non-zero
gradients) across space.

– Atoms use neighborhood queries to
sense local minima

– Atoms integrate PDEs by using
chaotic relaxation (Chazan/Mirankar).

– Compiler produces FSA for each atom
from input program.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

17

Implementation Challenges

 Need coarsening techniques
– Formalism exposes very fine-

grained concurrency
– async for every argument

evaluation creates excessive
overhead

 Need analysis to eliminate
unnecessary promise
creation.

 Need efficient
implementation of
suspension

 Implementation can reuse
– X10 scheduler

• Currently fork-join, later
work-stealing

– X10’s concurrent allocator,
garbage collector

– X10’s implementation across
multiple nodes

Results should be achievable quickly, building on X10 (e.g. annotations)

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

18

Research Agenda

 Develop “broad”
programming framework
– Declarative programs (CCP)
– Fundamentally integrates

space and time
– Compiles to high-

performance imperative
programs

 Develop tools that exploit
declarative semantics
– Correctness at scale
– Correct by construction
– Partial programs, sketching
– Declarative debugging

 Directed at substantially
raising level of
programmer/productivity
– (cf R, Matlab, … but at scale)
– “domain” programmer: HPC,

machine learning/BA

IBM Research: Software Technology

© 2005 IBM Corporation

P
ro

gr
am

m
in

g
Te

ch
no

lo
gi

es

19

Background

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

20

Selected Bibliography

 Saraswat, Rinard, Panangaden
“Semantics of Concurrent
Constraint Programming”, POPL
1991

 Falaschi, Gabbrielli, Marriott,
Palamidessi “Compositional
analysis for CCP”, LICS 1993

 Fromherz “Towards declarative
debugging of CCP”, 1995

 Saraswat, Jagadeesan, Gupta
“Timed Default CCP”, Journal
Symbolic Comp., 1996

 de Boer, Gabbrielli, Marchiori,
Palamidessi “Proving
concurrent constraint programs
correct”, TOPLAS 1997

 Gupta, Jagadeesan, Saraswat
“Computing with continuous
change”, Science Comp Progg.
1998.

 Etalli, Gabbrielli, Meo
“Transformations of CCP
programs”, TOPLAS 2001

 Falaschi, Olarte, Valencia
“Framework for abstract
interpretation for Timed CCP”,
PPDP 09

 Gabbrielli, Palamidessi, Valencia
“Concurrent and Reactive
Constraint Programming”, 2010

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

21

Constraint systems

 Any (intuitionistic, classical)
system of partial information

 For Ai read as logical
formulae, the basic
relationship is:
– A1,…, An |- A
– Read as “If each of the A1,…,

An hold, then A holds”

 |- is axiomatized through
given rules.

 Require conjunction,
existential quantification

A,B,D ::= atomic formulae | A&B |X^A

G ::= multiset of formulae

(Id) A |- A (Id)

(Cut) G |- B G’,B |- D  G,G’ |- D

(Weak) G |- A  G,B |- A

(Dup) G, A, A |- B  G,A |- B

(Xchg) G,A,B,G’ |- D  G,B,A,G’ |- D

(&-R) G,A,B |- D  G, A&B |- D

(&-L) G |- A G|- B  G |- A&B

(^-R) G |- A[t/X]  G |- X^A

(^-L,*) G,A |- D  G,X^A |- D

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

22

Constraint system: Examples

 Gentzen
– G |- A iff A in G.

 Herbrand

– uninterpreted first-order terms
(labeled, fixed-arity trees)

 Finite domain

 Propositional logic (SAT)

 Arithmetic constraints

– Naïve, linear, nonlinear

 Interval arithmetic

 Orders
 Temporal Intervals
 Hash-tables
 Arrays

 Graphs

 Constraint systems (as systems
of partial information) are
ubiquitous in computer science
– Type systems
– Compiler analysis
– Symbolic computation
– Concurrent system analysis

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

23

Logic

Proposition: Operational
Semantics is complete for
constraint entailment.
(Saraswat, Lincoln 1994,
unpublished)

 CCP is simply a fragment of
first-order logic.
– Computation == Deduction
– Unlike “Logic Programming”,

CCP employs “forward
chaining”.

