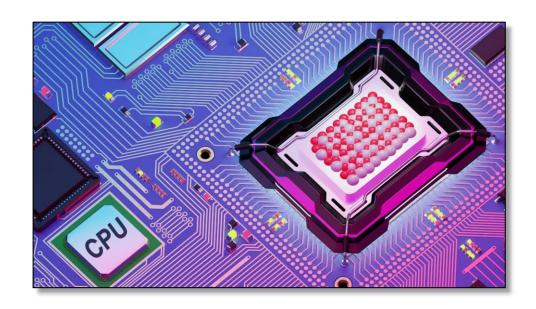
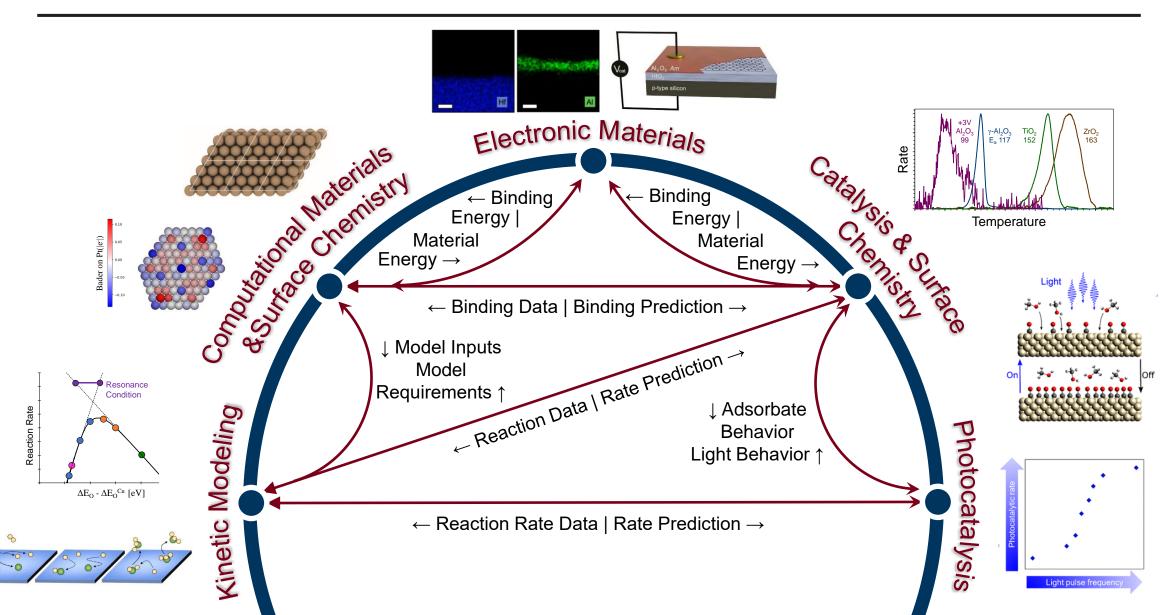


Data Management in the Center for Programmable Energy Catalysis

Paul J. Dauenhauer (UMN)
Director
Susannah Scott (UCSB)
Deputy Director



Center for Programmable Energy Catalysis (CPEC)

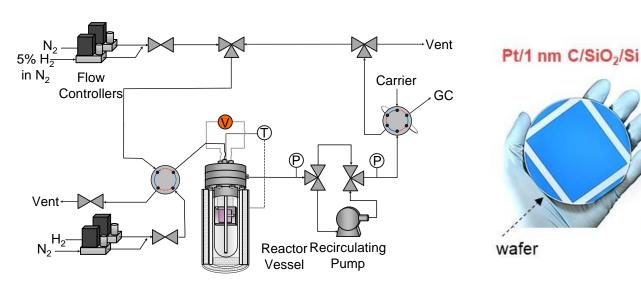

Inventing tomorrow's advanced catalysts through integration of chemical sciences

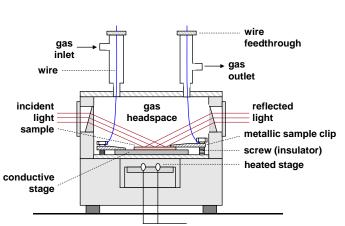
The DOE Center for Programmable Energy Catalysis (CPEC) **integrates expertise** in electronic materials, surface science, catalysis, and computational chemistry to invent and understand dynamic, programmable heterogeneous catalysts

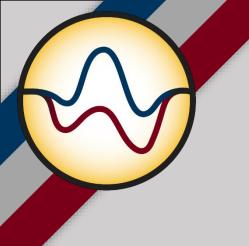
Programmable catalysts **change with time** at the frequency of surface reaction via a prescribed electronic 'program' that accelerates and controls reactions

How is CPEC multidisciplinary?

