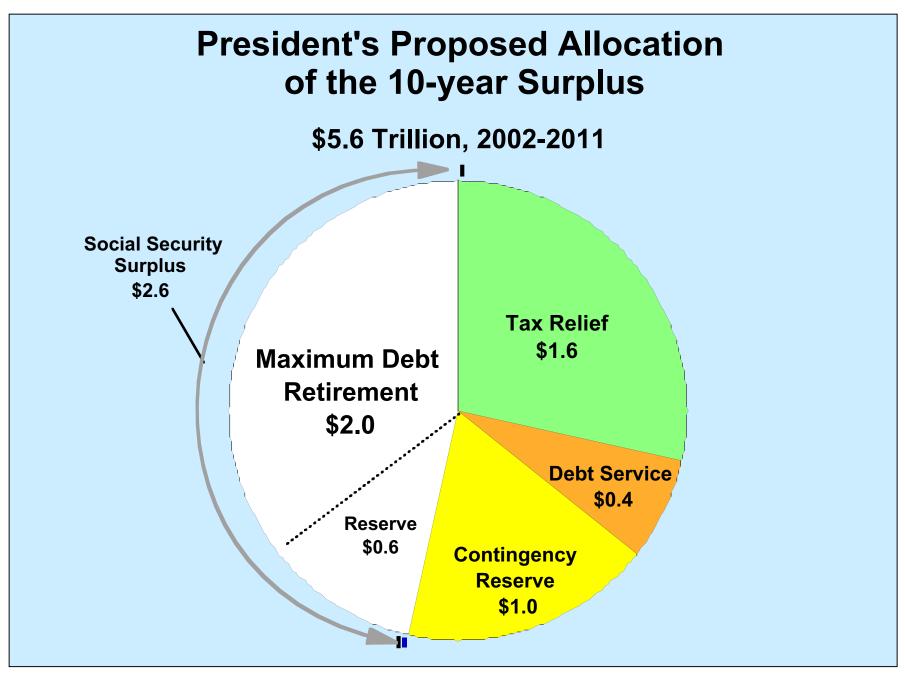

R&D in the President's FY 2002 Budget

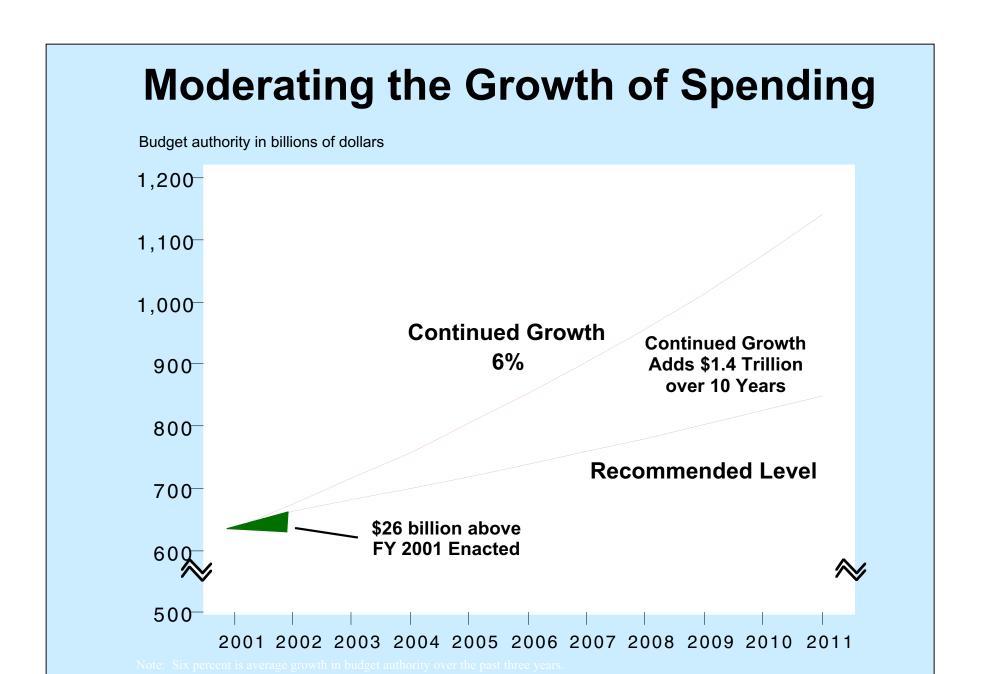

Michael Holland May 15, 2001

Government Spending as a Share of GDP, 2000

The President's Proposal for FY2002

2002 Discretionary Spending

(\$ in billions)


Additions

•	Campaign initiatives	+15.3
•	Pay & programmatic	+19.0
•	National Emergency Reserve	+5.6
•	Technical adjustments	+5.6
Of	ffsets	

O112612

•	Non-repetition earmarked funding	-4.3
•	Non-repetition one-time funding	-4.1
•	Program decreases	-11.5

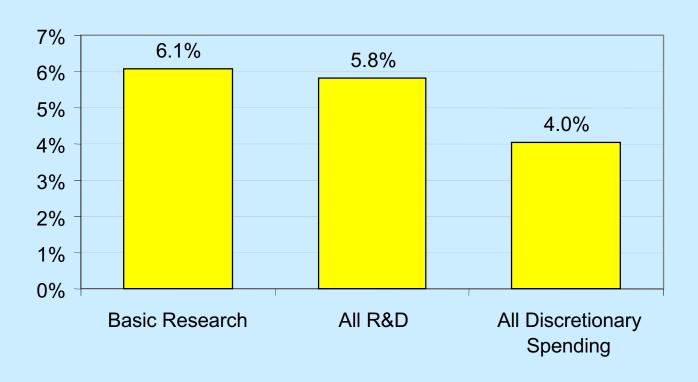
Net Increase +25.7 (4.0% increase)

Campaign Initiatives

(\$ in billions)

•	Strengthen and Reform Education	+3.6		
•	Revitalize National Defense	+4.4		
•	Invest in Health Care	+2.9		
•	Comprehensive Energy Policy & Protect Environment	+1.4		
•	Combat Crime and Drug Abuse	+1.4		
•	Champion Compassionate Conservatism	+0.7		
•	Assist Americans with Disabilities	+0.3		