 RCC (Jagadeesan, Nadathur,
Saraswat, FSTTCS 2005)
– Unifies and subsumes CCP

and LP (forward- and
backward-chaining).

– Provides logical expression
for recursive nested guards
• i.e. “finish”

– Localized augmentation of
programs (“assume-if”
reasoning, (P=>Q)=>R)

– Backtracking and search

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

24

xcc: CCP in X10

 Basic idea
– Concrete language is just like X10 –

classes, inheritance, interfaces,
structs, functions, fields, methods,
constructors, user-defined operators,
type inference etc.

– No var permitted, no need for
atomic, when, finish, async, at.
• Initially, finish, async, at may be

introduced as annotations to permit
efficient execution while compiler is
being developed.

 Every variable of type T is initialized

with a promise of type T.
– A promise is a “logical variable” –

nothing is known about it.
– (Herbrand) Two objects are equal iff

they are instances of the same class
and their corresponding fields are
equal.

 Assignment (=) is re-interpreted as
Tell:
– e1=e2 is executed as: evaluate e1 to

get a value v1, e2 to get v2, and
equate the two.

 if (and ? : conditional expression
evaluator) suspends until condition
evaluates to true or false
– if = when, because of monotonicity.

 e.m(e1,..,en)

– e, e1,..,en evaluated in parallel
– Once enough is known about e to

determine the class, use dynamic
lookup to determine method body

– Body executed in parallel with arg
evaluation
• Return value is an anonymous

promise constrained by return
statements.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

25

Can computations deadlock?

 Yes.
– when(a) b is canonical

deadlocked agent.
– Intuitively, program quiesces

but can produce more when
given more.

 Deadlock is a “natural” state.
– Simply means the system

has quiesced.
– If you supply more

information, you may get
more information back.

– E.g. almost all interesting
programs would deadlock on
true.

 Semantic characterization:
– P does not deadlock on input

a if all fixed points of P above
a are stable.
• b >= P(a) implies b in P

– Observation: if P does not
deadlock on d, then for any b,
P(d&b)=P(d)&P(b)

Open problem:
Identify static type system
that guarantees deadlock-
freedom and permits useful
idioms to be expressed.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

26

Declarative Debugging

 Declarative debugging
techniques can be applied to
logic programs, functional
programs, CCP.
– Ueda 98 (CCP)
– Fromherz 93
– Falaschi et al ICLP 07

 Basic idea is to summarize an
execution through an execution
tree
– Node = procedure call
– Children = calls made in the

body.
– Node associated with some data

about subtree, e.g. pair of
input/output constraints.

 Debugging
– Query oracle (user,

specification) whether data with
node is correct.

– Identify node with incorrect data
whose children have correct
data …. BUG!



http://www.ueda.info.waseda.ac.jp/~ueda/pub/LPP-ueda2.ps
http://hal.inria.fr/inria-00201065/en/

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

27

Timed CCP: Basic Results

 TCC = fragment of first-order
linear temporal logic

 Rich algebra of defined temporal
combinators (cf Esterel):
– always A
– do A watching c
– whenever c do A
– time A on c

 A general combinator can be
defined
– time A on B: the clock fed to A is

determined by (agent) B

 Discrete timed synchronous
programming language with
the power of Esterel
– present is translated using

defaults

 Proof system

 Compilation to automata

IBM Research: Software Technology

© 2005 IBM Corporation

P
ro

gr
am

m
in

g
Te

ch
no

lo
gi

es

28

Programming matter

 Vijay Saraswat, IBM Research

 Radha Jagadeesan, De Paul University

 May 2006

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

29

Programmable matter

 Large collection of
“computing atoms” (catoms)
that can
– Compute
– Communicate locally

(wireless)
– Sense
– Move
– Adhere to each other (bond)
– Change physical/chemical

properties based on state

 cf sensor networks

 Desired computations
– Form a particular shape
– Sense a particular shape

How do you compute with 106 computers/cubic centimeter?

