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Executive Summary

This Panel was set up by the Fusion Energy Sciences Advisory Committee (FESAC) at its
November 2000 meeting, for the purpose of addressing questions from the Department of Energy
concerning the theory and computing/simulation (T/C) program of the Office of Fusion Energy
Sciences.

There have been recent deliberations by FESAC (at its Knoxville 1999 meeting) and by the
Integrated Program Planning Activity (IPPA, 2000) concerning theory and computing plans. The
report of the Panel extends these deliberations to include findings and recommendations about
program structure, balance, community governance, and management.

Although the Panel primarily addressed programmatic questions, it acknowledges that the theory
and computing in fusion energy sciences has a stellar record of research successes. (A recen
FESAC report entitled “Opportunities in the Fusion Energy Sciences Program” listed a number
of theory and computing research highlights.) Last year the National Research Council
performed an assessment of the quality of the fusion energy sciences program—including theory
and computing—and concluded that the quality of its research is on a par with that of other
leading areas of contemporary physical science.

In the remainder of this Executive Summary, we give a summary of the key points of our
response to the DOE questions about theory, computing/simulation. The detailed questions are in
Appendix A, and our response is given in more detail in section 2.

The Panel received oral and written input from 27 persons, representing 20 different
institutions. Overall, thisinput did not indicate any great deficiencies with the theory and
computing/simulation program content and management. The Panel agrees with this
sentiment. Hence our primary finding is that the quality, structure, balance, and
management of the OFES theory and computing program are, on the whole, functioning
well.

The Panel also commends the T/C program for having several notable successes in self-
governing certain community efforts e.qg., JIFT, TTF, NIMROD, and PSACI.

Nevertheless, there were a number of important points made about ways in which the conduct of
the program might be improved. Many of these points were related to whether a more formal
management approach is needed in the program. Not surprisingly, views ranged from a belief
that a theory/computing program should be relatively unconstrained, to a belief that a more
systematic approach is needed to ensure that key T/C needs are met and that the roles of the
various players are well defined. The T/C program should have both focused and free-ranging
elements.

The sense of the Panel is that a more systematic approach is needed because:

* It is not completely clear how the program priorities are set.

* It is not clear how the T/C needs of each experimental program and design effort are met;

* It appears that a more systematic approach to code development and retention is needed; and,



* |tis not clear how the efforts of the various types of institution and T/C groups (large, medium,
and small) are connected to the broader goals of the program in terms of leadership and
support.

The panel thereformakes the following recommendations:

» The T/C program should be focussed on achievement of the FESAC goals through T/C
community and Theory Coordinating Committee inpwriaipdated Integrated
Program Planning Activity (IPPA) report. Also, a vision statement and regularly updated list of
key issues and challenges should be published.

» The Theory Coordinating Committee could respond to specific charges from OFES or call to
the attention of OFES, FESAC, and the T/C community overarching issues that require timely
resolution.

» A systematic approach to providing theory and computing support should be developed for
experiments and design studies, and should be considered in the review of proposals.

» Multi-user code projects should be initiated only on the basis of compelling usefulness, but
then should receive adequate support. Code duplication should be minimized and resources
should be concentrated (through a peer review process which is cognizant of the overall
program goals) on fewer codes. The support of legacy codes and production codes should be
put on a business- like basis.

* OFES should develop an understanding of how the T/C needs of a particular program are to
be met, and of the responsibilities for leadership and support of the various institutions
involved (e.g., by means nfemoranda of understanding, program advisory committees etc).

The balance among theory and computing topical areas is reasonable on the whole. However, as
might be expected given the successes in the T/C program, the panel sees areas that would
benefit from an increase in the T/C budget. Of course, it is also the case that most of the elements
in the fusion energy sciences program are under-funded. Nevertheless, two T/C areas stand out
as needing attention.
» Adequate theory and computing support should be included directly in proposals for
experiments, or in companion proposals focussed on the theory and computational aspects,
and considered in their review. The underlying theory should be supported, consistent with the
program needs.
» Recent OFES initiatives to strengthen advanced computing should continue to be pursued
vigorously. Efforts in advanced computing should be strengthened.

A small minority view in the Panel is that there was insufficient testimony and discussion to
support a recommendation that would result in any significant shift in resources or priorities in
these two areas.

Theory and computing research is reasonably well distributed across national laboratory,
university, and industrial groups, in a healthy mix. However, the research efforts of some
individual scientists have become highly fragmented and OFES, T/C groups, and individual
scientists should be sensitive to this concern. The connectivity to adjacent scientific fields is
relatively weak, in spite of apparent applicability. Hence connectivity with non-fusion science
fields should be enhanced. The proposed new interdisciplinary centers and the recent
involvement of fluid dynamicists in the “reconnection” contract are steps in the right direction.