CPEC: Unique Methods and Techniques -> New Data


CPEC has created an array of new methods, tools, and techniques for fundamental research


Custom 1 cm² condenser reactor Condenser cartridge holder Isopotential titration (IPT) In situ charge spectroscopy for condensers


XPS / UPS, XAS
 In situ reactor charge characterization
 Scanning tunneling microscopy with charge
 In situ IR reactor with charge application

Customized IR catalytic reactor Transient IR reactor method

L³ computational scaling for charge
Dynamic microkinetic modeling
Dynamic kinetic Monte Carlo modeling
Bayesian optimization for dynamic reaction
kinetic models

CPEC Data and Organization Policies

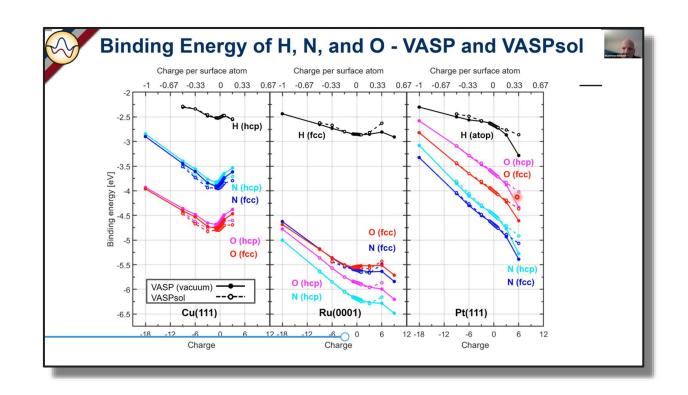
SHORT Term Data Sharing

Monthly Meetings - Required Attendance

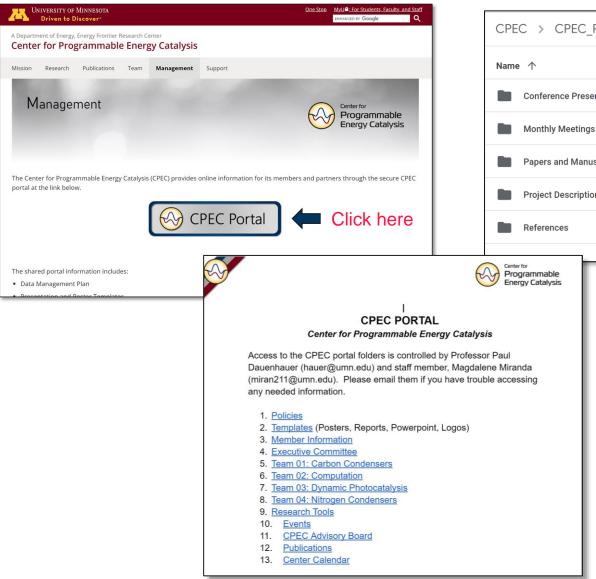
Monthly Team Meetings (each team) Quarterly Executive Committee Meetings Monthly All-Center Meetings

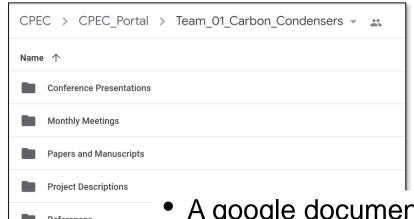
All researchers meet on zoom once per month: date organized by Magdalene

Start with confidentiality policy, safety spot discussion, and center updates


Technical content selected by Dauenhauer and Scott with input from executive committee

- Single CPEC PI presentation
- Two student talks (20 min each)
- External guest speakers