•	Strengthen Families	+0.3		
•	Reform the Immigration System	+0.2		
•	Promote Volunteerism	+0.2		
Total +15.3				

(further details in A Blueprint for New Beginnings)


FY 2002 R&D Budget Summary

- Spurs Private R&D investments
 - -- R&E Tax Credit (\$1.7 billion FY 2002; \$9.9 billion FY 2002-2006)
- Sets Federal R&D as Priority
 - -- 6% growth (vs. 4% discretionary growth)
- Establishes commitment to health research
 - -- Doubles NIH by FY 2003
- Addresses Math/Science Education Needs
 - -- at least \$1 Billion over five years

R&D a Clear Priority

Federal R&D Proposal Outpaces All Other Discretionary Programs

Increases in Budget Authority 2001-2002

Federal R&D in 2002

An All-Time High

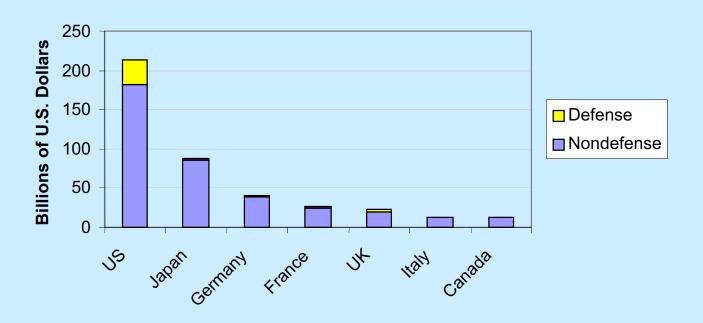
	2001 Estimate	2002 Proposed	Percent Change: 2001 to 2002
Basic Research	22,018	23,352	6%
Applied Research	20,734	21,553	4%
Development	42,594	45,954	8%
R&D Facilities and Equipment	4,664	4,394	-6%
Total	90,010	95,253	6%

