Supercalifragilistic Advances in Plant Genomics

Jeremy Schmutz

HudsonAlpha Institute for Biotechnology Department of Energy Joint Genome Institute

> BERAC Science Talk October 25th, 2024

Huntsville, Alabama, USA

"Any sufficiently advanced technology is indistinguishable from magic."

Arthur C. Clarke 1973

Berkeley, California, USA

In the beginning there was the human genome

In 1986 Department of Energy announced "Human Genome Initiative" in order to understand how radiation exposure affects DNA and is passed on in the germline

•

How did we sequence DNA?

ABI 377 slab gel

ABI 3730 capillary

1996

Sequencing a whole genome (BAC vs WGS)?

- WGS requires:
 - As long as reads as possible
 - Positional information from pairs
 - Computational power
- WGS advantages:
 - Many fewer libraries
 - Streamlined production
 - Consistent & measurable quality

Research news | Published: 26 January 2001

Weapons lab to develop Celera's new supercomputer

Robert Walgate

Genome Biology 2, Article number: spotlight-20010126-01 (2001) | Cite this article

733 Accesses | 1 Citations | 4 Altmetric | Metrics

LONDON Craig Venter, the CEO of <u>Celera Genomics</u> - which is on the verge of publishing the sequence of the human genome - has signed an agreement with <u>Sandia National Laboratory</u> in the US to develop the most powerful computer in the world within four years - and it'll be used for biology.

What is assembly?

Shotgun ...ACCGTAAATGGGCTGATCATGCTTAAA sequence TGATCATGCTTAAACCCTGTGCATCCTACTG... Assembly ...ACCGTAAATGGGCTGATCATGCTTAAACCCTGTGCATCCTACTG...

Assembly = Computational reconstruction (aka model) of a linear representation of DNA from repeated sampling of sequence (reads) of variably quality & length

AAGCTAAGCCCAATTACGACCCAGATAGCTGGGGACGCGGCGTGATCGTAGCTGC

Completing the human genome

Celebrating the human genome Craig Venter, Ari Patrinos, Francis Collins

46.9 MB DOE FINISHED CHROMOSOMES 323.1 Mb finished sequence 11.3% of human genome 41.0 MB

articles

Initial sequencing and analysis of the 2001

International Human Genome Sequencing Consortium

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Finishing the euchromatic sequence of the human genome

Marvin Frazier

2004

International Human Genome Sequencing Consortium

* A list of authors and their affiliations appears in the Supplementary Information

Marvin Stodolsky

What did JGI do with this sequencing capacity?

I FTTFRS

The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

F. Martin¹, A. Aerts², D. Ahrén³, A. Brun¹, E. G. J. Danchin⁴, F. Duchaussoy¹, J. Gibon¹, A. Kohler¹, E. Lindquist², V. Pereda¹, A. Salamov², H. J. Shapiro², J. Wuyts^{1,5}, D. Blaudez¹, M. Buée¹, P. Brokstein², B. Canbäck³, D. Cohen¹, P. E. Courty¹, P. M. Coutinho⁴, C. Delaruelle¹, J. C. Detter², A. Deveau¹, S. DiFazio⁶, S. Duplessis¹ L. Fraissinet-Tachet⁸, E. Lucic¹, P. Frey-Klett¹, C. Fourrey¹, I. Feussner⁷, G. Gay⁸, J. Grimwood⁹, P. J. Hoegger¹⁰ P. Jain¹¹, S. Kilaru¹⁰, J. Labbé¹, Y. C. Lin⁵, V. Legue¹, F. Le Tacon¹, R. Marmeisse⁸, D. Melayah⁸, B. Montanini¹, M. Muratet¹¹, U. Nehls¹², H. Niculita-Hirzel¹³, M. P. Oudot-Le Secq¹, M. Peter^{1,14}, H. Quesneville¹⁵, B. Rajashekar³ M. Reich^{1,10}, N. Rouhier¹, J. Schmutz⁹, T. Yin¹⁶, M. Chalot¹, B. Henrissat⁴, U. Kües¹⁰, S. Lucas², Y. Van de Peer⁵ G. K. Podila¹¹, A. Polle¹⁰, P. J. Pukkila¹⁷, P. M. Richardson², P. Rouzé^{5,18}, I. R. Sanders¹³, J. E. Stajich¹⁹, A. Tunlid³ G. Tuskan¹⁶ & I. V. Grigoriev²

Genome sequence of the palaeopolyploid

Vol 452 6 March 2008 doi:10.1038/nature0655

soybean

Jeremy Schmutz^{1,2}, Steven B, Cannon³, Jessica Schlueter^{4,5}, Jianxin Ma⁵, Therese Mitros⁶, William Ne⁴ David L. Hyten⁸, Qijian Song^{8,9}, Jay J. Thelen¹⁰, Jianlin Cheng¹¹, Dong Xu¹¹, Uffe Hellsten², Gregory D. RESEARCHARTICLES Yeisoo Yu¹³, Tetsuya Sakurai¹⁴, Taishi Umezawa¹⁴, Madan K. Bhattacharyya¹⁵, Devinder Sandhu¹⁶ Babu Valliyodan¹⁷, Erika Lindquist², Myron Peto³, David Grant³, Shengqiang Shu², David Goodstein², Ku

nature

Montona Futrell-Griggs⁵, Brian Abernathy⁵, Jianchang Du⁵, Zhixi Tian⁵, Liucun Zhu⁵, Navdeep Gill⁵, Tri Marc Libault¹⁷, Anand Sethuraman¹, Xue-Cheng Zhang¹⁷, Kazuo Shinozaki¹⁴, Henry T. Nguyen¹⁷, Rod The Genome of Black Cottonwood. Perry Cregan⁸, James Specht¹⁸, Jane Grimwood^{1,2}, Dan Rokhsar², Gary Stacey^{10,17}, Randy C. Shoemak

nature

nature biotechnology

ARTICLES

Genome sequencing and analysis of the model grass Brachypodium distachyon

The International Brachypodium Initiative

nature

Science

nature

ARTICLE

Vol 456/13 November 2008/doi:10.1038/nature0741

IFTTFRS

The Phaeodactylum genome reveals the evolutionary history of diatom genomes

Chris Bowler^{1,2}, Andrew E. Allen^{1,3}, Jonathan H. Badger³, Jane Grimwood⁴, Kamel Jabbari¹, Alan Kuo⁵, Uma Maheswari¹, Cindy Martens⁶, Florian Maumus¹, Robert P. Otillar⁵, Edda Rayko¹, Asaf Salamov³, Klaas Vandepoele⁶, Bank Beszteri⁷, Ansgar Gruber⁸, Marc Heijde¹, Michael Katinka⁹, Thomas Mock¹⁰ Klaus Valentin⁷, Fréderic Verret¹¹, John A. Berges¹², Colin Brownlee¹³, Jean-Paul Cadoret¹³, Anthony Chiovitti¹ Chang Jae Choi¹², Sacha Coesel²†, Alessandra De Martino¹, J. Chris Detter⁵, Colleen Durkin¹⁰, Angela Falciatore Jérome Fournet¹⁵ Mixoshi Hanuta¹⁶ Marie I. I. Huysman^{6,17} Bethany D. Jenkins¹⁸ Katerina Jiroutova Richard E. Jorgensen²⁰, Yolaine Joubert¹⁵, Aaron Kaplan²¹, Nils Kröger²², Peter G. Kroth⁸, Julie La Roche¹ Erica Lindquist⁵, Markus Lommer²³, Véronique Martin-Jézéquel¹⁵, Pascal J. Lopez¹, Susan Lucas⁵ Manuela Mangogna², Karen McGinnis²⁰, Linda K. Medlin^{7,11}, Anton Montsant^{1,2}, Marie-Pierre Oudot-Le Secq²⁴ Carolyn Napoli²⁰, Miroslav Obornik¹⁹, Micaela Schnitzler Parker¹⁰, Jean-Louis Petit⁹, Betina M. Porcel⁹, Nicole Poulsen²⁵, Matthew Robison¹⁶, Leszek Rychlewski²⁶, Tatiana A. Rynearson²⁷, Jeremy Schmutz Harris Shapiro⁵, Magali Siaut²†, Michele Stanley²⁸, Michael R. Sussman¹⁶, Alison R. Taylor^{51,29}, Assaf Vardi^{1,30} Peter von Dassow³¹, Wim Vyverman¹⁷, Anusuya Willis¹⁴, Lucian S, Wyrwicz²⁶, Daniel S, Rokhsar⁵, Jean Weissenbach⁹, E. Virginia Armbrust¹⁰, Beverley R. Green²⁴, Yves Van de Peer⁶ & Igor V. Grigoriev