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

30

The computational substrate

 No shared clock.
 No shared gobal coordinate

system.
 No unique ids (but random

variables permitted).
 No shared mutable state (shared

memory).
 Catoms randomly distributed in

3D (2D).
 Some small subset are “dead on

arrival”.

 Catoms can sense connections
with neighboring catoms and
send/receive messages.

 Catoms can broadcast locally.
 Assume boundary conditions

are supplied in some fashion.
 Catoms are (re-)programmed by

“beaming in” code.

 Catoms have limited power?

Cf Amorphous computing

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

31

The programming matter challenge

 What is the programming
model for programmable
matter?

 Global program
– Specifies constraints on

desired interactions of system
with environment.

 Local program: Catom’s view
– Specifies how each catom in

ensemble initiates/responds to
messages received from the
environment.

 Our approach: Program globally,
implement locally
– Treat programmable matter as

matter
– Study how matter “computes”

• Physics
• Chemistry
• Biology – developmental biology

– Study mathematical descriptions of
these processes (continuous
space, time, differential eqns,
stochasticity)

– Build programming model on these
descriptions

– Compile such global programs to
local catom programs: “correct” by
construction!

How do you move from a global description to local actions?

From analysis to programming

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

32

Constraint systems

 Any (intuitionistic, classical)
system of partial
information

 For Ai read as logical
formulae, the basic
relationship is:
– A1,…, An |- A
– Read as “If each of the

A1,…, An hold, then A
holds”

 Require conjunction,
existential quantification

A,B,D ::= atomic formulae | A&B |X^A

G ::= multiset of formulae

(Id) A |- A (Id)

(Cut) G |- B G’,B |- D  G,G’ |- D

(Weak) G |- A  G,B |- A

(Dup) G, A, A |- B  G,A |- B

(Xchg) G,A,B,G’ |- D  G,B,A,G’ |- D

(&-R) G,A,B |- D  G, A&B |- D

(&-L) G |- A G|- B  G |- A&B

(^-R) G |- A[t/X]  G |- X^A

(^-L,*) G,A |- D  G,X^A |- D

 Saraswat, LICS 91

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

33

Constraint system: Examples

 Gentzen
 Herbrand

– Lists
 Finite domain
 Propositional logic (SAT)
 Arithmetic constraints

– Naïve
– Linear
– Nonlinear

 Interval arithmetic
 Orders
 Temporal Intervals

 Hash-tables
 Arrays
 Graphs
 Constraint systems are

ubiquitous in computer
science
– Type systems (checking,

inference)
– Static analysis
– Symbolic computation
– Concurrent system

analysis

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

34

Concurrent Constraint Programming

 Use constraints for
communication and control
between concurrent agents
operating on a shared store.

 Two basic operations
– Tell c: Add c to the store
– Ask c then A: If the store is

strong enough to entail c,
reduce to A.

(Agents) A ::= c

 if (c) A

 A,B

 {x:T; A}

(Config) G ::= A,…,A

G,{x:T;A}  G,A (x not free in G)

G, if (c) A  G,A (s(G) |- c)

[[A]] = set of fixed points of a closure
operator

Operational semantics is complete
for logical entailment of constraints.