FY 2002 R&D Highlights Important Priorities within the Agency Totals

		2001 Estimate	2002 Proposed	Percent Change 2001-2002
NIH	- Biomedical research	20,361	23,112	14%
DOD	- R&D initiative	0	2,600	NA
	- Space Launch Initiative	290	475	64%
NASA	- Astronomical Search for Origins	123	194	57%
	- Earth Observing System Follow-on Program	55	130	136%
	- Math and Science Partnership Initiative	0	200	NA
NSF	- Mathematical Sciences	121	141	17%
	- Nanoscale Science, Engineering and Technology	150	174	16%
USDA	- Biotechnology	197	204	4%
USDA	- Bioproducts and Bioenergy	240	249	4%
	- Ocean Exploration	4	14	250%
DOC	- National Polar-orbiting Operational Environmental Satellite	73	157	115%
	- NIST internal research	313	347	11%
DOT	- Highway Surface Transportation	73	114	56%
БОТ	- Intelligent Transportation Systems Initiative	41	62	51%
Education	- National Institute on Disability and Rehabilitation Research	100	110	10%
Networki	Networking and Information Technology Research and Development*		1,969	2%
Nanoscal	e Science, Engineering and Technology*	446	482	8%

^{*} Note: Final DoD R&D funding levels will be based on results of a Defense strategy review, currently underway. DoD FY 2002 R&D projections shown are extrapolated from FY 2001 appropriated levels, adjusted for inflation.

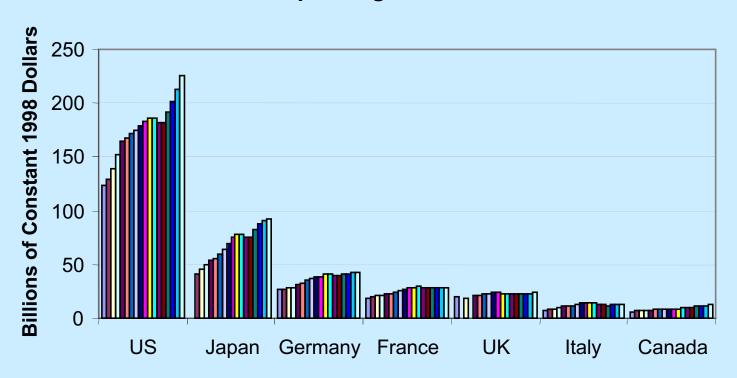
Federal Science & Technology (F S&T) Budget


By Agency	21st C. Re Fund 20 Est.		ES& I		FS&T 2002 e ropose	t		001 Delta to FS&T
National Institutes of Health NASA [1]			1 20,3 6,95		-		1,434	1 21%
Defense [2] Energy [3, 4, 5]	4,98 4,17	1	4,98	1	5,08	6	732	
National Science Foundation Agriculture [6, 6a, 7]	4,4 1,6	1 6	4,4	16	4,4 1,7	72		
Interior (USGS) Commerce [8]	8 8 8 5	1	8 8 8 0	9	8 1 7 1	1	(42	<i>'</i>
Transportation [10, 11]	6 0 6 2	1	73 62	1	6 7 6 3	1	128	17%
Education [12] Veterans Affairs [13]	3 6 3 3 5		3 6 3 5		3 6 3 6			
TOTAL	44,8	2 ′	1 47,2	14	49,7	11	2,393	3 5%

