

Advanced Fuels from Advanced Plants

Jay Keasling, CEO

Joint BioEnergy Institute (JBEI) Six partners – One location

JBEI provides the basic science for converting biomass to fuels

Four divisions:

Feedstocks Deconstruction Fuels Synthesis

Lignin recalcitrance

Challenges

- Cellulose and hemicellulose are occluded by lignin
- Lignin is recalcitrant to depolymerization
- Widely-used pre-treatment processes do not effectively remove lignin

Two approaches to lignin recalcitrance

Develop better pretreatment methods

Engineer plants to have modified lignin

Two approaches ...

...plants with modified lignin

Develop better pretreatment methods

Some approaches to reducing lignin can be detrimental to growth

Controlling the lignin biosynthetic pathway

Controlling the lignin biosynthetic pathway

Controlling the lignin biosynthetic pathway

Engineering lignin deposition in vessels

40X

of

Reduced lignin and increased sugar release

Saccharification efficiency

Two approaches ...

...better pretreatment methods

Develop better pretreatment methods

Engineer plants to have modified lignin

Traditional pretreatment methods

Develop better pretreatment methods

Traditional pretreatment methods:

- Involve extremes of temperatures, pH, pressure
- Dilute acid, base, lime
- Produce cellulose/hemicellulose contaminated with lignin and various by-products

Ionic liquids for pretreatment

lonic liquids

Biomass

Antisolvent

Add

Switchgrass undergoing IL pretreatment

- [C₂mim][OAc], 120°C
- In situ studies using bright field microscopy
- Complementary Raman and fluorescence studies indicate that lignin is solvated first, then cellulose

NCXT

3D images of switchgrass in IL

Images taken at NCXT @ ALS (Larabell, LeGros, Parkinson)

Molecular dynamics simulations of cellulose in ionic liquids

- 20-mer of cellulose; $[C_2mim][OAc]/H_2O(w/w) = 50/50$
- MD simulations conducted at NERSC

Does pretreatment with ionic liquids improve cellulose hydrolysis?

Ionic liquid pretreated biomass is hydrolyzed more quickly by enzymes

lonic liquid pretreatment: 80% hydrolysis in 7 hours

Dilute acid pretreatment: 80% hydrolysis in 70 hours

Novozymes commercial cellulase cocktails

IL pretreatment of mixed feedstocks

Engineering cell wall deposition in fibers

Challenges

- High-density biomass would reduce transport costs and increase fuel yields
- More sugar but less lignin is preferable

Engineering cell wall deposition in fibers - the positive feedback loop

Increase of secondary cell wall biosynthesis in fiber cells ild type Fibers TF engineered

before

interfascicular fibers

in *Arabidopsis* (dicots)

after

in *Brachypodium* (grasses)

Yang, Mitra et al., in prep

Stacking technologies: Engineered plants with low lignin and high cell wall deposition

Lignin and Fiber engineered

interfascicular fibers

Yang, Mitra et al., submitted

Some key challenges in converting lignocellulosic biomass to fuels

Challenges

- Biofuels are needed for all kinds of engines, particularly diesel and jet engines
- Many fuel-producing organisms can only utilize a fraction of the sugars from biomass

Advanced biofuels from biomass

Advanced biofuels from biomass

Fatty acid ethyl esters

Phase separation allows simple purification of fuel

Strain instabilities limit scale-up

fadD was unstable and limited process scale-up

Strain instabilities limit scale-up

FadR regulation improves FAEE production

Advanced biofuels from biomass

Bisabolane has many qualities of No. 2 diesel

Pd/C, H₂

Bisabolene Bisabolane

Cetane No. 41.6 41.9

Freeze pt. N/a <-81C

Cloud pt. -21C <-78C

Density 864.6 g/L 819 g/L

Finding the best bisabolene synthase

angiosperm

Advanced biofuels from biomass

Normalized OD

Toxic final products

Dunlop et al. 2011. *Mol. Sys. Biol.* **7**:487.

Bioprospecting for solvent resistance pumps

Many different pumps in many microbes

How do we find the right ones?

Engineering pinene tolerance into E. coli

Dunlop et al. 2011. Mol. Sys. Biol. 7:487.

Interactions with industry

novozyme

StatoilHydro

KBASE and BRC Interactions

structure

DATA TYPES

le of

Thanks to

Biological and Environmental Research,
Office of Science, Department of Energy

Office of Science

Office of Science