Saraswat 89; POPL 87, POPL 90, POPL 91

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

35

Default CCP

 A ::= unless(c) A

– Run A, unless c holds at end
– ask c \/ A
– Leads to nondet behavior

 unless(c) c

– No behavior
 unless(c1) c2, unless(c2)

c1

– gives c1 or c2
 unless(c) d : gives d
 c, unless(c) d : gives c

 [A] = set S of pairs (c,d)
satisfying
– Sd = {c | (c,d) in S} denotes

a closure operator.
– We still have a simple

denotational semantics!
 Operational implementation:

– Backtracking search
– Compile-time determinacy

analysis (not implemented)
– Open question:

• Efficient compile-time
analysis (cf causality
analysis in Esterel)

• Use negation as failure

 non-monotonicity

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

36

Discrete Timed CCP (1993)

 Synchrony principle
– System reacts instantaneously to

the environment
– Implemented by ensuring

computation at each time instant is
bounded.

 Semantic idea

– Run a Default CCP program at each
time point

– Add a single new combinator:
A ::= hence A (run A at every
subsequent instant.)

– No connection between the store at
one point and the next.

– Semantics: Sets of sequences of
(pairs of) constraints

 The usual temporal combinators can be
programmed:
– always(A) = {A; hence A;}

– do A watching c

– time A on B: the clock fed to A is
determined by (agent) B

 unless can be used to retract
hence constraints
– next(A) =

 {X:boolean;

 hence {

 unless(X=true) A;

 hence X=true;

 }

 }
Proof system Compilation to automata

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

37

Hybrid Systems

 Traditional Computer Science
– Discrete state, discrete

change (assignment)
– E.g. Turing Machine
– Brittle:

• Small error  major impact
• Devastating with large code!

 Traditional Mathematics
– Continuous variables (Reals),

with continuous functions
(e.g. sum, multiplication).

– Smooth state change
• Mean-value theorem
• e.g. computing rocket

trajectories
– Robustness in the face of

change
– Stochastic systems (e.g.

Brownian motion)

 Hybrid Systems combine both
– Discrete control
– Continuous state evolution
– Intuition: Run program at

every real value.
• Approximate by:

– Discrete change at an instant
– Continuous change in an interval

 Primary application areas
– Engineering and Control

systems
• Paper transport
• Autonomous vehicles…

– Biological Computation.
– Programmable Matter

Emerged in early 90s in the work of Nerode, Kohn, Alur, Dill, Henzinger…

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

38

HCC: Move to Continuous time (1995)

 No new combinator needed

– Constraints are now permitted to
vary with time (e.g. x’=y)

 Semantic intuition
– Run default CCP at each real time

instant, starting with t=0.
– Evolution of system is piecewise

continuous: system evolution
alternates between point phase
and interval phase.

– In each phase program determines
output of that phase and program
to be run in next phase.

 Point phase
– Result determines initial conditions for

evolution in the subsequent interval
phase and hence constraints in effect
in subsequent phases.

 Interval phase
– Any constraints asked of the store

recorded as transition conditions.
– ODE’s integrated to evolve time-

dependent variables.
– Phase ends when any transition

condition potentially changes status.
– (Limit) value of variables at the end of

the phase can be used by the next point
phase.

Gupta, Jagadeesan, Saraswat SCP 1998

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

39

Systems Biology

 Work subsumes past work on
mathematical modeling in
biology:
– Hodgkin-Huxley model for

neural firing
– Michaelis-Menten equation

for Enzyme Kinetics
– Gillespie algorithm for

Monte-Carlo simulation of
stochastic systems.

– Bifurcation analysis for
Xenopus cell cycle

– Flux balance analysis,
metabolic control analysis…

 Why Now?

– Exploiting genomic data
– Scale

• Across the internet, across
space and time.

– Integration of computational
tools

– Integration of new analysis
techniques

– Collaboration using markup-
based interlingua (SBML)

– Moore’s Law!

This is not the first time…

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

40

Chemical Reactions

 Cells host thousands of
chemical reactions (e.g. citric
acid cycle, glycolis…)

 Chemical Reaction
– X+Y0 –k0 XY0
– XY0 –k-0  X+Y0

 Law of Mass Action
– Rate of reaction is

proportional to product of
conc of components

– [X]’= -k0[X][Y] + k-0[XY0]
– [Y]’=[X]’
– [XY]’=k0[X][Y]-K-0[XY0]

 Conservation of Mass
 When multiple reactions, sum

mass flows across all sources
and sinks to get rate of change.

