Changing Views of a Changing

Arctic Carbon Balance




- The heat is on!
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The Greening and the Browning of the Arctic and
Boreal regions e
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How can we evaluate these changes against
a background of much greater variabllity in C
stocks and turnover?




Productivity, for example,
varies by 3 orders of
magnitude among arctic
ecosystems

Table 6.10. Soil organic matter, plant biomass, and net primary production (NPP) in the
main Arctic ecosystem types. After Jonasson et al. (2001) based on data from Bliss and
Matveyeva (1992) and Oechel and Billings (1992).

. . . L 0
Soil organic Vegetatlon SO|I._ SOIl:NPP  Veg:NPP % of total

matter biomass egetation area
(g/m?) (g/m?)

Polar desert 20 2 10 20 2.0 15

Semi-desert 1030 250 4.1 29 7.1 8

Wet

sedge/mire 21000 750 28 150 5.4 2

Semi-desert 9200 290 32 204 6.4 6

Low shrub 3800 770 4.9 10 2.1 23

Wet

sedge/mire 38750 959 40 176 4.3 16

Tall shrub 400 2600 0.2 0.4 2.6 3

Tussock/

sedge dwarf 29000 3330 8.7 129 16 17

shrub
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continuous across a wide

range of very different
vegetation types, even
under rapid change
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The data base: CO2 fluxes and light response were measured on a total of 79

plots in 32 different site/vegetation combinations (1454 flux measurements in

,10\|25 :ight response curves). About half of these were in Sweden and half in
aska.

Abisko, Sweden 2004 (68° 10-20’N, 18 ° 45-55’ E)
Latnjajaure (elevation 975-1000 m):

12 plots in 6 vegetation types (Dryas, heath, mesic meadow, snowbed, tussock, wet
meadow)

Paddus (elevation 580-600 m):
13 plots in 6 vegetation types (Betula, wet fen, heath, rocky, Salix, wet sedge)

STEP site (elevation 725-750 m):
11 plots in 5 vegetation types (Betula, heath, rocky, Salix, wet sedge)

Toolik Lake and Imnavait Creek, Alaska 2003 and 2004 (68° 35-45'N, 149° 35-45'W)
Imnavait Creek 2003 (elevation 875-945 m)
8 plots in 5 vegetation types (Betula, Salix, tussock, heath, wet sedge)

Imnavait Creek 2004 (elevation 875-945 m):
15 plots in 5 vegetation types (Betula, Rubus/Sphagnum, wet sedge, tussock, Salix)

Toolik Lake 2004 (elevation 760-800 m):

20 plots in 5 vegetation types (moist acidic tussock, moist nonacidic tussock,
nonacidic nontussock, heath, wet sedge)

...and similar surveys of CO2 flux at Svalbard and Zackenberg in 2005-2006 and
Barrow in 2009
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Fig. 1 NEE light response curves from the Latnjajaure and Paddus sites at Abisko, illustrating variation among and within
contrasting vegetation types. Data points represent individual NEE and PPFD measurements: different symbols and lines
represent data from a single plot.



Controls on
NEE

Two approaches:

1. The Arctic as a
mosaic of patches
with different
properties

2. The Arctic as a
continuously-
varying system




The PIRT model
(Williams et al. 20006)

Pmaxl

_ pT _ _Mmax’
NEE = Rpe P,

Net ecosystem exchange of CO, (umol m* s

P_,=11.4; k=442; R =0.86; f=0.062
RMSE=1.29

1600 0 400 800 1200
PPFD (umolm’s™)
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Figure 4. Williams et al. 2006; A comparison of acceptable parameters for the PIRT model applied to paired data sets.
The left hand panels compare data collected for plot 1 (wet sedge), in periods 1 (open symbols) and 2 (grey symbols).
There is clear parameter overlap for both the photosynthesis and respiration model parameters, indicating similar
functional activity. The right hand panels compare data collected in period 1, for Tussock wet (plot 3, open symbols) and
Hilltop heath (plot 7, grey symbols). The lack of overlap in the photosynthesis parameters suggests different functional
attributes of these sites. 2.56 million parameter combinations were tested for acceptability at the 95 % confidence interval
for each dataset.
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Table 6. Generic Parameter Sets for the PIRT

Model Figure 4. Common parameter analysis of the PIRT model for each site and each time period. Symbols indicate that a single
parameter set in the PIRT model can acceptably predict C fluxes at both measurement sites and/or periods. The lack of a
Number of symbol indicates that no common parameters were found (significant at 95% level). Sites and periods are identified by plot
Generic Acceptable ID code (see Table 1). The suffixes a and b indicate that measurements were from the first or second time period,
! b respectively, for the site.
Parameters P k Ry, B Curves
1 141 1000 0535 0.076 18
2 17.0 825 0.172 0.129 a8
3 9.7 550 0.39 0.086 23 : .
. 48 eas 1622 0043 . For Imnavait Creek data set:
5 17.7 500 0.39 0.1 5
6 119 525 0897 0.081 4 Mean RMSE of prediction using generic
7 25.7 725 2928 0.024 %

parameters: 0.70 umol m-2 s-1

Posex. &, By and f are fitted parameters. The total mumber of lght cierves far wiiich
£aoil geNETIc parameater sef was aoeptable i also sloum,

Methodological error: 0.53 umol m-2 s-1



Another problem: Scale of
measurement is different from
scale of prediction

How can we relate plot-scale
controls to stocks and fluxes
predicted over much larger areas?
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GPP at 600 pmol m2 5”1 PPFD

Same data, different analysis
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Leaf area (and NDVI) alone explains 80% of the
variation in canopy photosynthesis (GPP @ 600 umol
PAR) among diverse Low Arctic ecosystems at Abisko,
Sweden
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Experimental plots in Alaska show the
same relationships among photosynthesis,
NDVI, and leaf area as in Scandinavia
(except at very high leaf area in fertilized
plots)