> OPEN doi:10.1038/nature13308

The genome of Eucalyptus grandis

Alexander A. Myburg^{1,2}, Dario Grattapaglia^{3,4}, Gerald A. Tuskan^{4,6}, Ulfe Hellsten⁴, Richard D. Hayes⁵, Jane Grimwood⁷, Jerry Jenkins⁷, Erika Lindquist², Hope Tice², Diane Bauer², David M. Goodstein³, Inna Dubchak², Alexandre Dollakov³, Eshchar Mizrachi^{1,2}, Anand R. K. Klullan^{1,2}, Steven G. Hussey^{1,2}, Desre Pinard^{1,2}, Karen van der Merwe^{1,2}, Pooja Singh^{1,2}, Ida van Jaarsveld⁴, Orzenil B. S. Kluu-Juniof², Roberto G. Togawa³, Mariila R. Papas³, Danielle A. Frait³, Carolina P. Sansalon¹ Cesar D. Petroli³, Xiaohan Yang⁶, Priya Ranjan⁶, Timothy J. Tschaplinski⁶, Chu-Yu Ye⁶, Ting Li⁶, Lieven Sterck¹⁰, Kevin Vanneste¹⁰ Cesar D', retroit "Auonan Tang", r'hya Rangan", innotiny i senapiniski "Cut- 'u te', ing U, Leven Setrec, "Aewi Nameset" Forent Mural", Marcia Soler", Héléne San Chemente", Najib Said", 'Hua Cassan "Wang", Christopher Danand", Charles A. Hefer^{3,1}, Brich Bornberg-Bauer", Anna R. Kersting^{4,45}, Kelly Wining¹⁶, Vindhya Amarasinghe¹⁰, Marin Ranik¹⁶, Sushma Naithan^{17,8}, Justin Bert", 'Alexander E. Boyd¹⁸, Aron Liston^{12,8}, Joseph W, Spatzlor^{21,87}, Palitha Dharmwardhana¹⁷, Rajani Raja¹⁷, Christopher Sullivan¹⁸, Elison Romanel^{19,50,27}, Marcio Alves - Ferreira¹⁷, Carsten Külheim²⁷, Willam Foley⁷², Vietor Carocha^{12,73,41}, togge Hurdin^{23,41}, David Kurlar^{25,50}, Marcio Alves - Ferreira¹⁷, Carsten Külheim²⁷, Willam Foley⁷², Vietor Carocha^{12,73,41}, togge Hurdin^{23,41}, David Kurlar^{25,50}, Marcio Alves - Ferreira¹⁷, Carsten Külheim²⁷, Willam Foley⁷², Philippe Rigault⁷⁰, Josquin Tibbits¹⁰, Antanas Spokevicius¹⁸, Rebeca C, Jones²⁷, Dorothy A, Steane^{17,25}, René E, Vallancourt¹⁷, Kullan Kurlar^{15,150}, Kene Kurlar^{15,150} Brad M. Potts³², Fourie Joubert^{3,8}, Kerrie Barry⁵, Georgios J. Pappas Jr³⁴, Steven H. Strauss¹⁶, Pankaj Jaiswal¹ Jacqueline Grima-Pettenati¹², Jérôme Salse¹¹, Yves Van de Peer^{2,10}, Daniel S. Rokhsar⁵ & Jeremy Schmutz^{5,7}

Vol 457 29 January 2009 doi:10.1038/nat

ARTICIES

The Sorghum bicolor genome and the

diversification of grasses Andrew H. Paterson¹, John E. Bowers¹, Rémy Bruggmann², Inna Dubchak³, Jane Grimwood⁴, Heidrun Gundlach⁵, Georg Haberer⁵, Uffe Hellsten³, Therese Mitros⁶, Alexander Poliakov³, Jeremy Schmutz⁴, Manuel Spannagl⁵, Haibao Tang¹, Xiyin Wang^{1,7}, Thomas Wicker⁸, Arvind K. Bharti², Jarrod Chapman³, F. Alex Feltus^{1,9}, Udo Gowik¹⁰ Igor V. Grigoriev⁵, Eric Lyons¹¹, Christopher A, Maher¹², Mihaela Martis⁵, Apurya Narechania¹², Robert P, Otillar¹ Bryan W. Penning¹³, Asaf A. Salamov³, Yu Wang⁵, Lifang Zhang¹², Nicholas C. Carpita¹⁴, Michael Freeling¹¹, Alan R. Gingle¹, C. Thomas Hash¹⁵, Beat Keller⁸, Patricia Klein¹⁶, Stephen Kresovich¹⁷, Maureen C. McCann¹ Ray Ming¹⁸, Daniel G. Peterson^{1,19}, Mehboob-ur-Rahman^{1,20}, Doreen Ware^{12,21}, Peter Westhoff¹⁰ Klaus F. X. Mayer⁵, Joachim Messing² & Daniel S. Rokhsar^{3,4}

Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication

G Albert Wu^{1,29}, Simon Prochnik^{1,29}, Jerry Jenkins², Jerome Salse³, Uffe Hellsten¹, Florent Murat Xavier Perrier⁴, Manuel Ruiz⁴, Simone Scalabrin⁵, Javier Terol⁶, Marco Aurélio Takita⁷, Karine Labadie⁸, Julie Poulain⁸, Arnaud Couloux⁸, Kamel Jabbari⁸, Federica Cattonaro⁵, Cristian Del Fabbro⁵, Sara Pinosio⁵ Andrea Zuccolo^{5,9}, Jarrod Chapman¹, Jane Grimwood², Francisco R Tadeo⁶, Leandro H Estornell⁶, Juan V Muñoz-Sanz⁶, Victoria Ibanez⁶, Amparo Herrero-Ortega⁶, Pablo Aleza¹⁰, Julián Pérez-Pérez^{11,12} Daniel Ramón¹¹, Dominique Brunel^{8,13}, François Luro¹⁴, Chanxian Chen^{15,28}, William G Farmerie¹⁶, Brian Desany¹⁷, Chinnappa Kodira¹⁷, Mohammed Mohiuddin¹⁷, Tim Harkins^{17,28}, Karin Fredrikson¹¹ Paul Burra^{15,19}, Alexandre Lomsadze^{18,19}, Mark Borodovsky¹⁸⁻²⁰, Giuseppe Reforgiato²¹, Juliana Freitas-Astúa^{7,22} Francis Quetier^{8,23}, Luis Navarro¹⁹, Mikeal Roose²⁴, Patrick Wincker^{8,23,25}, Jeremy Schmutz², Michele Morgante^{5,26}, Marcos Antonio Machado⁷, Manuel Talon⁶, Olivier Jaillon^{8,23,25}, Patrick Ollitrault⁴, Frederick Gmitter¹⁵ & Daniel Rokhsar^{1,27}

G. A. Tuskan,^{1,2*} S. DiFazio,^{1,4} † S. Jansson,⁵ † J. Bohlmann,⁴ † I. Grigoriev,⁹ † U. Hellsten,⁹ † N. Putnam,⁸ † S. Ralph,⁴ † S. Rombauts,⁵⁰ † A. Salamov,⁴ † J. Schein,¹³ † L. Sterck,¹⁵ † A. Aerts,¹ R. B. Bhaleroo,⁵ R. P. Bhaleroo,¹² D. Blaudez,¹³ W. Boerian,¹⁵ A. Brunu¹³ A. Brunner,¹⁴

Populus trichocarpa (Torr. & Grav)

R. R. Bhalerao,* R. P. Bhalerao,* D. Blaudez,** W. Boorjan,** A. Brun,** A. Brunner,** W. Buroy,* M. Campbell,** J. Cattorine,** D. Blaudez,** W. Boorjan,** A. Brunner,** P. M. Coutinho,** J. Couttiner,** S. Covert,** O. Cronk,* R. Conningham,** El Davis,** S. Degroser,** A. Dajscinfi,** C. Catharphilis,** J. Deters** D. Bioks,** J. Bubchak,** S. Duplessi,** J. Exhting,** B. Ellis,* K. Gendler,** D. Goodstein,** M. Girbakov,** J. Grimmood,** A. Grover,** L. Gunter,* B. Anaberger, R. Heinz,** V. Healtrita, 1,*** B. Henriss,** D. Holligan,** R. Holt,** W. Huang, ** Listan-Faridi,** S. Jones,** M. B. Ineors-Rhoades,** R. Jongensen,** C. Dohk**, S. Kantonian,** C. Napadi,** D. Hearting, ** Landes,** M. Kirk,** A. Kohlex,** U. Kalluri,* F. Larimer,* J. Leebens-Mack,** J.-C. Leple,** P. Locascio,* Y. Lov,* S. Lucz,** R. Martin,** B. Anoniani,** C. Napadi,** D. R. Kirkaari,** C. Neston,** K. Hiemmen,** O. Hilsson,** V. Pereda,** G. Peter,** K. Philippe,* G. Flatta,** A. Kohlex,** B. Kazumovskaya,* R. Richardion,** C. Knalad,** S. K. Hull,** S. Koses,** G. Nabav,** J. Schmatz,** J. Schrader,** B. Segerman,** H. Shin,** A. Siddiqui,** F. Steky,** A. Ferry,* C. J. Tau,** C. Buethacher,** R. J. Manehamer,** J. Leabers,** Kull,** S. Koses,** L. Schmatz,** B. Schrader,** B. Segerman,** H. Shin,** A. Siddiqui,** F. Steky,** A. Ferry,* C. J. Tau,** C. Washacher,** B. Segerman,** H. Shin,** A. Siddiqui,** F. Steky,** A. Ferry,** C. J. Tau,** C. Washacher,** B. Segerman,** G. Sandberg,** Y. Van de Peer,*** D. Rokhar*** B. Segerma,** B. Steky,** K. Hull,**, S. Seser,** G. Sang,*** T. Yin,* C. Douglas,* M. Marra,** G. Sandberg,*** Y. Van de Peer,*** D. Rokhar****

