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Joint BioEnergy Institute (JBEI) 
Six partners – One location 



JBEI provides the basic science  
for converting biomass to fuels 
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Challenges 
•  Cellulose and hemicellulose are occluded by 

lignin 
•  Lignin is recalcitrant to depolymerization 
•  Widely-used pre-treatment processes do not 

effectively remove lignin 
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Two approaches to lignin recalcitrance 
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Two approaches …                                    
                  ...plants with modified lignin 



Some approaches to reducing lignin  
can be detrimental to growth 

(Bonawitz and Chapple, 2010) C4h 
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Controlling the lignin biosynthetic pathway  
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Controlling the lignin biosynthetic pathway  
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Controlling the lignin biosynthetic pathway 
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Engineering lignin deposition in vessels 
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Reduced lignin and increased sugar release 
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Two approaches …                           
          ...better pretreatment methods 
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Traditional pretreatment methods 

Traditional pretreatment methods: 
•  Involve extremes of temperatures, pH, pressure 
•  Dilute acid, base, lime 
•  Produce cellulose/hemicellulose contaminated 

with lignin and various by-products 
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Ionic liquids for pretreatment 
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Switchgrass undergoing IL pretreatment 

•  [C2mim][OAc], 120oC 
•  In situ studies using bright field microscopy 
•  Complementary Raman and fluorescence studies 

indicate that lignin is solvated first, then cellulose 



3D images of switchgrass in IL 

•  Images taken at NCXT @ ALS (Larabell, LeGros, 
Parkinson) 

NCXT 



Molecular dynamics simulations  
of cellulose in ionic liquids 

•  20-mer of cellulose; [C2mim][OAc]/H2O (w/w) = 50/50 
•  MD simulations conducted at NERSC 

Liu et al., Journal of Physical Chemistry (2011), 115(34), 10251-10258. 



Does pretreatment with ionic liquids improve 
cellulose hydrolysis? 
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Ionic liquid pretreated biomass is hydrolyzed 
more quickly by enzymes 
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Ionic liquid pretreatment: 
80% hydrolysis in 7 hours 

Dilute acid pretreatment: 
80% hydrolysis in 70 hours 



IL pretreatment of mixed feedstocks 



Engineering cell wall deposition in fibers 

Challenges 
• High-density biomass would reduce transport costs 

and increase fuel yields 
• More sugar but less lignin is preferable 



Engineering cell wall deposition in fibers 
- the positive feedback loop 

Increase of secondary cell wall biosynthesis in fiber cells 
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Stacking technologies: Engineered plants with 
low lignin and high cell wall deposition 

Yang, Mitra et al., submitted 
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Challenges 
• Biofuels are needed for all kinds of engines, 

particularly diesel and jet engines 
• Many fuel-producing organisms can only utilize a 

fraction of the sugars from biomass 

Some key challenges in converting 
lignocellulosic biomass to fuels 

Sugars 

Microbes 
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Fatty acid ethyl esters 
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Phase separation allows  
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Strain instabilities limit scale-up 
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Strain instabilities limit scale-up 
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FadR regulation improves FAEE production 
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Bisabolane has many qualities of No. 2 diesel 

No 2 Diesel Bisabolane 

Cetane No. 41.6 41.9 

Freeze pt. N/a <-81C 

Cloud pt. -21C <-78C 

Density 864.6 g/L 819 g/L 

Bisabolene Bisabolane 

Peralta-Yahya  et al. 2010 Nature Comm. 2:483 



Finding the best bisabolene synthase 
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Figure 2. Production of bisabolene in E. coli. A. Screening of terpene synthase for the microbial 

production of bisabolene in high yield. Left.  Plant bisabolene synthase gene structures depend 

on their plant origin. Shown gene structure of bisabolene synthases screened. Three-domain 

bisabolene synthases: Picea abies TPS-BIS (AAS47689), Pseudotsuga menziessi TPS3 

(AAX07266), Abies grandis (AAC24192). Two-domain bisabolene synthases: Arabidopsis 

thaliana TPS12 (NP_139064), Arabidopsis thaliana TPS13 (NP_193066). Right. Bisabolene 

production as a function of bisabolene synthase using pJBEI-2704 as the mevalonate pathway. 

Shown is the mean production after 73hrs of growth and the error bars represent the standard 
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Dunlop et al. 2011. Mol. 
Sys. Biol. 7:487. 



Bioprospecting for solvent resistance pumps 

Many different pumps in many 
microbes 
 
How do we find the right ones? 

Dunlop et al. 2011. Mol. Sys. Biol. 7:487. 



Engineering pinene tolerance into E. coli 

Dunlop et al. 2011. Mol. Sys. Biol. 7:487. 
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