CPEC All-Center Meeting


Zoom - December 2023

Presenter: Prof. Matt Neurock

CPEC Portal – Single place for all information

- A google document with links to different folders in google drive
- Each folder has different access permissions assigned by Dauenhauer or Miranda
- Some folders are read only; others are editable
- Content is updated as generated
- Recordings of meetings

CPEC - Spring & Fall Annual Meetings

Goal: A combined research, training, education, and strategy session

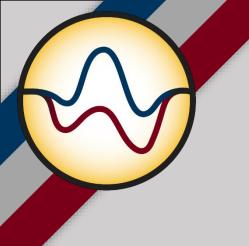
Mechanism:

 Advisory board, faculty, and students fly to Minneapolis for a Friday + Saturday

Content:

- Workshop
- Poster sessions
- Discuss scientific progress
- Goals for next 6 months
- Advisory board meeting
- Open discussion & feedback
- Guest dinner speaker(s)

Day 1 of 2


CPEC SPRING MEETING

Friday, May 5, to Saturday, May 6, 2023 Location: Graduate Minneapolis Hotel, 615 Washington Ave. SE, Minneapolis, MN 55414

Friday, May 5 (All events in Graduate Hotel, Pinnacle Room & Foyer)								
Time (central)	Event/Topic	Speaker(s)						
Before Noon	Arrive in Minneapolis (MSP Airport, Light Rail)							
Noon – 2:00 pm	Registration, Lunch, Hotel Check-in, Tours							
2:00 – 2:30	Introductions Paul Dauenhauer Susannah Scott							
2:30 – 3:30	Teams #1 & #4 – Catalytic Condensers	Lead: O. Abdelrahman						
3:30 – 3:50	Coffee Break							
3:50 – 4:30	Programmable Catalysis Training Session (everyone)	Dauenhauer, Frisbie, Christopher						
4:30 - 6:00	Poster Presentations + Coffee							
6:00 – 7:00	Dinner, Cash Bar							
7:00 – 8:00	Dessert + Cash Bar Featured Speakers Presentations (25+5 min each)	Tracy Lohr, Ph.D. Shell Javier Guzmann, Ph.D. ExxonMobil Chemical Company						
8:00	Adjourn for the day							

CPEC Portal – Single place for all information

Cent	er for Programm	able Energy Catalysis							
Mem	bership List & Co	ontact Information							
Uni	Professor	Student / Post-Doc	Project #	Email	Phone	ORCID	Team	Member	Affiliate
	Staff: Becky Wyatt (A	Accountant)		huntx043@umn.edu	612/625-4071			Χ	
	Staff: Magdalene Mir	anda (General Manager)		miran210@umn.edu				X	
	Staff: Dan McDonald	(Data & IT Manager)		mcdo0486@umn.edu				X	
Unive	rsity of Minnesota								
	Dauenhauer, Paul			hauer@umn.edu	612-343-5540	0000-0001-5810-1953	1,4	Х	
		Gathmann, Sallye	1.1.1	gathm005@umn.edu			1	X	
		Onn, Tzia Ming	1.4.1	tonn@umn.edu			4	X	
		Hopkins, Justin	1.1.2	hopki361@umn.edu			1	X	
	Frisbie, Daniel			frisbie@umn.edu	612-516-9330	0000-0002-4735-2228	1,4	X	
		Student 1 (TBD)	1.1.3				1	X	
		Student 2 (TBD)	1.4.2				4	Χ	
	Bhan, Aditya			abhan@umn.edu	612-626-3981	0000-0002-6069-7626	1	X	
		First year student (To be o	1.1.3				1	X	
	Jalan, Bharat			bjalan@umn.edu			1,4	X	
		Shivasheesh Varshney	1.1.4	varsh022@umn.edu			1,4	X	
	Neurock, Matthew			mneurock@umn.edu			2	X	
		Kaida Liu	1.2.1	liu01485@umn.edu			2	X	

CPEC Data and Organization Policies

LONG Term Data Sharing

Data sharing:

- To share machine-readable and digitally accessible data, including data that is published in charts and figures
- Transparency of post-processing
- Sharing more data than necessary, which could be useful to researchers inside and outside of CPEC, who can potentially re-use or re-interpret data that was inconclusive at the time

Data preservation:

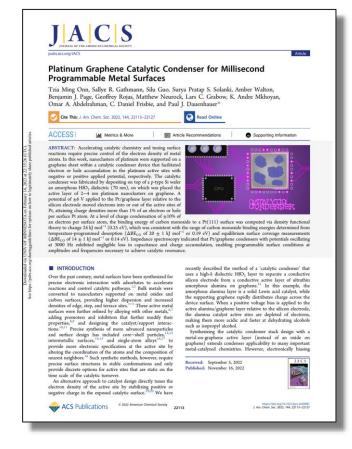
 To preserve data so that it can be used inside and outside of CPEC for years or decades to come

Center for Programmable Energy Catalysis (CPEC) Data Management Plan

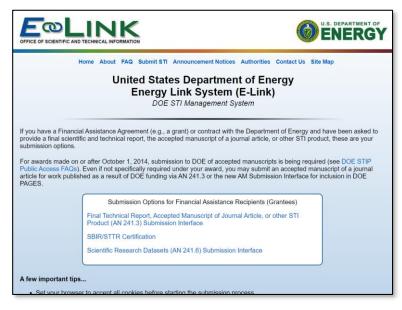
Rationale. The goal of the data management plan is to preserve and share the original research data acquired for the benefit of all participating members of the Center, DOE, and the public. To enable rapid and rigorous validation of our work by others, properly analyzed, pruned, and curated data will be rapidly shared through publication preferably in open access outlets or made available as freely available pre-print. Raw data sets will also be submitted to appropriate digital repositories that assign a digital object identifier (DOI) to the data sets. All mentioned data hosting services are for free, and no budget line items have been included.

Data Collected, Generated, or Used. All data generated in the Center are original and the investigators have the rights to share or otherwise manage data as described in this data management plan (DMP). Where commercial codes or copyrighted software packages are used (e.g. VASP, Gaussian) their proprietary source code, pseudopotentials, etc., cannot be shared, but are available to anyone who acquires the necessary software license from the vendor. We anticipate collecting, generating, or using the following types of original, publishable, and sharable data resulting from experiments, testing, synthesis, characterization, simulations, modeling, and machine-learning:

- Raw Chromatographic/Spectroscopic Data: Experimental data associated with reactivity
 measurements (GC, MS, FTIR, NMR) will be stored as raw data files in the format associated with
 commercial software used for each equipment. Similarly, catalyst characterization data using similar
 methods (Raman, FTIR, UV-vis, XRD, SEM, TEM, etc.) will be stored as raw data files in the format
 associated with software for each equipment. These files will be gatalogued by experimental date, and
 a text file will be generated with the identical trial identification code containing the details related to
 the experimental conditions. Several gigabytes (GB) of this data type will be collected.
- Raw Current Voltage Data: Experimental current-voltage measurements generated will be stored as
 Gamry files. These files will be <u>catalogued</u> by experimental date, and a text file will be generated
 with the identical trial identification code containing the details related to the experimental
 conditions. Several GB of this data type will be collected.
- Interpreted Kinetic Data: Calculations to interpret the raw information including calibration and
 kinetic rate calculations will be stored in excel files. Included in the file will be a description of the
 experiments for each data set. Several megabytes (MB) of this data type will be generated.
- Processed images, photos, movies, videos, and micrographs: Experimental setups and observations
 will be documented with photos or videos; final configurations of atomistic simulations will be
 rendered to image files and reaction pathways are visualized as short animations/videos;
 characterization includes various forms of microscopies (SEM, S/TEM) producing image files. The
 image/movie files will be used in publications or presentations. Image and video files will use several
 hundred GB.
- Hand-written notebook entries: Lab notebooks will be used to record details of experimental
 procedures, synthesis techniques, catalyst preparation, experimental measurements, and simulation
 strategies. Notebooks will have persistent unique identifiers, will be individually numbered, and each
 experiment will have a title, date, and summary. Notebooks will be kept in a secure location in each
 Investigator's lab.
- Electronic lab notebooks: Detailed description of all modeling studies and notes about computational
 setups will be stored in electronic lab notebooks or appended to the dissertation/thesis of all students
 involved with the project.
- Electronic structure calculation results: The file types will include atomic position files, startup/run
 files, simulation output files, Python scripts used for data analysis and automation, novel programs
 developed for specialized data analysis, and program output files from data analysis programs. Raw
 data for all these file types will likely exceed 2 TBs, and many simulation output files will be greater