LETTER

Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres

Andrew H. Paterson¹, Jonathan F. Wendel², Heidrun Gundlach³, Hui Guo¹, Jerry Jenkins^{4,5}, Dianchuan Jin⁶, Danny Llewellyn⁷, Kurtis C. Showmaker⁸, Shengqiang Shu⁴, Joshua Udall⁹, Mi-jeong Yoo², Robert Byers⁹, Wei Chen⁶, Adi Doron-Faigenboim¹ Mary V. Duke", Let Gong", Jane Grimwood", Corrine Grover, Kara Grupp', Guanjing Hu", Tac-ho Lee', Jingping Li, Lifeng Lin, Mary V. Duke", Let Gong", Jane Grimwood", Corrine Grover, Kara Grupp', Guanjing Hu", Tac-ho Lee', Jingping Li, Lifeng Lin, Tao Liné, Barry S. Marler', Justin T. Page", Allson W. Roberts", Elisson Romanel³, William S. Sanders", Emmanuel Szadkowski?, Xu Tan', Habao Tang^{1,4}, Chuanning Xu^{2,5}, Jinpeng Wang⁴, Zining Wang⁴, Dong Zhang⁴, Lan Lang⁶, Hamid Ashrafi¹⁶, Frank Bedon⁷, John E. Bowers³, Curt L. Brubaker^{2,37}, Peng W. Chee³, Sayan Das⁵, Alan R. Gingle', Candaog H. Haigler¹⁹, David Harker9, Lucia V. Hoffmann20, Ran Hovav10, Donald C. Jones21, Cornelia Lemke1, Shahid Mansoor1.22 Mehboob ur Rahman²², Lisa N. Rainville¹, Aditi Rambani⁹, Umesh K. Reddy²³, Jun-kang Rong¹, Yehoshua Saranga²⁴ Brian E. Scheffler¹¹, Jodi A. Scheffler¹¹, David M. Stelly²⁵, Barbara A. Triplett²⁶, Allen Van Deynze¹⁶, Maite F. S. Vaslin² Vijay N. Waghmare²⁸, Sally A. Walford⁷, Robert J. Wright²⁹, Essam A. Zakl³⁰, Tlanzhen Zhang³¹, Elizabeth S. Dennis⁷, Klaus F. X. Mayer³, Daniel G. Peterson⁸, Daniel S. Rokhsar⁴, Xiyin Wang^{1,6} & Jeremy Schmutz

OPEN doi:10.1038/nature11798

Post-Sanger genome sequencing

Solexa GA 2006

Illumina 2500 2012

PacbBio RS 2011

PacbBio RSII 2013

PacbBio Sequel 2016

Short read platforms

- + super inexpensive data
- + low error rate (99.5% accuracy)
- + metric tons of it
- 76 to 150 bp reads
- Short fragments (400bp)

Long read platforms

- expensive data (its all relative)
- high error rate (82% accuracy)
- low production
- + 2,000 50,000 bp reads
- + Greatly reduce assembly complexity

New science with long reads

genetics

ARTICLES https://doi.org/10.1038/s41588-019-0405-z

OPEN

The genome sequence of segmental allotetraploid peanut *Arachis hypogaea*

David J. Bertioli (12.3.30*, Jerry Jenkins) 4.30, Josh Clevenger 1.2.3.30, Olga Dudchenko 5, Dongying Gao1, Guillermo Seijo^{6,7}, Soraya C. M. Leal-Bertioli^{12.8}, Longhui Ren⁹, Andrew D. Farmer¹⁰, Manish K. Pandey 1, Sergio S. Samoluk^{6,7}, Brian Abernathy¹, Gaurav Agarwal⁸, Carolina Ballén-Taborda², Connor Cameron¹⁰, Jacqueline Campbell ¹⁰, Carolina Chavarro¹², Annapurna Chitikineni¹¹, Ye Chu³, Sudhansu Dash¹⁰, Moaine El Baidouri^{14,51}, Baozhu Guo⁶, Wei Huang¹², Kyung Do Kim¹¹, Walid Korani ¹⁰, Sophie Lanciano^{15,18,19}, Christopher G. Lui⁵, Marie Mirouze ^{15,18,19}, Márcio C. Moretzsohn²⁰, Melanie Pham⁵, Jin Hee Shin¹¹⁷, Kenta Shirasawa ²¹, Senjuti Sinharoy²², Avinash Sreedasyam ⁴, Nathan T. Weeks ²³, Xinyou Zhang^{24,25}, Zheng Zheng^{24,25}, Zigi Sun^{24,25}, Lutz Froenicke²⁶, Erez L. Aiden⁵, Richard Michelmore²⁶, Rajeev K. Varshney ¹¹, C. Corley Holbrok²⁷, Ethalinda K. S. Cannon ¹², Brian E. Scheffler ²⁸, Jane Grimwood⁴, Peggy Ozias-Akins^{2,13}, Steven B. Cannon ^{62,3,31}, Scott A. Jackson ^{61,2,3,31}* and Jeremy Schmutz ^{64,29,31*}

Inbred Tetraploid (2x)

Outbred Diploid (2x) Partial resolved 2nd nature

ARTICLE

https://doi.org/10.1038/s41467-021-24328-w OPEN

Four chromosome scale genomes and a pangenome annotation to accelerate pecan tree breeding

John T. Lovello ^{1,1584}, Nolan B. Bentley ^{2,15}, Gaurab Bhattarai^{3,15}, Jerry W. Jenkins ^{1,15}, Avinash Sreedasyam ^{1,15}, Yanina Alarcon ⁴, Clive Bock⁵, Lori Beth Boston¹, Joseph Carlson⁶, Kimberly Cervantes⁷, Kristen Clermont⁸, Sara Duke⁹, Nick Krom⁴, Keith Kubenka¹⁰, Sujan Mamidi¹, Christopher P. Mattison ⁸, Maria J. Monteros ⁴, Cristina Pisani⁵, Christopher Plott¹, Shanmugam Rajasekar¹¹, Hormat Shadgou Rhein⁷, Charles Rohla⁴, Mingzhou Song¹², Rolston St. Hilaire¹³, Shengqiang Shuo ⁶, Lenny Wells¹⁴, Jenell Webber¹, Richard J. Heerema ¹², Patricia E. Klein ⁹, Patrick Conner¹⁴, Xinwang Wang¹⁰, L. J. Grauke ¹⁰, Jane Grimwood ¹, Jeremy Schmutz ¹⁶⁸⁸ & Jennifer J. Randall⁷⁸⁸

Check for updat

Article Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass

https://doi.org/10.1038/s41586-020-03127-1 Received: 1 July 2020

Check for updates
Open access
Published online: 27 January 2
Accepted: 16 December 2020

nature

John T. Lovell¹³⁴⁵, Alice H. MacQueen^{2,38}, Sujan Mamidi¹³⁸, Jason Bonnette^{2,38}, Jerry Jenkins¹³⁸, Joseph D. Napier², Avinash Sreedasyam³, Adam Healey¹, Adam Session^{3,4}, Shengqiang Shu², Kerie Barry³, Stacy Bonos⁶, LoriBeth Boston¹, Christopher Daum³, Shweta Deshande³, Aren Ewing³, Paul P. Grabowski¹, Taslima Haque⁶, Melanie Harrison⁴, Jiming Jiang⁹, Dave Kudma⁴, Anna Lipzen⁹, Thomas H. Pendergast IV^{610,17}, Chris Plott¹, Peng Qi⁹, Christopher A. Saski¹⁰, Eugene V. Shakirov^{2,13}, David Sims¹, Manoj Sharma⁴, Rita Sharma³, Ada Stewart¹, Vasanth R. Singan³, Yuhong Tang¹⁶, Sandra Thibivillier⁷, Jenell Webber¹, Xiaoyu Weng⁴, Melissa Williams¹, Guohong Albert Wu³, Yuko Yoshinaga³, Matthew Zane⁹, Li Zhang⁴, Jiyi Zhang¹⁶, Kathrine D. Behrman¹, Arvid R. Boe¹⁸, Philip A. Fay³⁰, Rois R. Fritsch^{27,1}, Julio Lastrow²¹, John Lioyd-Reilley²⁷, Juan Manuel Martinez. Reyna²³, Roser Matamala²¹, Robert B. Mitchell²⁴, Francis M. Rouquette Jr²⁸, Pamela Ronald^{28,27}, Malay Saha³⁰, Christian M. Tobia³⁵, Michael Udvard¹¹⁰, Rod A. Wing⁴, Yanqi Wu²⁷, Laura E. Bartley^{20,21}, Michael Casler^{22,23}, Katrien M. Devo^{30,101,43}, Javid B. Lowry^{23,5}, Daniel S. Rokhsar^{2,43,53,7}, Jane Grimwood⁴, Thomas E. Juenger^{22,58} & Jeremy Schmutz^{13,58}

Outbred Tetraploid (4x) Blended single haplotype

genetics

ARTICLES https://doi.org/10.1038/s41588-020-0614-5

Check for upda

Genomic diversifications of five *Gossypium* allopolyploid species and their impact on cotton improvement