 Same analysis useful for
enzyme-catalyzed reactions
– Michaelis-Menten kinetics

 May be simulated
– Using “deterministic”

means.
– Using stochastic means

(Gillespie algorithm).

At high concentration, species concentration can be modeled as a
continuous variable.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

41

Quorum sensing (V. fischeri)

Model due to Alur et al

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

42

Cell division: Delta-Notch signaling in X. Laevis

 Consider cell differentiation in
a population of epidermic cells.

 Cells arranged in a hexagonal
lattice.

 Cells interacts concurrently
with its neighbors.

 Delta and Notch proteins in
each cell vary continuously.

 Cell can be in one of four
states: {Delta, Notch} x
{inhibited, expressed}

 Experimental Observations:
– Delta (Notch) concentrations

show typical spike at a
threshold level.

– At equilibrium, cells are in
only two states (D or N
expressed; other inhibited).

Ghosh, Tomlin: “Lateral inhibition through Delta-Notch signaling: A piece-
wise affine hybrid model”, HSCC 2001

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

43

Delta-Notch Models

 Model:
– VD, VN: concentration of Delta

and Notch protein in the cell.
– UD, UN: Delta (Notch) production

capacity of cell.
– UN=sum_i (neighbors) VD(i)
– UD = -VN
– Parameters:

• Threshold values: HD,HN
• Degradation rates: MD, MN
• Production rates: RD, RN

– Cell in 1 of 4 states: {D,N} x
{Expressed (above), Inhibited
(below)}

 Stochastic variables used to
set random initial state.

if (UN(i,j) < HN) VN’= -MN*VN,

if (UN(i,j)>=HN) VN’=RN-MN*VN,

if (UD(i,j)<HD) VD’=-MD*VD,

if (UD(i,j)>=HD) VD’=RD-MD*VD,

Results: Simulation confirms observations. Tiwari/Lincoln prove that
States 2 and 3 are stable.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

44

Other examples

 Bouncing ball
 Thermostat controller
 Square waves
 Sine waves…

 Paper path model

 Aercam model

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

45

Concrete HCC language

 Arithmetic variables are interval valued.
 Arithmetic constraints are non-linear

algebraic equations, over +, *, ^, etc.
 Users can add own operators as C

libraries.
 Various combinators translated to basic

combinators e.g.
 do A watching c  execute A, abort it

when c becomes true
 when c do A  start A at the first

instant when c holds
 wait N do A  start A after N time units
 forall C(X) do A(X)  execute a copy of

A for each object X of class C

 Arithmetic expressions compiled to byte
code
 Further compiled to machine code.
 Common sub-expressions are recognized.

 Copying garbage collector
 Speeds up execution
 Allows snapshotting of state.

 API from Java/C to use Hybrid cc as a
library. System runs on Solaris, Linux,
SGI and Windows NT.

Carlson, Gupta “Hybrid CC with Interval Constraints”

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

46

HCC Implementation outline

 Constraint techniques
Use constraints to narrow intervals of variables,

one variable at a time. Suppose f(x,y) = 0.
Indexicals: Rewrite as x = g(y). Set x  I  g(J) ,

where x  I and y  J. (y can be a vector of
variables.)

Interval splitting: If x  [a, b], use binary search
to find min c in [a,b] such that 0  f([c,c], J),
where y  J. Similary determine max such d in
[a,b], and set x  [c,d].

Newton-Raphson: Get min and max roots of f(x,J)
= 0, where y  J. Set x as above.

Simplex: Given the constraints on x, find its min
and max values, and set it as above. Treat
non-linear terms as separate variables.

 Integration techniques
 Treat differential equations as ordinary algebraic

equations on variables and their derivatives e.g. f
= m * a’’, x’’ + d*x’ + k*x = 0.