Notes: [1] FY 2002 includes mission support. [2] FY 2002 entries for DOD research represent a projection from the enacted FY 2001 levels plus inflation. FY 2002 levels are subject to change as a result of the Defense Strategy Review now underway. [3] Part of change in 2002 due to transfer from science programs. [4] Excludes state grant programs. [5] 2001 level includes \$117 million unavailable until the last day of FY 2001. [6a] Includes net mandatory funding (baseline mandatory availability, less proposed discretionary savings) for competitive research grants through the Initiative for Future Agriculture and Food Systems (IFAFS) and the Fund for Rural America (FRA). [6] Excludes buildings and facilities. [7] Forest and Rangeland Research. [8] Excludes Manufacturing Extension Program. [9] Science and Technology account, including transfer from Superfund. [10] Includes research and development funding for the Federal Highway Administration, the Federal Motor Carrier Safety Administration, and the National Highway Traffic Safety Administration. [11] Federal Aviation Administration Research, Engineering, and Development. [12] National Institute on Disability and Rehabilitation Research. [13] Medical and Prosthetic Research.

National R&D Spending

National R&D Investment is Strong

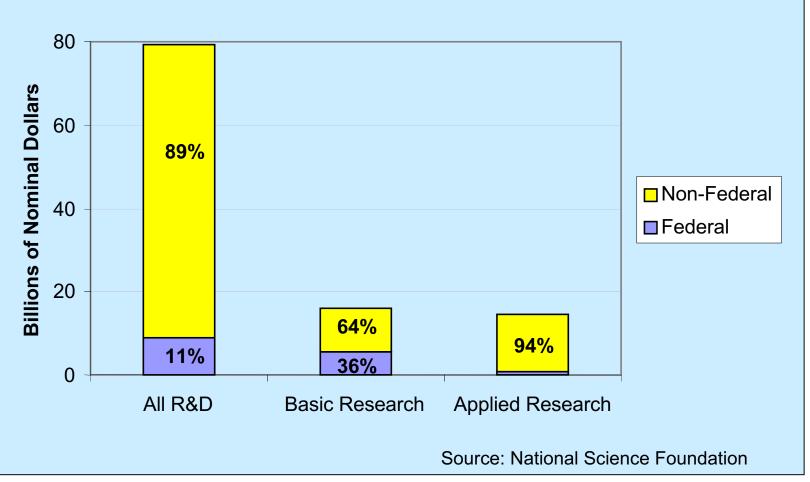

U.S. National R&D spending in 1998 was greater than the combined R&D spending of the other G-7 countries

Source: National Science Foundation

National R&D Spending

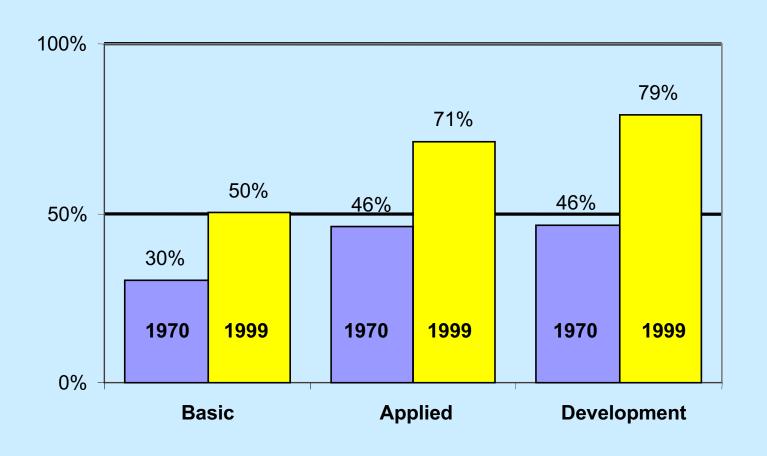
National R&D Investment is Strong ...and Getting Stronger