Z. Jeffrey Chen ^{12,14}^{SD}, Avinash Sreedasyam ^{3,34}, Atsumi Ando^{1,34}, Qingxin Song^{12,14}, Luis M. De Santiago ^{4,14}, Amanda M. Hulse-Kemp⁵, Mingquan Ding¹⁵, Wenxue Ye², Ryan C. Kirkbride³, Jerry Jenkins³, Christopher Plott³, John Lovell³, Yu-Ming Lin⁴, Robert Vaughn⁴, Bo Liu⁴, Sheron Simpson⁷, Brian E. Scheffler ⁵, Li Wen⁸, Christopher A. Saski⁸, Corrinne E. Grover ⁵, Guanjing Hu⁹, Justin L. Conover ⁹, Joseph W. Carlson¹⁰, Shengqiang Shu^{9,10}, Lori B. Boston³, Melissa Williams³, Daniel G. Peterson¹¹, Keith McGee¹², Don C. Jones¹³, Jonathan F. Wendel ⁹, David M. Stelly⁶⁴, Jane Grimwood^{5,128} and Jeremy Schmutz³¹⁰

Inbred Tetraploid (2x)

- Enabled by longer primary reads (up to 200kb)
- Better data collection on new instruments
- New analysis techniques

 2023 – new instruments that collect 13x the data for 1/3 cost

PacBio Revio 2023

DNN model for consensus

DeepConsensus: Gap-Aware Sequence Transformers for Sequence Correction

Gunjan Baid^{1*}, Daniel E. Cook^{1*}, Kishwar Shafin¹, Taedong Yun¹, Felipe Llinares-López¹, Quentin Berthet¹, Aaron M. Wenger², William J. Rowell², Maria Nattestad¹, Howard Yang¹, Alexey Kolesnikov¹, Armin Töpfer², Waleed Ammar¹, Jean-Philippe Vert¹, Ashish Vaswani¹, Cory Y. McLean¹, Pi-Chuan Chang¹^, Andrew Carroll¹^

Pi-Chang Chang

Andrew Carroll

Google Al

Nature Biotechnology 41, 232–238 (2023)

Quality of reads

Science

Info & Affiliations

HOME > SCIENCE > VOL. 376. NO. 6588 > FROM TELOMERE TO TELOMERE:

genetic state of human repeat elements

SPECIAL ISSUE RESEARCH ARTICLE HUMAN GENOMICS

From telomere to telomere: The transcriptional and epi-

SAVANNAH J. HOYT 🍈 , JESSICA M. STORER 🍈 , GABRIELLE A. HARTLEY, PATRICK G. S. GRADY 🍈 , ARIEL GERSHMAN 🍈 , LEONARDO G. DE LIMA 🝈 , CHARLES LIMOUSE REZA HALABIAN 🍈 , LUKE WOJENSKI 🍈 , MATIAS RODRIGUEZ 🍈 , NICOLAS ALTEMOSE 🍈 , ARANG RHIE 🍈 , LEIGHTON J. CORE 🍈 , JENNIFER L. GERTON 🍈 , WOJ-

CIECH MAKALOWSKI (D), DANIEL OLSON (D), JEB ROSEN (D), ARIAN F. A. SMIT (D), AARON F. STRAIGHT (D), MITCHELL R. VOLLGER (D), TRAVIS J. WHEELER (D)

Submit manuscrip

MATTER

at Last

linked to diseases.

The New Hork Eimes

Home / 2022 / May / Karen Mica Named one of TIME's 100 Most Influential People of 2022 Karen Miga Named one of TIME's 100 Most Influential People of 2022 May 23, 2022

SHARE THIS STORY: ¥ f in 3

Karen Miga, assistant professor of biomolecula engineering at UC Santa Cruz, was named one of 100 most influential people of 2022 by TIM nor was announced on May 23.

figa and her colleagues, Adam Phillippy, Eva Eichler, and Michael Schatz, led an international team of scientists - the Telomere-to-Telomere (T2T) Consortium - to complete the first gapless sequence of the human genome. Parts of the human genome are now available to stud for the first time, allowing researchers to better inderstand genetic diseases, human diversity and evolution The gaps now filled by the new sequence in

Scientists Have Finally Sequenced the Complete Human Genome – And Revealed New Genetic Secrets

TOPICS DNA Genetics Genome Popular IIC Berkeley

are probably functional, and many new variants that may be

Find it on github: jtlovell/GENESPACE

Three lines of R to compare multiple complex genomes

MICHAEL C. SCHATZ 🍈 , EVAN E. EICHLER 🍈 , ADAM M. PHILLIPPY 🍈 , WINSTON TIMP 🍈 , KAREN H. MIGA 🍈 , AND RACHEL J. O'NEILL 📵 Authors fewer

Lovell & Grimwood, Nature News and Views, 2022

99+% of this is from HIFI alone

Scientists Finish the Human Genome

By Public Affairs

The complete genome uncovered more than 100 new genes that

the entire short arms of five human chromosomes and cover some of the most complex regions of the genome. These include highly repetitive DNA sequences found in ane

COMPLEXITY

Inbred genome references of small plants

Year	Build	Assembled Size	Contig Number	Contig N50 (MB)
2007	V1 WGS Sanger ¹	688 MB	12,873	0.2
2013	Rio AllPaths Illumina	404 MB	49,137	0.02
2015	V3 WGS Improved ²	675 MB	4,783	1.3
2016	Rio RSII ³	729 MB	3,830	0.4
2018	V4 PacBio Sequel ⁴	721 MB	411	17.7
2020	V5 PacBio Sequel2 ⁴	720 MB	89	50.7
2022	V6 PacBio Hi-Fi ⁴	718 MB	21	55.0

¹ Paterson, Nature 2009
² McCormick, Plant 2017
³ Cooper, BMC genomics 2019
⁴ Unpublished

Poplar experiments

RESEARCH ARTICLE

The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)

G. A. Tuskan^{1,3,*}, S. DiFazio^{1,4,†}, S. Jansson^{5,†}, J. Bohlmann^{6,†}, I. Grigoriev^{9,†}, U. Hellsten^{9,†}, N. Putnam^{9,†}, S. Ralph^{6,†}, S. Rombauts^{10,†}, A. Salamov^{9,†}, J. Schein^{11,†}, L. Sterck^{10,†}, A. Aerts⁹, R. R. Bhalerao⁵, R. P. Bhalerao¹², D. Blaudez¹³, W. Boerjan¹⁰, A. Brun¹³, A. Brunner¹⁴, V. Busov¹⁵, M. Campbell¹⁶, J. Carlson¹⁷, M Chalot¹³, J. Chapman⁹, G.-L. Chen², D. Cooper⁶, P. M. Coutinho¹⁹, J. Couturier¹³, S. Covert²⁰, Q. Cronk⁷, R. Cunningham¹, J. Davis²², S. Degroeve¹⁰, A. Déjardin²³, C. dePamphilis¹⁸, J. Detter⁹, B. Dirks²⁴, I. Dubchak^{9,25}, S. Duplessis¹³, J. Ehlting⁷, B. Ellis⁶, K. Gendler²⁶, D. Goodstein⁹, M. Gribskov²⁷, J. Grimwood²⁸, A. Groover²⁹, L. Gunter¹, B. Hamberger⁷, B. Heinze³⁰, Y. Helariutta^{12,31,33}, B. Henrissat¹⁹, D. Holligan²¹, R. Holt¹¹, W. Huang⁹, N. Islam-Faridi³⁴, S. Jones¹¹, M. Jones-Rhoades³⁵, R. Jorgensen²⁶, C. Joshi¹⁵, J. Kangasjärvi³², J. Karlsson⁵, C. Kelleher⁶, R. Kirkpatrick¹¹, M. Kirst²², A. Kohler¹³, U. Kalluri¹, F. Larimer², J. Leebens-Mack²¹, J.-C. Leplé²³, P. Locascio², Y. Lou⁹, S. Lucas⁹, F. Martin¹³, B. Montanini¹³, C. Napoli²⁶, D. R. Nelson³⁶, C. Nelson³⁷, K. Nieminen³¹, O. Nilsson¹², V. Pereda¹³, G. Peter²², R. Philippe⁶, G. Pilate²³, A. Poliakov²⁵, J. Razumovskaya², P. Richardson⁹, C. Rinaldi¹³, K. Ritland⁸, P. Rouzé¹⁰, D. Ryaboy²⁵, J. Schmutz²⁸, J. Schrader³⁸, B. Segerman⁵, H. Shin¹¹, A. Siddiqui¹¹, F. Sterky³⁹, A. Terry⁹, C.-J. Tsai¹⁵, E. Uberbacher², P. Unneberg³⁹, J. Vahala³², K. Wall¹⁸, S. Wessler²¹, G. Yang²¹, T. Yin¹, C. Douglas^{7,‡}, M. Marra^{11,‡}, G. Sandberg^{12,‡}, Y. Van de Peer^{10,‡}, D. Rokhsar^{9,24,‡}

2006

- 1,000+ natural genotypes planted in three common gardens
- Resequenced to identify 45M SNPs & phenotyped for many years

Population genomics of *Populus trichocarpa* identifies signatures of selection and adaptive trait associations

Mediation of plant-mycorrhizal interaction by a lectin receptor-like kinase nature plants