 Various integrators are provided --- Euler, 4th
order Runge Kutta, 4th order Runge Kutta with
adaptive stepsize, Bulirsch-Stoer with
polynomial extrapolation. Others can be added if
necessary.

 Integrators modified to integrate implicit

differential equations, over interval valued
variables.

 Determine points of discrete changes (end of an

interval phase) using cubic Hermite
interpolation.

Carlson, Gupta “Hybrid CC with Interval Constraints”

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

47

Integration of symbolic reasoning

 Use state of the art
constraint solvers
– ICS from SRI
– Shostak combination of

theories (SAT, Herbrand,
RCF, linear arithmetic over
integers).

 Finite state analysis of
hybrid systems
– Generate code for HAL

 Predicate abstraction
techniques.

 Develop bounded model
checking.

 Parameter search
techniques.
– Use/Generate constraints

on parameters to rule out
portions of the space.

 Integrate QR work
– Qualitative simulation of

hybrid systems

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

48

Spatial HCC: Move to continuous space

 Add A::= atOther A
– Run A at all other points.

(atAll A = A, atOther
A)

– Constraints may now use
partial derivatives.

– All variables now implicitly
depend on space
parameters (e.g. x,y,z)

 Semantic intutions
– Computation now uniformly

extended across space.
– At each point, run a Default

CC program.
– Program induces its own

discretization of space (into
open and closed regions).

 Programming intuition
– Program with vector fields, specifying

how they vary across space-time.
 Programming Matter realization

– Catoms represent dense
computational grid.

– Signals represented as memory cells
in each catom

– Catoms use epidemic algorithms to
diffuse signals (possibly with non-zero
gradients) across space.

– Catoms use neighborhood queries to
sense local minima

– Catoms integrate PDEs by using
chaotic relaxation (Chazan/Mirankar).

– Compiler produces FSA for each
catom from input program.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

49

Some basic programming idioms

// coord system

R=(0,0,0),

atAll grad(R)=(1,1,1)

// define

at(L) A :: at(R=L) A

at(I:J) A:: at(I<R&R<J) A

// vibrating 1-d string

u=0, at(R=L)u=0,

at(0<R && R<L)u=f

atAll u''t = c*c*u''x

Abbreviation:
at(boolean b) A ::

atAll if (b) A

b may be true at 0 or more points
in space.

We will also use neighborhood queries:

min {e | b} (max,…)

e is an expression, b a boolean

min evaluated over a sphere of radius r
(execution-time parameter). Also max,…

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

50

Nagpal’s Origami Operator(1): perp

agent perp(boolean isP0,

 boolean isP1,

 vec R, // global coord system

 boolean line) {

 at(isP0) {

 vec(2) D0=R, atAll grad(D0)=0.0,

 at(isP1) {

 vec(2) D1=R, atAll grad(D1)=0.0,

 at(norm(D1-D0)<=eps)

 line=true

 }}}

agent perp(boolean isP0,

 boolean isP1,

 boolean line) {

 at(isP0) {

 vec(2) D0=0.0, atAll grad(D0)=1.0,

 at(isP1) {

 vec(2) D1=0.0, atAll grad(D1)=1.0,

 at(norm(D1-D0)<= eps)

 line=true

 }}}

Use global coordinate system. Use local coordinate systems!

Global coordinate systems can be banned by requiring initial agent is atAll A.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

51

Nagpal’s Operator(1): perp

agent perp(boolean isP0,

 boolean isP1,

 boolean line) {

 at(isP0) {

 vec(2) D0=0.0, atAll grad(D0)=1.0,

 at(isP1) {

 vec(2) D1=0.0, atAll grad(D1)=1.0,

 at(norm(D1-D0) <= eps)

 line=true

 }}}

agent perp(boolean isP0,

 boolean isP1,

 boolean line) {

 at(isP0) {

 vec(1) D0=0.0,atAll grad(D0)=(1.0,0.0),

 at(isP1) {

 vec(1) D1=0.0,atAll grad(D1)=(1.0,0.0),

 at(norm(D1-D0) <= eps)

 line=true

 }}}

Local coordinate system.