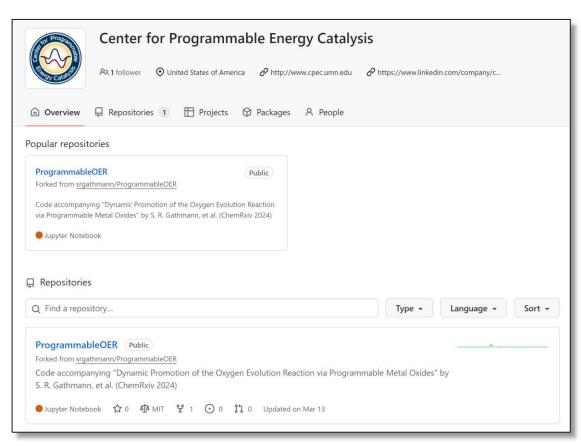


CPEC Data Management – Sharing Strategy

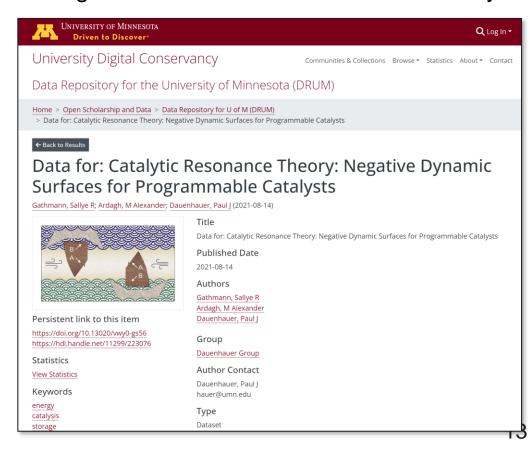

Primary focus is on making data available via publication and associated methods Part 1: Promote preprints and ensure publications are openly available

Include data sets within the supporting information files

We provide the OSTI to all CPEC publications on our website

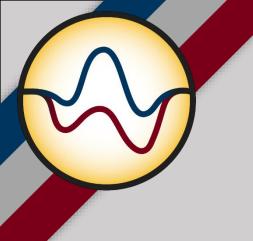


CPEC Data Management – Sharing Strategy


Primary focus is on making data available via publication and associated methods

Part 2: Require code & data set sharing with prescribed methods

Simulation Codes: CPEC Github Site


Large Data Sets: CPEC Data Conservancy

CPEC Data Management – Sharing Strategy

Primary focus is on making data available via publication and associated methods Part 3: Review and compliance via data tracking within the Portal