A 5-Enolpyruvylshikimate 3-Phosphate Synthase Functions as a Transcriptional Repressor in Populus^[OPEN]

penetics

Sequencing and Analysis of the Sex Determination Region of *Populus* trichocarpa

Jerry Tusken CBI/ORNL

Wellington Muchero **CBI/ORNL**

Jay Chen CBI/ORNL Dan Jacobsen **CBI/ORNL**

Agave REVEILLE1 regulates the onset and release of seasonal dormancy in Populus Plant Physiology[®]

Expression quantitative trait loci mapping identified PtrXB38 as a key hub gene in adventitious root development in *Populus* New

Outbred diploid P. tremula x P. alba = 717-1B4

<i>the</i> plant journal	S (=) B
The Plant Journal (2023) 116. 1003–1017	doi: 10.1111/tpi.16454

SPECIAL ISSUE ARTICLE

Haplotype-resolved genome assembly of *Populus tremula* × *P. alba* reveals aspen-specific megabase satellite DNA **0 0**

Ran Zhou^{1,2,3}, Jerry W Jenkins⁴, Vibing Zeng², Shengqiang Shu⁵, Hosung Jang², Scott A. Harding^{1,2,3}, Melissa Williams⁴, Christopher Plott⁴, Kerrie W. Barry⁵, Maxim Koriabine⁵, Mojgan Amirebrahimi⁵, Jayson Talag⁶, Shanmugam Rajasekar⁶, Jane Grimwood⁴, Robert J. Schmitz², R. Kelly Dawe^{2,3}, Jeremy Schmutz^{4,5}, and Chung-Jui Tsai^{1,2,3,*}

Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA

William P. Bewg (1), ^{1,2,3}, Scott A. Harding (1), ^{1,2,3}, Nancy L. Engle (1), ⁴ Brajesh N. Vaidya, ^{5,†} Ran Zhou (1), ^{1,2,3}, Jacob Reeves, ^{6,6} Thomas W. Horn (10), ⁶ Nirmal Joshee (1), ⁵ Jerry W. Jenkins (10), ^{7,8} Shengqiang Shu (10), ⁸ Kerrie W. Barry (10), ⁸ Yuko Yoshinaga (10), ⁸ Jane Grimwood (10), ^{7,8} Robert J. Schmitz (10), ² Jeremy Schmutz (10), ^{7,8} Timothy J. Tschaplinski (10), ⁴ and Chung-Jui Tsai (10), ^{1,2,3,6,1}

C.J. Tsai UGA & CBt

Applying 717

106-22 (9)

0+

106-2

Early Flower Induction

Indeterminate growth after harvest

Morphotypes (architecture/trichome) Chemotypes (bisabolene/cell wall)

Robin Buell, Chris Dardick, Wayne Parrott, Bob Schmitz, Patrick Shih, CJ Tsai, Breeanna Urbanowicz

C.J. Tsai UGA & CBI

18

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome

Erez Lieberman-Aiden,^{1,2,3,4}* Nynke L. van Berkum,⁵* Louise Williams,¹ Maxim Imakaev,² Tobias Ragoczy,^{6,7} Agnes Telling,^{6,7} Ido Amit,¹ Bryan R. Lajoie,⁵ Peter J. Sabo,⁸ Michael O. Dorschner,⁸ Richard Sandstrom,⁸ Bradley Bernstein,^{1,9} M. A. Bender,¹⁰ Mark Groudine,^{6,7} Andreas Gnirke,¹ John Stamatoyannopoulos,⁸ Leonid A. Mirny,^{2,11} Eric S. Lander,^{1,12,13}† Job Dekker⁵†

Dovetail[®] Omni-C[®] Kit

Produce the highest quality genome assembly.

Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm

Haoyu Cheng, Gregory T. Concepcion, Xiaowen Feng, Haowen Zhang & Heng Li

Nature Methods 18, 170–175 (2021) Cite this article

Haplotype-resolved assembly of diploid genomes without parental data

Haoyu Cheng, Erich D. Jarvis, Olivier Fedrigo, Klaus-Peter Koepfli, Lara Urban, Neil J. Gemmell & Heng

Nature Biotechnology 40, 1332–1335 (2022) Cite this article

Heng Li Harvard

Also wrote BWA and Minimap

Ecotypes & genetic groups

17 - 34 kyrs, ~8k generations

19 - 27 kyrs, last glacial maxima

Demonstrates/proves how selection and evolution act in a complex native grass.

Today's switchgrass genomes

Release	Size (GB)	Contigs	CN50 (MB)
AP13 V5 CLR	1.10	482	4.3
AP13 V6 H1	1.14	30	55.2
AP13 V6 H2	1.13	33	52.4

4x Upland

4x Lowland₂₃

JGI CSPs

502977 JBEI – Sequencing Sugarcane BACs 502967-Understanding polyploidy through the generation of the first sugarcane genome sequence - 2017 504319- Genomic Diversity in the Saccharum Complex - 2019

Angelique D'Hont

Karen Aiken

Robert Henry

U.S. DEPARTMENT OF

Office of Science

CSIRO

THE UNIVERSITY

OF QUEENSLAND

AUSTRALIA

K. S. Aitken⁷, J. Schmutz¹⁴ & A. D'Hont^{2,3}

A. L. Healey¹²⁷, O. Garsmeur^{2,3}, J. T. Lovell^{1,4}, S. Shengquiang⁴, A. Sreedasyam¹, J. Jenkins¹,

C. B. Plott¹, N. Piperidis⁵, N. Pompidor^{2,3}, V. Llaca⁶, C. J. Metcalfe⁷, J. Doležel⁸, P. Cápal⁸, J. W. Carlson⁴, J. Y. Hoarau^{23,9}, C. Hervouet^{2,3}, C. Zini^{2,3}, A. Dievart^{2,3}, A. Lipzen⁴, M. Williams¹,

L. B. Boston¹, J. Webber¹, K. Keymanesh⁴, S. Tejomurthula⁴, S. Rajasekar¹⁰, R. Suchecki¹¹, A. Furtado¹², G. May⁶, P. Parakkal⁶, B. A. Simmons^{12,13}, K. Barry⁴, R. J. Henry^{12,14}, J. Grimwood¹,

https://doi.org/10.1038/s41586-	024-07231-4
Received: 24 February 2023	
Accepted: 23 February 2024	
Published online: 27 March 2024	

Open access

Brandon James

Sugarcane is complicated

Multiple sequencing attempts

Release	Size	Contigs	Contig N50
Illumima	5.0 Gb	1,700,000	4.4 Kb
Long read	7.4 Gb	33,222	482 kb
HiFi	9.6 Gb	38,822	10 Mb

HiFi version

- Better splitting of haplotypes
- ~20X longer contigs
- ~11,000 more genes captured

HiC for validation

Genetic map (Self1)

ACACGCCTAGGCATCCTACGGTTGTACAATAA ACACGCCTAGGCATCCTACGGTTGTACAATAA

Single chromosome sort libraries (SCL)

20k genes

ARTICLE 008: 10.1038/s41467-018-05051-5 0F

A mosaic monoploid reference sequence for the highly complex genome of sugarcane

Olivier Garsmeure¹², Gaetan Drac¹², Rudie Antonise¹, Jane Grimwood⁴, Bernard Potiere¹⁵, Karen Akiten⁶, Jerry Jenko⁴⁵, Guillaume Marting¹², Carine Charrone¹², Catherne Hervouet¹², Laurett Costel², ¹ Nabila Vahiou⁴³, Adam Heale⁴, ¹Ovid Sims⁴, Yessei Chenkun⁴⁷, Aninah Seedasyam⁴, Andreg Kian⁸, Agnes Chan⁹, Marie-Anne Van Sluys¹⁰, ¹Sankhita Swaminathan⁴, Christopher Toam⁶, ¹Hillene Bergle¹¹, Blake Simmore¹³, Jean Christophe Glaszmann¹³, Edwin van der Vorsen³, Robert Henrye¹³, Jeremy Schmutz¹⁴, ¹A Angeligue D'Hont². Monoploid 12345678910

R570 1b 1a 1e 1d 1c 1f 5g 5e 5d 5c 5a 5b 5f 59a 2f 2c 2a 2d 2e 2b 2g 3f 3d 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 35 38 0a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 35 38 0a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3a 3b 3c 3e 3g 100 0a 0t 010 0710a7d 7b 7c 7a 7a 35 38 0a 3b 3a 3b 3a

S.spontaneum 1d 1a 1b 1c 2d 2b 2a 2c 3a 3b 3c 3d 4b 4c 4a 4d 5c 5b 5a 5d 6b 6a 6c 6d 7c 7d 7b 7a 8d 8b 8a8d

1

genetics	ARTICLES
Corrected: Publisher Correction	OPEN

Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.