Propagates 2-d vectors with
unit gradient.

Local polar coordinate system.

Propagates scalars with unit radial
gradient, zero angular gradient.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

52

Nagpal’s Operator(2): conn

agent conn(boolean isP0,

 boolean isP1,

 boolean line) {

 at(isP1) {

 vec(2) D1=0.0, atAll grad(D1)=1.0,

 at(isP0) {

 vec(2) D0=D1, atAll grad(D0)=0.0,

 at(norm(D1.unit-D0.unit)<= eps)

 line=true}}

agent conn(boolean isP0,

 boolean isP1,

 boolean line) {

 at(isP1) {

 vec(2) D1=0.0,atAll grad(D1)=(1.0,0.0),

 at(isP0) {

 vec(2) D0=0.0,atAll grad(D0)=(1.0,0.0),

 at(D0+D1-min{D0+D1})<= eps)

 line=true}}

Local coordinate system.

Propagates 2-d vectors with
unit gradient.

Local coordinate system.

Propagate scalars.

Use neighborhood minima queries.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

53

Nagpal Operator (3): alt

 Find the point P1 on the line
– that is closest to P0
– in its local neighborhood,

considering only points on
the line.

 Draw the line from P0 to P1

agent alt(boolean isP0,

 boolean isLine,

 boolean line, boolean crossing) {

 at(isP0) {

 vec(2) D0=0.0,atAll grad(D0)=(1.0,0.0),

 at(isLine &(D0-min{isLine | D0}<= eps)) {

 crossing=true, atOther crossing=false,

 conn(isP0,crossing,line)}}

Local coordinate system.

Propagate scalars.

Use conditional neighborhood minima queries.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

54

Nagpal Operator(4): Bisection

agent bisect(boolean isLine1,

 boolean isLine2,

 boolean line) {

 at(isLine1 & isLine2) {

 boolean isP=true,

 vec(1) P=0.0, atAll grad(P)=(1.0,0.0),

 at(isLine1&(P0-5.0)<eps) {

 boolean isPL1=true,

 at(isLine2&(P0-5.0)<eps) {

 boolean isPL2=true,atOther isPL2=false

 boolean temp,

 conn(isPL1,isPL2,temp),

 alt(isP,temp,line)}}}}

L1 L2

P

PL1 PL2

Local coordinate system.

Propagate scalars.

Use other constructions.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

55

Nagpal Operator(5): PontoL

agent bisect(boolean isP0,

 boolean isP1,

 boolean isLine,

 boolean line) {

 at(isP0) {

 vec(1) P0=0.0, atall grad(P0)=(1.0,0.0),

 at(isP1) {

 vec(1) P1P0=P0, atAll grad(P1P0)=0.0,

 vec(1) P1=0.0, atAll grad(P1)=(1.0,0.0),

 at(isLine&(P1-P1P0)<eps) {

 boolean isP0Image=true,

 boolean temp, conn(isP0,isP0Image,temp),

 alt(isP1,temp,line)}}}}

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

56

Nagpal Operator(6): P0P1ontoL0L1

agent lineToLines(boolean isP0,

 boolean isP1,

 boolean isL0,

 boolean isL1,

 boolean isFold) {

 at (isL0) {

 boolean isI0=true, atOther isI0=false,

 boolean isFoldC, perp(isP0, isI0, isFoldC),

 boolean isAlt1, boolean isCross1,

 alt(isP1, isFoldC, isAlt1, isCross1),

 at(isAlt1&isL1) {

 vec(1) orig=0.0,

 atAll grad(orig)=(1.0,0.0),

 at(isCross1) {

 vec(1) K = orig,

 atAll grad(cross1D)=0.0,

 at(isP1&norm(orig-2*K)<eps)

 atAll isFold = isFoldC

 }}}

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

57

Flocking

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

58

How do u realize this on Progg Matter?