Α	В	С	F	G	Н	ı	J	K	L	M
	Paper #	Title	Preprint?	OSTI	Peer Reviewed	Accepted?	Publication Year	Journal	DOI#	Journal IF (2022
	P024	P024 Epitaxially Grown Single-Crystalline SrTiO3 Membranes using a Solution-Processed, amorphous SrCa2Al2O6 Sacri		2430017	Yes	Yes	2024	Journal of Materials Chemistry	10.1039/D4TC02030H	1
	P023	Catalytic Resonance Theory: Forecasting the Flow of Programmable Catalytic Loops	Yes	TBD	Yes					
	P022	ATLAS-MAP: An Automated Test Station for Gated Electronic Transport Measurements	Yes	2439068	Yes	Yes	2024	ACS Measurement Science Au	ı	
	P021	Catalytic Resonance Theory: The Catalytic Mechanics of Programmable Ratchets	Yes	2407234	Yes	Yes	2024	Chemical Science	10.1039/D4SC04069D)
	P020	Alumina-Titania Nanolaminate Condensers for Hot Programmable Catalysis	Yes	2377755	Yes	Yes	2024	ACS Materials Letters	10.1021/acsmaterialsle	ett.4c00652
	P019	Anomalous frequency and temperature dependent scattering in the dilute metallic phase in lightly doped SrTiO3	Yes	2427951	Yes	Yes	2024	Physical Review Letters	arXiv:2402.18767	
	P018	Isopotential Titration for Quantifying Metal-Adsorbate Charge Transfer	Yes	TBD	Yes					
	P017	CatTestHub: A Benchmarking Database of Experimental Heterogeneous Catalysis for Evaluating Advanced Materials	Yes	TBD	Yes					
	P016	Accelerated Steam Methane Reforming by Dynamically Applied Charges	Yes	TBD	Yes	Yes	2024	Journal of Physical Chemistry	10.1021/acs.jpcc.4c01	311
	P015	Dynamic Promotion of the Oxygen Evolution Reaction via Programmable Metal Oxides	Yes	2335550	Yes	Yes	2024	ACS Energy Letters	10.1021/acsenergylet	22
	P014	Bond Selective Photochemistry at Metal Nanoparticle Surfaces: CO Desorption from Pt and Pd	No	2350681	Yes	Yes	2024	JACS Journal of the American	10.1021/jacs.3c13874	15
	P013	Is There a Discernible Photochemical Effect Beyond Heating for Visible Photon-Mediated NH3 Decomposition over Ru/.	No	2337785	Yes	Yes	2024	Journal of Physical Chemistry	10.1021/acs.jpcc.4c0	3.7
	P012	Deciphering the Olefin Isomerization-Polymerization Paradox of Palladium(II) Diimine Catalysts: Discovery of Simultan	No	2267576	Yes	Yes	2023	Journal of the American Chem	10.1021/jacs.3c01513	15
	P011	Hybrid Molecular Beam Epitaxy for Single-Crystalline Oxide Membranes with Binary Oxide Sacrificial Layers	Yes	2283938	Yes	Yes	2024	ACS Nano	10.1021/acsnano.3c1	17.1
	P010	Up Up Down Down Left Right Left Right B A Start for the Catalytic Hackers of Programmable Materials	Yes	2228578	Yes	Yes	2023	Matter	10.1016/j.matt.2023.1	19.8
	P009	Catalytic Resonance Theory: Circumfluence of Programmable Catalytic Loops	Yes	2290247	Yes	Yes	2024	Journal of Catalysis	10.1016/j.jcat.2024.11	7.3
	P008	Flexible and Extensive Platinum Ion Gel Condensers for Programmable Catalysis	Yes	2263306	Yes	Yes	2024	ACS Nano	10.1021/acsnano.3c0	17.1
	P007	Fabrication of Large Area Metal-on-Carbon Catalytic Condensers for Programmable Catalysis	Yes	2263446	Yes	Yes	2023	ACS Applied Materials & Interf	10.1021/acsami.3c14	9.5
	P006	Programmable Catalysis by Support Polarization: Elucidating and Breaking Scaling Relations	Yes	2222558	Yes	Yes	2023	Nature Communications	10.1038/s41467-023-	16.6
	P005	Energy Flows in Static and Programmable Catalysts	Yes	1971068	Yes	Yes	2023	ACS Energy Letters	10.1021/acsenergylet	22
	P004	Writing the Programs of Programmable Catalysis	Yes	1971823	Yes	Yes	2023	ACS Catalysis	10.1021/acscatal.3c0	12.9
	P003	Sn-modified BaTiO3 thin film with enhanced polarization	No	1924658	Yes	Yes	2023	Journal of Vacuum Science &	10.1116/6.0002208	2.6
	P002	Overcoming the Entropy Penalty of Direct Air Capture for Efficient Gigatonne Removal of Carbon Dioxide	Yes	1914328	Yes	Yes	2023	ACS Engineering Au	10.1021/acsengineeri	NA
	P001	Platinum Graphene Catalytic Condenser for Millisecond Programmable Metal Surfaces	Yes	1899709	Yes	Yes	2022	Journal of the American Chem	10.1021/jacs.2c09481	15