Jisen Zhang^{©1,20+}, Xingtan Zhang^{1,20}, Haibao Tang^{©1,20}, Qing Zhang^{1,20}, Xiuting Hua¹, Xiaokai Ma¹, Fan Zhu², Tyler Jones³, Xinguang Zhu⁴, John Bowers⁵, Ching Man Wai⁴, Chunfang Zheng⁷, Yan Shi¹, Shuai Chen', Xiuming Xu', Jingjing Yue', David R. Nelson®, Lixian Huang', Zhen Li', Huimin Xu', Dong Zhou', Yongjun Wang', Weichang Hu', Jishan Lin', Youjin Deng', Neha Pandey², Melina Mancini Dessireé Zerpa², Julie K. Nguyen², Liming Wang¹, Liang Yu², Yinghui Xin², Liangfa Ge², Jie Arro², Jennifer O. Han², Setu Chakrabarty², Marija Pushko², Wenping Zhang¹, Yanhong Ma¹, Panpan Ma¹, Mingju Lv4, Faming Chen9, Guangyong Zheng9, Jingsheng Xu1, Zhenhui Yang1, Fang Deng1, Xuequn Chen¹, Zhenyang Liao¹, Xunxiao Zhang¹, Zhicong Lin¹, Hai Lin¹, Hansong Yan¹, Zheng Kuang Weimin Zhong', Pingping Liang', Guofeng Wang', Yuan Yuan', Jiaxian Shi', Jinxiang Hou', Jingxian Lin' Jingjing Jin¹⁰, Peijian Cao¹⁰, Qiaochu Shen¹, Qing Jiang¹, Ping Zhou¹, Yaying Ma¹, Xiaodan Zhang¹, Rongrong Xu', Juan Liu', Yongmei Zhou', Haifeng Jia', Qing Ma', Rui Qi', Zhiliang Zhang', Jingping Fang', Hongkun Fang', Jinjin Song', Mengjuan Wang', Guangrui Dong', Gang Wang', Zheng Chen', Teng Ma', Hong Liu¹, Singha R. Dhungana⁹, Sarah E. Huss², Xiping Yang¹², Anupma Sharma¹¹, Jhon H. Trujillo¹⁴, Maria C. Martinez⁹⁴, Matthew Hudson⁹⁵, John J. Riascos⁹⁴, Mary Schuler², Li-Qing Chen², David M. Braun", Lei Li¹, Qingyi Yu⁰¹³, Jianping Wang⁰¹³², Kai Wang¹, Michael C. Schatz¹⁶, David Heckerman⁹⁰, Marie-Anne Van Sluvs¹⁸, Glaucia Mendes Souza⁹¹⁹, Paul H. Moore³ David Sankoff', Robert VanBuren*, Andrew H. Paterson*, Chifumi Nagai* and Ray Ming

Chromosomes scaled by gene rank order

2 3 4 5 6 7 8 9 10

Primary Path 5.1 Gb Genome (Primary Path) 844 Contigs (N50: 15Mb) 68 Chromosomes

HUDSONALPHA

S.bicolor

Today: We can do this again with just HiFi and Omni-C

Brown Rust Resistance (Bru1) - Puccinia melanocephala

R570 Selfed offspring

- Before 1980, brown rust caused ~50% yield losses
- From R570, the first resistant cultivar, PCR markers were developed
- Single-copy haplotype-specific insertion that does not recombine
- Candidate gene ended up a two gene, kinase-pseudokinase ٠ complex

Terpenes in conifer genomes CSP 503037

Jorg Bohlmann UBC

Jay Keasling LBNL/JBEI

Elzabeth Sattely Standford

Taxus baccata English Yew 10GB x 2

Western Red Cedar

Jeffrey's pine

Octane Scale

Journal of Essential Oil Research Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tieo20

Alkanes and Terpenes in Wood and Leaves of Pinus jeffreyi and P. sabiniana Robert P. Adams ^a & Jessica W. Wright ^b

* Images Wikipedia

Comparative genomics in large genomes

Pinus jeffreyi: 25.2 GBs (63x larger than poplar)

Great challenge in plant genomics

Genome	No. genes	% GGF
A. thaliana Araport11	27 655	91.33
B. distachyon	34 310	72.56
C. reinhardtii	17 741	43.08
E. grandis	36 349	79.74
G. max	52 872	80.37
K. fedtschenkoi	30 964	82.01
M. truncatula	50 894	67.94
P. hallii var. filipes	33 805	72.65
P. hallii var. hallii	33 263	73.36
P. patens	32 926	55.44
P. trichocarpa	34 699	82.31
P. virgatum	80 278	69.2
S. bicolor	34 129	71.51
S. bicolor Rio	35 490	69.16
S. fallax	25 100	78.31
<u>S. italica</u>	34 584	77
S. viridis	38 334	70.43
L. albus	38 258	78.17

- What do these genes do?
- What effect does variation in these genes have on our traits of interest?
- What about polyploids?

Research

BdERECTA controls vasculature patterning

and phloem-xylem organization in

Brachypodium distachyon

Debbie Laudencia-Chingcuanco, USDA CSP #1670

mental Botany, Vol. 67, No. 1 pp. 227-237, 2016

i:10.1093/bds/erv446 Advance Access publication 3 October 2015

Grasses use an alternatively wired bHLH transcription

Michael T. Raissig^{a,1}, Emily Abrash^{a,1}, Akhila Bettadapur^b, John P. Vogel^c, and Dominique C. Bergmann^{a,b,2}

Open Access

Check for updates

Original Article 🙆 Open Access

BMC Plant Biology KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscularmycorrhizal symbiosis in Brachypodium distachyon

Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata

Michael T. Raissig,¹* Juliana L. Matos,¹ M. Ximena Anleu Gil,² Ari Kornfeld,³ Akhila Bettadapur,² Emily Abrash,¹ Hannah R. Allison,¹ Grayson Badgley,³ John P. Vogel,⁴ Joseph A. Berry,³ Dominique C. Bergmann^{1,2}*

Published online 1 August 2023

Nucleic Acids Research, 2023, Vol. 51, No. 16 8383-8401 https://doi.org/10.1093/narlgkad616

JGI Plant Gene Atlas: an updateable transcriptome resource to improve functional gene descriptions across the plant kingdom

RESEARCH PAPER

New Phytolog

Mutation in *Brachypodium* caffeic acid *O*-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality

Mutations in the predicted DNA polymerase subunit POLD3

result in more rapid flowering of Brachypodium distachyon

RESEARCH

DOI: 10.1038/s41467-017-02292-8

Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure

OPEN

Sean P. Gordon¹, Bruno Contreras-Moreira ^{2,3,4}, Daniel P. Woods^{5,6}, David L. Des Marais ^{7,17}, Diane Burgess⁸, Shengqiang Shu¹, Christoph Stritt⁹, Anne C. Roulin⁹, Wendy Schackwitz¹, Ludmila Tyler¹⁰, Joel Martin 6 ¹, Anna Lipzen¹, Niklas Dochy ¹¹, Jeremy Phillips¹, Kerrie Barry¹, Koen Geuten ¹¹, Hikmet Budak o 12, Thomas E. Juenger 13, Richard Amasino o 5,6, Ana L. Caicedo 10, David Goodstein 1, Patrick Davidson¹, Luis A. J. Muro¹⁴, Melania Figueroa¹⁵, Michael Freeling⁸, Pilar Catalan^{4,16} & John P. Vogel 1,8

С

Shell (R)

(10,060)

Shell (N)

(7,135)/Softcore

(7, 283)

Core

(13, 408)

nature COMMUNICATIONS

Microbe references

Koonin EV, Makarova KS, Wolf YI. Evolution of Microbial Genomics: Conceptual Shifts over a Quarter Century. Trends Microbiol. 2021 Jul;29(7):582-592.

ARTICLE

Switchgrass pangenome

Pangenomes allow us to capture diversity in structural variants that we can't easily identify with short read sequencing

Switchgrass gene cluster variation

A switchgrass pangenome graph

Fig. 1 | References are well represented in final pangenome graph

Chr01K

Fig. 3 | Test locus: variation in ABO3 (AP13 HAP1 Chr08K:838322-839442)

Graph construction: minigraph-cactus Read alignment to graph: vg giraffe Viz via subway maps: sequenceTubeMap

Hickey, G., Monlong, J., Ebler, J. *et al.* Pangenome graph construction from genome alignments with Minigraph-Cactus. *Nat Biotechnol* (2025).

On average,

89%

of each input reference genome is retained in the final graph

80%

ò

of clipped sequences are annotated repeats

How much diversity do we cover (10 genomes, 20 haplotypes)?