 Work in progress!
 Basic intuitions

– Require propagation over
space takes time.

– Dilate time, dilate space.
– Try establishing

computational substrate has,
at each point, same velocity
of flow (in a particular
direction) over time, +/- delta,
with some probability p.

– Therefore from each point,
sufficiently widely spaced
waves are guaranteed to
arrive at all other points in
sequence.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

59

Conclusion

 We believe biological system
modeling and analysis will be a
very productive area for
constraint programming and
programming languages

 Handle continuous/discrete
space+time

 Handle stochastic descriptions
 Handle models varying over

many orders of magnitude
 Handle symbolic analysis
 Handle parallel

implementations

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

60

HCC references

– Gupta, Jagadeesan, Saraswat “Computing with Continuous
Change”, Science of Computer Programming, Jan 1998, 30 (1—
2), pp 3--49

– Saraswat, Jagadeesan, Gupta “Timed Default Concurrent
Constraint Programming”, Journal of Symbolic Computation,
Nov-Dec1996, 22 (5—6), pp 475-520.

– Gupta, Jagadeesan, Saraswat “Programming in Hybrid
Constraint Languages”, Nov 1995, Hybrid Systems II, LNCS
999.

– Alenius, Gupta “Modeling an AERCam: A case study in modeling
with concurrent constraint languages”, CP’98 Workshop on
Modeling and Constraints, Oct 1998.

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

61

Controlling Cell division:
The p53-Mdm2 feedback loop

 1/ [p53]’=[p53]0 –[p53]*[Mdm2]*deg -dp53*[p53]
 2/ [Mdm2]’=p1+p2max*(I^n)/(K^n+I^n)-dMdm2*[Mdm2]

– I is some intermediary unknown mechanism; induction of [Mdm2] must be
steep, n is usually > 10.

– May be better to use a discontinuous change?
 3/ [I]’=a*[p53]-kdelay*I

– This introduces a time delay between the activation of p53 and the induction
of Mdm2. There appears to be some hidden “gearing up” mechanism at
work.

 4/ a=c1*sig/(1+c2*[Mdm2]*[p53])
 5/ sig’=-r*sig(t)

– Models initial stimulus (signal) which decays rapidly, at a rate determined by
repair.

 6/ deg=degbasal-[kdeg*sig-thresh]
 7/ thresh’=-kdamp*thresh*sig(t=0)

Lev Bar-Or, Maya et al “Generation of oscillations by the p53-Mdm2 feedback loop..”,2000

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

62

The p53-Mdm2 feedback loop

 Biologists are interested in:
– Dependence of amplitude

and width of first wave on
different parameters

– Dependence of waveform on
delay parameter.

 Constraint expressions on
parameters that still lead to
desired oscillatory waveform
would be most useful!

 There is a more elaborate
model of the kinetics of the G2
DNA damage checkpoint
system.
– 23 species, rate equations
– Multiple interacting

cycles/pathways/regulatory
networks:
• Signal transduction
• MPF
• Cdc25
• Wee1

Aguda “A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system”,
1999

ASCR Exascale Programming Challenges Workshop, USC-ISI, Jul 2011

© 2009 IBM Corporation

IB
M

 R
es

ea
rc

h

63

Integration of symbolic reasoning techniques

 Use state of the art
constraint solvers
– ICS from SRI
– Shostak combination of

theories (SAT, Herbrand,
RCF, linear arithmetic over
integers).

 Finite state analysis of
hybrid systems
– Generate code for HAL

 Predicate abstraction
techniques.

 Develop bounded model
checking.

 Parameter search
techniques.
– Use/Generate constraints

on parameters to rule out
portions of the space.

 Integrate QR work
– Qualitative simulation of

hybrid systems