Cross-site modeling:

P P +E,*]

maxL * |n max

* | * ~—k*LAI
P . +E,*I*e

max

NEE = ([R, *e”™ *LAI)+R, )-

Where:

NEE is the measured or predicted net CO2-C flux (umol C per m? ground per
second)

LAl is leaf area as calculated from the measured NDVI (m? leaf/m? ground)
| is the measured incident PAR(pmol photons per m? ground per second)
T is the air temperature during the measurement (°C)

R, R, b, P k, and E, are parameters estimated by nonlinear regression

maxL’

(Shaver et al. 2007)
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Figure 5. Measured versus
modeled NEE, using all
available data from 32
site/vegetation type
combinations.

r2=0.799

slope = 1.000

intercept = 0.000

RMSE = 1.53 ymol m=2 s-'



All data, Abisko Alaska
Parameter all sites data only data only
P ot 15.831 14.821 16.579
K 0.500 0.500 0.500
E, 0.036 0.038 0.035
R, 0.602 0.608 0.614
B 0.074 0.073 0.075
R, 0.547 0.410 0.564
RMSE 1.529 1.816 1.337
r2 0.799 0.803 0.798
Slope 1.000 1.000 1.000
intercept 0.000 0.000 0.000
n= 1410 490 920

Parameters applied to
all data, all sites

Slope & intercept

1.00, 0.00 1.01,0.19 0.99, 0.11

RMSE 1.529 1.543 1.536
r2, modeled vs.

measured

All data, all sites 0.799 0.798 0.798
Abisko sites combined 0.802 0.803 0.800
Alaska sites combined 0.798 0.795 0.798

Model
parameterized
with data from
either Abisko or
Alaska predicts

CO2 flux equally
well at either
site or in whole
data set



Model
parameterized
with data from
any Low Arctic

site or
vegetation type

predicts NEE
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Figure 4. Root Mean Square Error (RMSE, umol m2 s-1) for predictions of NEE in individual sites,
regions, or vegetation types when the NEE, model parameters are developed by regression on the
same data subsets (horizontal axis) or on the whole data set (vertical axis). Points above the 1:1 line
indicate larger RMSE, and thus less accuracy, using the whole data set.



Patch models vs continuous variation

 Patch models can be very accurate (RMSE only
slightly larger than measurement error) but require
separate parameterization of each patch type

« Patch models are subject to additional errors of
classification and within-patch variation

« Continuous variation model has about 2x larger
RMSE than patch model but requires only a single
parameterization

« Continuous variation model parameterized with data
from one part of the Arctic can be used to predict
COZ2 fluxes in other parts of the Arctic

* In continuous variation model, patch size is the same
as the scale of measurements on which predictions
are based



But, more importantly:

* 80% of the variation in net CO, flux (NEE) for a wide
range of low arctic ecosystems can be explained
knowing only leaf area, air temperature, and light

(PAR)

« Species/functional type composition doesn’'t seem to
matter—composition changes dramatically and often
abruptly along climatic gradients but NEE changes
smoothly with leaf area

* Success of continuous model indicates high level of
convergence in canopy structure and function among
diverse tundras






Lightning strikes
have increased
10-fold since
2000

Lightning detections on the North
Slope, 1986-2007 (BLM data)
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lce-Wedge Polygons

Complete loss of organic mat in
some areas
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COMBUSTION LOSSES
VS ANNUAL NEE OF
KUPARUK BASIN:

Combustion loss was
~2.16 Tg over 1039 km2
(measured by Mack et al 2011)

P
h
R % »
L e\.. 5
- £ i
Fanets e

Annual NEE of the Kuparuk R. catchment: 0.218 Tg net C LOSS (measured
1995-96 by Oechel et al. 2000) or 0.23 Tg net C GAIN (modeled 1980-2100 by
McGuire et al. 2000) in 9200 km2.

OR: Fire released as much CO2 to the atmosphere as annual NEE of 9-10
Kuparuk River watersheds in ~10-15% of the area of one watershed

Panarctic tundra biome C sink averaged 3 - 4 Tg C/y over the last 10 years of
the 20th century (McGuire et al. 2009).



Anaktuvuk River Fire

Area burned : 1039 km2
C released : ~2.16 Tg
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What controls NEE
across burn
severity gradient?

MODIS EVI and NEE
correlated

. 0:2 0:3
NEE controlled by LAI MODIS EVI

Does burn severity control
recovery of LAl in burn?

Burn severity = Initial EVI

Maximum EVI

LAI recovery = Max EVI

Initial EVI




How did burn severity influence the
growing season carbon balance?

Sink strength
decreased with burn
severity
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Yearly NEE

(mean predicted)

Change in NEE in 1 year due to
Warming Combustion
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on C cycling

Temperature {°C)

Ground surface

- 0 +
-7[4—-

Active layer

REYRET

Peirmafrost table

Mean annual ground

Minimum monthly
mean temperature

3.27 Typical temperature re
Brown, 1870, 11, Figure 6)

temperature /

x KX

Maximum monthly
mean temperature

Leve! of zero
. annual amplitude

Permafrost

gime in permafrost (after R. J. E.




“The Valley of Thermokarsts”

active layer displacement




Horn Lake

Retrogressive Thaw Slump




Although the area disturbed is relatively small, changes
In response to disturbances (fire, thermokarst) are
much greater and faster than direct responses to

- climate

Changes in C cycling on disturbed sites are large
enough that the regional response to climate change
will be dominated by changes in disturbance regime,

not direct impacts of climate change.
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W.D. Billings 1973: the “mesotopographic
gradient”
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