R&D Spending 1981-1998



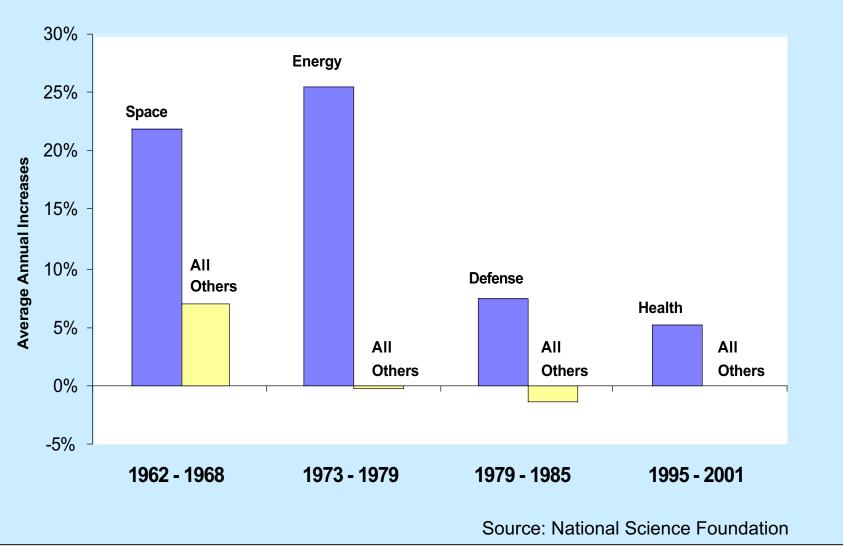
Source: National Science Foundation

Increased U.S. R&D Spending

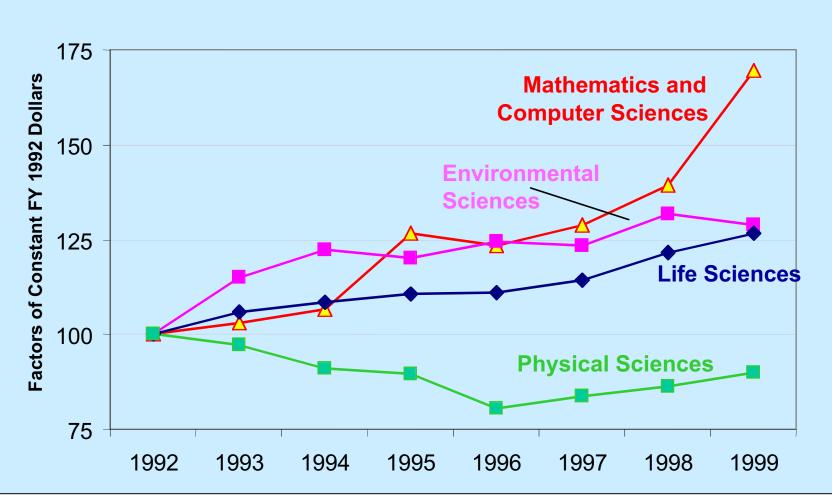

Is Due Mostly to Private Sector

(Increase Shown from 1993-1999)