CPEC Data and Organization Policies

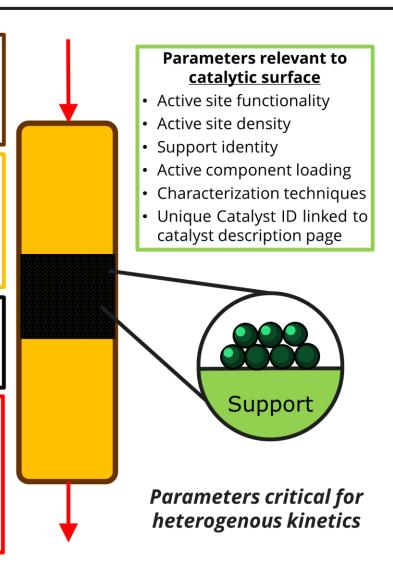
CURATED Data Sharing - CatTestHub

Curated Data: CatTestHub

Parameters relevant to <u>reactor</u> <u>type</u>

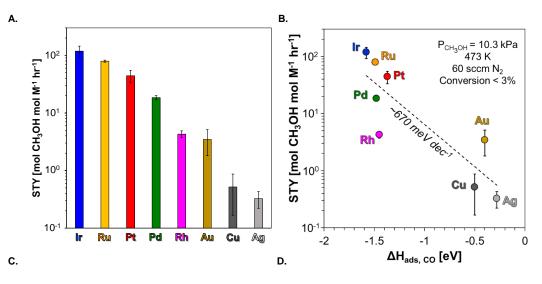
- Reactor configuration
- Reactor ID linking to a reactor description page

Parameters relevant to <u>fluid</u> <u>phase</u>

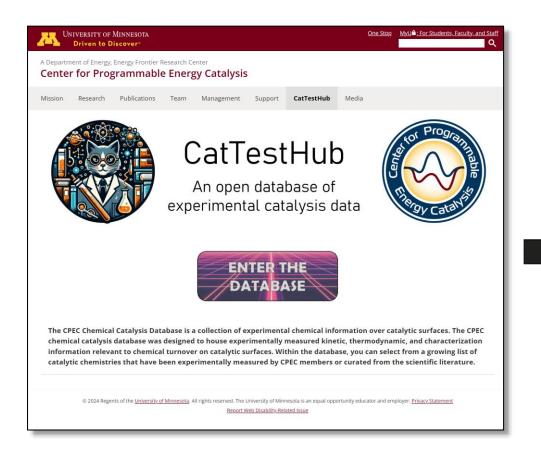

- Reaction Conditions Pressure/ Temperature
- Feed Chemical Composition
- Total molar flow rate

Parameters relevant to <u>catalytic</u> bed

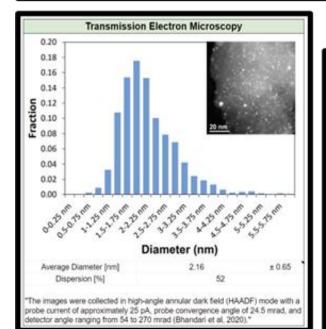
- Pellet Diameter
- Space Velocity

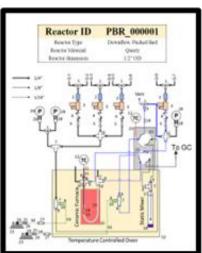

Parameters relevant to observable macroscopic quantities

- Apparent rate of catalytic turnover
- Product Selectivity
- Reactant conversion
- Atom/Mole Balance


Goals:

- (1) Create a high quality data set for comparison with dynamic kinetics
- (2) Capture all relevant experimental and characteristic data




Methanol Dehydrogenation

Curated Data: CatTestHub

Metal Catalysts								
Metal	Support	Loading	Description					
Platinum	Silica	1	Cat_M_000001					
Platinum	Silica	3.1	Cat_M_000002					
Iridium	Carbon	1	Cat_M_000003					
Platinum	Silica	1	Cat_M_000004					
Platinum	Carbon	5	Cat M 000005					
Palladium	Carbon	5	Cat_M_000006					
Ruthenium	Carbon	5	Cat_M_000007					
Rhodium	Carbon	5	Cat_M_000008					
Gold	Carbon	5	Cat_M_000009					
Silver	Carbon	5	Cat_M_000010					
Platinum	Carbon	1	Cat_M_000011					
Copper	Carbon	5	Cat M 000012					
Palladium	Carbon	1	Cat_M_000013					
Gold	Silica carbide	1	Cat M 000014					
Nickel	Carbon	5	Cat_M_000015					

Structure – People – Teams – Executive Committee

Director Paul Dauenhauer

Deputy Director Susannah Scott

Managing Director Magdalene Miranda

Accountant Stephanie Pederson

Team 1 **Lead Omar**

Abdelrahman

Team 3 Lead Phil Christopher