Gulf subpopulation

Lowland ecotype (n = 105) Coastal (n = 63)Coastal (n = 73)Upland (n = 117) Upland (n = 196)Gulf Midwest Atlantic 5B **−−−** coverage ≥ 1, quorum ≥ 0%, $k_1 X^{\gamma}$ with $k_1 \neq 784.2$ M, $\gamma = 0.598$) coverage ≥ 1 , quorum $\geq 0\%$ coverage ≥ 2 , guorum $\geq 0\%$ coverage ≥ 1 , quorum $\geq 50\%$ 4Bcoverage ≥ 1, quorum ≥ 100%3B #bps 2B 1B 0 δ \checkmark 5 9 $\overline{}$ \$ 0 20 \sim 13 14 14 26 ~ 28 20 0 77 29 samples

Atlantic subpopulation

Midwest subpopulation

Pangenome graphs in simpler systems

Camelina (12)

CSP2020 505836

JOINT GENOME INSTITUTE

John Mullet Texas A&M

BILL&MELINDA GATES foundation

ດດາວາ

Geoff Morris Nadia Shakoor Colorado State Donald Danforth

🖉 CABB

Bird et al. bioRxiv 2024.08.13.607619; doi: https://doi.org/10.1101/2024.08.13.607619

BERSS 507613

Example gene

_

Striga – witchweed *

LGS1 in pangenome

Mapping LGS1 variants across Africa

Field phenotyping

Nadia Shakoor Donald Danforth

Leaf Water Management

Miscanthus : embracing complexity

Kankshita Swaminathan CABBI, HudsonAlpha

Erik Sacks

200 Mbp

Chromosomes scaled by physical position

Sorghum

4x –Hap1

4x –Hap2

Unpublished Data 42

Goals of customization for perennial feedstocks

- Improve <u>field traits</u>: high biomass, improved germination & maturation, lodging resistance, leaf drop, flowering time, reduced fertilizer
- Improve <u>breeding traits</u>: shattering, self compatibility, sterility
- Improve <u>quality/processing traits</u>: fiber length, ash, chemical composition, fiber/lignan rations, reduce internodes, low pith
- Make into chemical factories

Editing in complex plants

Kankshita Swaminathan Tony Trieu Team Swaminathan

wild-type edited line M. sinensis PMS-014

Pradeep Hirannaiah

Joshua Stanley NSF-BRIDGES

Unpublished

In tetraploids and hexaploid production genotype

lw1

WT

Engineering Miscanthus to produce vegetative lipids

GCB Bioenergy, Volume: 13, Issue: 10, Pages: 1610-1623, First published: 26 July 2021, DOI: (10.1111/gcbb.12883)

- "Push" Photosynthetic carbon into fatty acid biosynthesis
- Wrinkled 1 transcription factor OE
- "Pull" Pull fatty acids into TAG
- DGAT diacyglycerol acyltransferase OE "Protect" - Block TAG breakdown
- Oleosin OE, lipase suppression

Unpublished data

Trieu

Our legacy – JGI impact on plant genomes

Phytozome 🖉 13

THE PLANT GENOMICS RESOURCE

hytozc	phytozome Home	Velco
lign	Phytozo	Ove
Phytozc poking for 1 hytozome is	Find a gene family Select -or-	_
vailable. Ea om RefSeq ethods hav	Explore a genome Select	Sorgh Sorgh
clade spec ees are avai		Setar Goss
low to us	Trac	Goss
lick on the	Embryophy	Dipha
ast results,	Viridiplantae	Phytozor Joint Ge commur
ene Family nd use mult ummary pa new tne "H		genomes elsewher resource
Drganism		As of rel
		6 47

Velcome to Phytozome	Phytozome v		
Overview	Release Notes	s News	
0 sectors birds	Recent Genom	e Releases	5.1.4.0000
Sorghum bicolor	v5.1	sweet sorghum	Feb 1, 2023
Sorahum bicolor	Wray v1.1	sweet sorghum	Feb 1, 2023
oorginam brootor		Wray	
Setaria viridis v4	1	Wray green foxtail millet	Feb 1, 2023
Setaria viridis v4. Gossypium hirsu	1 tum Coker	Wray green foxtail millet upland cotton	Feb 1, 2023 Feb 1, 2023
Setaria viridis v4. Gossypium hirsu Gossypium hirsu	1 tum Coker tum DeltaPearl	Wray green foxtail millet upland cotton upland cotton	Feb 1, 2023 Feb 1, 2023 Feb 1, 2023
Setaria viridis v4. Gossypium hirsu Gossypium hirsu Gossypium hirsu	1 tum Coker tum DeltaPearl tum FM958	Wray green foxtail millet upland cotton upland cotton upland cotton	Feb 1, 2023 Feb 1, 2023 Feb 1, 2023 Feb 1, 2023

ome, the Plant Comparative Genomics portal of the Department of Energy's enome Institute, provides JGI users and the broader plant science nity a hub for accessing, visualizing and analyzing JGI-sequenced plant es, as well as selected genomes and datasets that have been sequenced ere. By integrating this large collection of plant genomes into a single and performing comprehensive and uniform annotation and analyses, ome facilitates accurate and insightful comparative genomics studies.

lease v13, Phytozome hosts 411 assembled and annotated genomes, from 174 Archaeplastida species, and contains the 54 Brachypodium distachyon lines from the BrachyPan pan-genome study, the 20 species included in the Brassicales Man Alignment Project, and 8 cownea (Vigna unguiculata) genomes