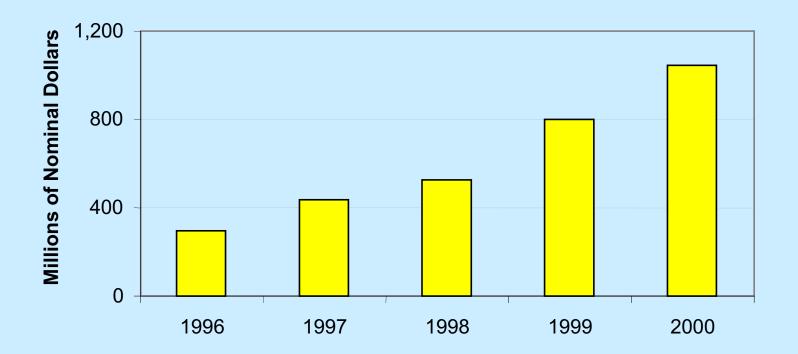
Private Sector R&D


Private Share of Total Has Increased Dramatically

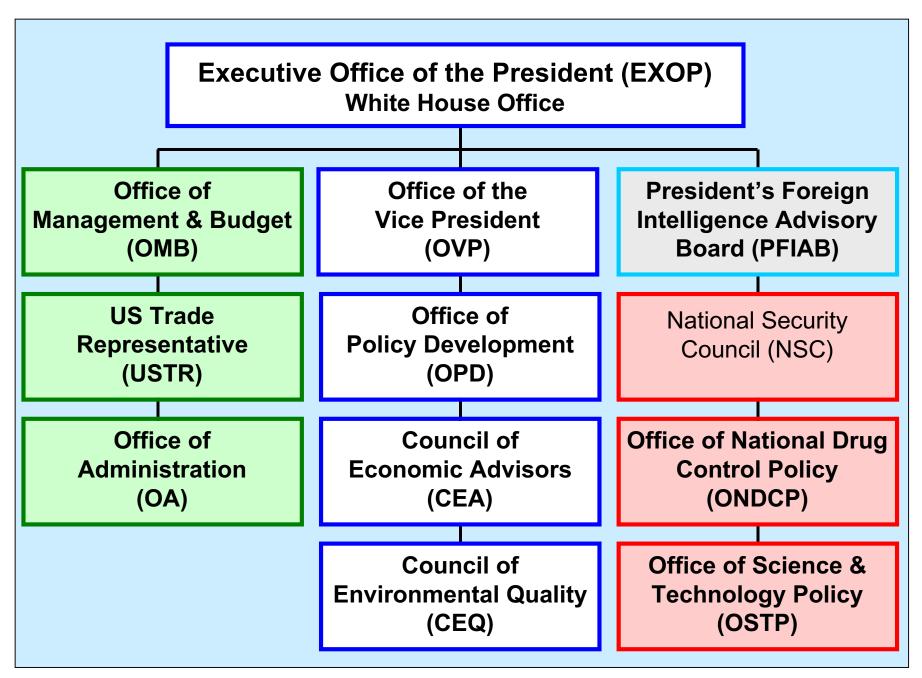
Source: National Science Foundation



(obligations, in 1996 constant dollars)

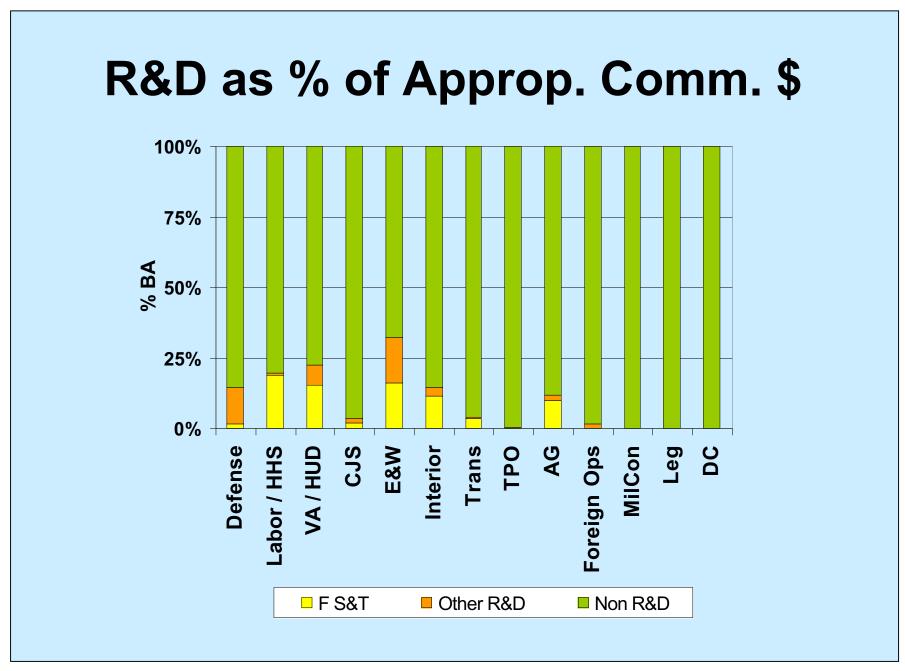


In Addition to Life Sciences, Some Other Disciplines Have Done Well



Earmarks to Universities & Colleges

Increasing at Alarming Rate, Undermining Competitive, Merit-Based Efforts



Source: Chronicle of Higher Education

Office of Management & Budget SUPPORT OFFICES STATUTORY OFFICES DIRECTOR **General Counsel** Office of Federal Financial **Deputy Director** Management (OFFM) **Legislative Affairs Communications Deputy Director for Management** Office of Federal Procurement Administration Policy (OFPP) **Executive Associate Director Economic Policy** Office of Information & **Legislative Reference** Regulatory Affairs (OIRA) **Budget Review Resource Management Offices (RMOs) Natural Resource National Security Human Resource General Government Programs Programs Programs Programs ENERGY, SCIENCE & INT'L AFFAIRS** TRANSPORTATION, **HEALTH COMMERCE, JUSTICE &** WATER State/USAI Health Financing **SERVICES** Energy Economic Affairs Public Health Transportation Science & Space •HHS Branch •Commerce NATIONAL SECURITY •Water & Power Justice/GSA •C⁴ Intelligence **EDUCATION & HR** NATURAL RESOURCES **HOUSING, TREASURY &** Ops & Support Education **FINANCE** Agriculture •Force Structure & •Income Maintenance Financial Institutions Environment Investment Treasury Labor Housing Interior •VA Personnel Policy

R&D as a Percentage of OMB PAD \$ 100% 80% % BA, FY 2001 60% 40% 20% 0% **NRP HRP GGP NSP** \$111.8B **FY 2001 est. BA** \$80.7B \$90.5B \$340.6B ☐ F S&T ☐ Other R&D ☐ Non R&D

Appropriation Committee FY 2001 Totals

Appropriation Subcommittee (BA, \$ billions)	FY 01 Total	Est. R&D	Est. F S&T
Defense	287,593	41,751	4,981
Labor, HHS, and Education	109,400	21,485	20,724
VA, HUD, Independent Agencies	80,700	18,259	12,455
Commerce, Justice, State & the Judiciary	37,600	1,260	809
Energy & Water Development	23,570	7,583	3,840
Interior	19,000	2,768	2,178
Transportation	18,300	743	621
Treasury, Postal Service, and General Government	15,800	68	
Agriculture & Rural Development	16,100	1,913	1,606
Foreign Operations	14,900	217	
Military Construction	9,000		
Legislative	2,700		
District of Columbia	448		
Discretionary Spending,	635,111	96,047	47,214
Excluding Offsets Designated for Discretionary			

R&D Policy Issues for FY 2003 and Beyond

- What does "Balance" mean?
 - There will always be national priorities.
- How do policy officials know when the portfolio is balanced?
- What are the decision rules for adding new resources? Can we come up with "Raines Rules" for basic and applied research (see attached)?

"Raines Rules" for IT Investment

IT Investments must:

- Support core/priority mission functions,
- Be undertaken because no alternative private sector or govt.
 source can efficiently support the function,
- Support work processes that have been redesigned to reduce cost, improve effectiveness and make maximum use of off-theshelf technology,
- Demonstrate a projected return on investment that is clearly equal to or better than alternative uses of public resources
- Be consistent with existing architectures,
- Be implemented in a manner that reduces risk,
- Be implemented in phased chunks, each with independent benefits, and
- Employs a performance-based acquisition strategy that appropriately allocates risk between govt. and contractor.