find genes by keyword search by BLAST get standard data files build cu Panicum virgatum var. DAC6 HAP2 v1.1 ① RST JGI Panicum virgatum var. VS16 HAP1 v1.1 ① RST JGI Panicum virgatum var. VS16 HAP2 v1.1 ① RST JGI Panicum virgatum var. WBC HAP1 v1.1 ① RST JGI Panicum virgatum var. WBC HAP2 v1.1 ① RST JGI Paspalum vaginatum v3.1 ① UNRST JGI Saccharum officinarum x spontaneum R570 v2.1 ① RST JGI Setaria italica v2.2 ① UNRST GeneAtlas JGI Setaria viridis v1.1 ① UNRST GeneAtlas JGI Setaria viridis v2.1 ① UNRST GeneAtlas JGI Setaria viridis v4.1 ① RST JGI Urochloa fusca v1.1 ② RST JGI JURST GeneAtlas JGI Setaria viridis v4.1 ② RST JGI Zea mays RefGen_V4 ③ UNRST EXT Zea mays B84 v1.2 ③ UNRST JGI Zea mays LH145 v1.2 ④ UNRST JGI Zea mays NKH8431 v1.2 ① UNRST JGI Zea mays PH207 v1.1 ④ UNRST JGI	Choose genomes by sel	ecting from tree or typ	pe genus/species/commo	1 genom
Panicum virgatum var. DAC6 HAP2 v1.1 () RST JGI Panicum virgatum var. VS16 HAP1 v1.1 () RST JGI Panicum virgatum var. VS16 HAP2 v1.1 () RST JGI Panicum virgatum var. WBC HAP1 v1.1 () RST JGI Panicum virgatum var. WBC HAP2 v1.1 () RST JGI Paspalum vaginatum v3.1 () UNRST JGI Saccharum officinarum x spontaneum R570 v2.1 () RST JGI Setaria italica v2.2 () UNRST GeneAtlas JGI Setaria viridis v1.1 () UNRST GeneAtlas JGI Setaria viridis v2.1 () UNRST GeneAtlas JGI Setaria viridis v4.1 () RST JGI Urochloa fusca v1.1 () RST JGI - Maize Zea mays RefGen_V4 () UNRST EXT Zea mays B84 v1.2 () UNRST JGI Zea mays LH145 v1.2 () UNRST JGI Zea mays NKH8431 v1.2 () UNRST JGI Zea mays PH207 v1.1 () UNRST JGI	find genes by keyword	search by BLAST	get standard data files	build cus
 Panicum virgatum var. VS16 HAP1 v1.1 () RST JG Panicum virgatum var. VS16 HAP2 v1.1 () RST JG Panicum virgatum var. WBC HAP2 v1.1 () RST JG Panicum virgatum var. WBC HAP2 v1.1 () RST JG Paspalum vaginatum v3.1 () UNRST JG Saccharum officinarum x spontaneum R570 v2.1 () RST JG Setaria italica v2.2 () UNRST GeneAtlas JG Setaria viridis v1.1 () UNRST GeneAtlas JG Setaria viridis v4.1 () RST JG Urochloa fusca v1.1 () RST JG Urochloa fusca v1.1 () UNRST EXT Zea mays RefGen_V4 () UNRST JG Zea mays B84 v1.2 () UNRST JG Zea mays NKH8431 v1.2 () UNRST JG Zea mays PH207 v1.1 () UNRST EXT 	Panicu	ım virgatum var. DAC6 F	HAP2 v1.1 () RST JGI	
 Panicum virgatum var. VS16 HAP2 v1.1 () RST JG Panicum virgatum var. WBC HAP1 v1.1 () RST JG Panicum virgatum var. WBC HAP2 v1.1 () RST JG Paspalum vaginatum v3.1 () UNRST JG Saccharum officinarum x spontaneum R570 v2.1 () RST JGG Setaria italica v2.2 () UNRST GeneAtlas JG Setaria viridis v1.1 () UNRST GeneAtlas JG Setaria viridis v4.1 () RST JGG JG Setaria viridis v4.1 () RST JGG JG JG<	— Panicu	ım virgatum var. VS16 H	IAP1 v1.1 () RST JGI	
 Panicum virgatum var. WBC HAP1 v1.1 () RST JG Panicum virgatum var. WBC HAP2 v1.1 () RST JG Paspalum vaginatum v3.1 () UNRST JG Saccharum officinarum x spontaneum R570 v2.1 () RST JG Setaria italica v2.2 () UNRST GeneAtlas JG Setaria viridis v1.1 () UNRST GeneAtlas JG Setaria viridis v4.1 () RST JG Setaria viridis v4.1 () RST JG Urochloa fusca v1.1 () UNRST GeneAtlas JG Zea mays RefGen_V4 () UNRST EXT Zea mays B84 v1.2 () UNRST JG Zea mays LH145 v1.2 () UNRST JG Zea mays NKH8431 v1.2 () UNRST JG Zea mays PH207 v1.1 () UNRST EXT 	— Panicu	ım virgatum var. VS16 H	IAP2 v1.1 () RST JGI	
 Panicum virgatum var. WBC HAP2 v1.1 () RST JGI Paspalum vaginatum v3.1 () UNRST JGI Saccharum officinarum x spontaneum R570 v2.1 () RST JGI Setaria italica v2.2 () UNRST GeneAtlas JGI Setaria viridis v1.1 () UNRST GeneAtlas JGI Setaria viridis v2.1 () UNRST GeneAtlas JGI Setaria viridis v4.1 () RST JGI Urochloa fusca v1.1 () RST JGI JMaize Zea mays RefGen_V4 () UNRST EXT Zea mays B84 v1.2 () UNRST JGI Zea mays LH145 v1.2 () UNRST JGI Zea mays NKH8431 v1.2 () UNRST JGI Zea mays PH207 v1.1 () UNRST EXT 	— Panicu	ım virgatum var. WBC H	AP1 v1.1 🛈 RST JGI	
 Paspalum vaginatum v3.1 () UNRST JGI Saccharum officinarum x spontaneum R570 v2.1 () RST JGI Setaria italica v2.2 () UNRST GeneAtlas JGI Setaria viridis v1.1 () UNRST GeneAtlas JGI Setaria viridis v4.1 () RST JGI Urochloa fusca v1.1 () RST JGI Urochloa fusca v1.1 () RST JGI Zea mays RefGen_V4 () UNRST EXT Zea mays B84 v1.2 () UNRST JGI Zea mays LH145 v1.2 () UNRST JGI Zea mays NKH8431 v1.2 () UNRST JGI Zea mays PH207 v1.1 () UNRST EXT 	— Panicu	ım virgatum var. WBC H	AP2 v1.1 () RST JGI	
 Saccharum officinarum x spontaneum R570 v2.1 () RST JGI Setaria italica v2.2 () UNRST GeneAtlas JGI Setaria viridis v2.1 () UNRST GeneAtlas JGI Setaria viridis v2.1 () UNRST GeneAtlas JGI Setaria viridis v4.1 () RST JGI Urochloa fusca v1.1 () RST JGI Maize Zea mays RefGen_V4 () UNRST EXT Zea mays B84 v1.2 () UNRST JGI Zea mays LH145 v1.2 () UNRST JGI Zea mays NKH8431 v1.2 () UNRST JGI Zea mays PH207 v1.1 () UNRST EXT 	— Paspa	lum vaginatum v3.1 🛈	UNRST JGI	
 Setaria italica v2.2 (i) UNRST GeneAtlas JGI Setaria viridis v1.1 (i) UNRST GeneAtlas JGI Setaria viridis v2.1 (i) UNRST GeneAtlas JGI Setaria viridis v4.1 (i) RST JGI Urochloa fusca v1.1 (i) RST JGI Urochloa fusca v1.1 (i) RST JGI Zea mays RefGen_V4 (i) UNRST EXT Zea mays Zm-B73-REFERENCE-NAM-5.0.55 (i) UNRST EXT Zea mays B84 v1.2 (i) UNRST JGI Zea mays LH145 v1.2 (i) UNRST JGI Zea mays NKH8431 v1.2 (i) UNRST JGI Zea mays PH207 v1.1 (i) UNRST EXT 	Sacchi	arum officinarum x spor	ntaneum R570 v2.1 🛈 📧 🕻	JGI
 Setaria viridis v1.1 (i) UNRST GeneAtlas JGI Setaria viridis v2.1 (i) UNRST GeneAtlas JGI Setaria viridis v4.1 (i) RST JGI Urochloa fusca v1.1 (i) RST JGI Urochloa fusca v1.1 (i) RST JGI Zea mays RefGen_V4 (i) UNRST EXT Zea mays Zm-B73-REFERENCE-NAM-5.0.55 (i) UNRST EXT Zea mays B84 v1.2 (i) UNRST JGI Zea mays LH145 v1.2 (i) UNRST JGI Zea mays NKH8431 v1.2 (i) UNRST JGI Zea mays PH207 v1.1 (i) UNRST EXT 	— Setaria	a italica v2.2 (i) UNRST	GeneAtlas JGI	
 Setaria viridis v2.1 ① UNRST GeneAtlas JGI Setaria viridis v4.1 ③ RST JGI Urochloa fusca v1.1 ④ RST JGI Urochloa fusca v1.1 ④ RST JGI Zea mays RefGen_V4 ④ UNRST EXT Zea mays Zm-B73-REFERENCE-NAM-5.0.55 ④ UNRST EXT Zea mays B84 v1.2 ④ UNRST JGI Zea mays LH145 v1.2 ④ UNRST JGI Zea mays NKH8431 v1.2 ④ UNRST JGI Zea mays PH207 v1.1 ④ UNRST EXT 	— Setaria	a viridis v1.1 (i) UNRST	GeneAtlas JGI	
 Setaria viridis v4.1 (i) RST JGI Urochloa fusca v1.1 (i) RST JGI Maize Zea mays RefGen_V4 (i) UNRST EXT Zea mays Zm-B73-REFERENCE-NAM-5.0.55 (i) UNRST EXT Zea mays B84 v1.2 (i) UNRST JGI Zea mays LH145 v1.2 (i) UNRST JGI Zea mays NKH8431 v1.2 (i) UNRST JGI Zea mays PH207 v1.1 (i) UNRST EXT 	Setaria	a viridis v2.1 (i) UNRST	GeneAtlas JGI	
Urochloa fusca v1.1 (i) RST JG Maize Zea mays RefGen_V4 (i) UNRST EXT Zea mays Zm-B73-REFERENCE-NAM-5.0.55 (i) UNRST EXT Zea mays B84 v1.2 (i) UNRST JG Zea mays LH145 v1.2 (i) UNRST JG Zea mays NKH8431 v1.2 (i) UNRST JG Zea mays PH207 v1.1 (i) UNRST EXT	— Setaria	a viridis v4.1 🛈 RST JO	31	
 Maize Zea mays RefGen_V4 ① UNRST EXT Zea mays Zm-B73-REFERENCE-NAM-5.0.55 ① UNRST EXT Zea mays B84 v1.2 ① UNRST JGI Zea mays LH145 v1.2 ① UNRST JGI Zea mays NKH8431 v1.2 ① UNRST JGI Zea mays PH207 v1.1 ② UNRST EXT 	— Urochl	oa fusca v1.1 🛈 📧	JGI	
	Mai	ze		
	— Zea	mays RefGen_V4 🛈 🛛	INRST	
— Zea mays B84 v1.2 () UNRST JGI — Zea mays LH145 v1.2 () UNRST JGI — Zea mays NKH8431 v1.2 () UNRST JGI — Zea mays PH207 v1.1 () UNRST EXT	— Zea	mays Zm-B73-REFERE	NCE-NAM-5.0.55 () UNRST	EXT
— Zea mays LH145 v1.2 ① UNRST JGI — Zea mays NKH8431 v1.2 ① UNRST JGI — Zea mays PH207 v1.1 ② UNRST EXT	— Zea	mays B84 v1.2 🛈 UNR	IST JGI	
— Zea mays NKH8431 v1.2 ① UNRST JGI — Zea mays PH207 v1.1 ③ UNRST EXT	— Zea	mays LH145 v1.2 🛈 🕻	JNRST JGI	
Zea mays PH207 v1.1 () UNRST EXT	— Zea	mays NKH8431 v1.2 🤇	UNRST JGI	
	— Zea	mays PH207 v1.1 🛈 🛛	JNRSTEXT	
	— Zea	mays PHB47 v1.2 🛈	UNRST JGI	

JGI Data Portal JGI Data Policy Tools ▼ Projects ▼ Genomes ▼ Cart Contact Subscribe

Rice Oryza :

Poplar Popu

2024

JGI Home

•	19.4	gallons	gasoline
•	12.5	gallons	diesel/home heating oil
٠	4.4	gallons	kerosene-type jet fuel
•	2.1	gallons	coke
٠	1.6	gallons	still gas
•	1.5	gallons	liquefied refinery gases
•	0.9	gallons	heavy, residual fuel oils
•	0.8	gallon	asphalt and road oil
•	0.5	gallon	petrochemical feedstocks
•	0.4	gallon	lubricants
•	0.4	gallon	other

42-gallon barrel of crude

https://www.lubesngreases.com/magazine/28_8/gasoline-and-engineoil-the-whole-story/

These are only examples of discoveries in plant genomics- 1000's of pathways and variant for traits of interest are needed to customize and build genotypes for end uses.

A Unified Data Infrastructure for Biological and Environmental Research

Report from the BER Advisory Committee

Overcoming Barriers in Plant Transformation *A Focus on Bioenergy Crops*

BER is uniquely positioned to accelerate these effort with a combination of climate modeling for global biogeochemistry, BRCs for deconstruction/customization of feedstocks, and the combined efforts of JGI, national and academic labs to acquire and develop the biological, environmental knowledge to make this possible.

Biological and Environmental Research

Contributors from the JGI

HudsonAlpha Experimental Group Jane Grimwood & Mellissa Williams

HudsonAlpha Computational Group John Lovell & Jerry Jenkins

Phytozome & Annotation Group

David Goodstein

PMO Kerrie Barry

JGI Production Groups Yuko Yoshinaga & Chris Daum

Plant Functional Genomics John Vogel

Arizona Genomic Partner Group Jayson Talag & Dario Copetti

Thank you to our users and partners

jbei Joint BioEnergy Institute

COLLEGE OF AGRICULTURE & LIFE SCIENCES