Theory, modeling, and simulation are fairly well integrated in the current program. Separation of
theory, computing, and modeling should be resisted. Modeling requires specialized skills and
knowledge; hence modelers need to be aware of current developments in computing science.
Outreach, involvement, and visibility in the broader computational science community should be
enhanced.

The new OFES peer-review process is commendable. Further improvements would be to provide
more timely feedback; be transparent and similar for all institutions; allow review of program
sub-elements; provide rewards for collaborations with experiment and involvement in cross-
institutional teams; and incorporate relevance to the US program and stature in the international
program as criteria. A detailed description of the review procedures should be posted on the
OFES web page.

There is an urgent need to attract and retain younger scientists. OFES might consider setting up a
task force to study the problem of how to strengthen their graduate programs.



1. Introduction

At the November 14-15, 2000, meeting of the Fusion Energy Sciences Advisory Committee, a
Panel waset up to address questions about the Theory and Computing program, posed in a
charge from the Office of Fusion Energy Sciences (see Appendix A).

This area was of theory and computing/simulations had been considered in the FESAC
Knoxville meeting of 1999 and in the deliberations of the Integrated Program Planning Activity
(IPPA) in 2000. A National Research Council committee provided a detailed review of the
scientific quality of the fusion energy sciences program, including theory and computing, in
2000.

The FESAC Knoxville report said:

* “The dramatic advances in the predictive power of modern theory and simulation make these
tools essential elements of a cost-effective program.”

« “ Strengthen theory and computation as very cost effective means to advance fusion and plasma
science, taking advantage of advances in computation science and technology.”

The Integrated Program Planning Activity report represented the central elements of the fusion
energy sciences plans in terms of four MFE and two IFE programmatic goals, as follows.

M agnetic Fusion Energy Sciences Program ( MFE) Goals

1. Advance the fundamental understanding of plasma, the fourth state of matter, and enhance
predictive capabilities, through the comparison of well-diagnosed experiments, theory and
simulation.

2. Resolve outstanding scientific issues and establish reduced-cost paths to more attractive
fusion energy systems by investigating a broad range of innovative magnetic confinement
configurations.

3. Advance understanding and innovation in high-performance plasmas, optimizing for
projected power-plant requirements, and participate in a burning plasma experiment.

4. Develop enabling technologies to advance fusion science; pursue innovative technologies
and materials to improve the vision for fusion energy; and apply systems analysis to
optimize fusion development.

Inertial Fusion Energy (IFE) Sciences Program Goals

1. Advance the fundamental understanding and predictability of high energy density plasmas
for IFE, leveraging from the ICF target physics work sponsored by the National Nuclear
Security Agency’s Office of Defense Programs.

2. Develop the science and technology of attractive rep-rated IFE power systems, again
leveraging from the work sponsored by DOE in the DP ICF Program.

The knowledge base for next step decisions in the development of fusion energy will be based
upon these six key program goals. These goals are the guiding basis for the Integrated Program.
More details on the IPPA goals and objectives may be found in Appendix B.



The report of the National Research Council’s committee to assess Fusion Energy Sciences
concluded that “the quality of the science funded by the US fusion research program in pursuit of
a practical fusion power source (the fusion energy goal) is easily on a par with other leading
areas of contemporary physical sciences.” It also noted that the US has played a dominant role in
plasma theory, in the context of the international fusion energy effort; that theory and modeling
are now able to provide useful insight into instabilities and to guide experiments; and that many
of the major experimental and theoretical tools that have been developed are now converging to
produce a qualitative change in the approach to scientific discovery in the program.”

The report of the present Panel extends the previous FESAC and IPPA deliberations on plans for
Theory and Computing by including findings and recommendations on overall content, plans,
structure, and governance. In agreement with the NRC report, the Panel recognizes the stellar
record of successes in the program. A recent discussion of the successes may be found in
“Opportunities in the Fusion Energy Sciences Program”, prepared by FESAC for the Office of
Science of DOE, June, 1999.

http://wwwofe.er.doe.gov/more_htmlI/FESAC/FES _all.pdf

The Panel met twice, at UCLA January 31/ February 1, and at PPPL March 29/30, 2001. The
meeting agendas, identifying those who gave oral and/or written input to the Panel, are in
Appendix C.

2. Findings and Recommendations

Please note that the questions in the original DOE charge letter include some duplication! We
have chosen to structure our answers around the questions. Consequently, this duplication is
reflected in our answers.

Question A.1. What is the appropriate role of theory and computation in the OFES
program?

The capabilities of the OFES theory and computation program continue to grow in interpreting
and designing experiments, and are highly valued by experimentalists. This enhanced capability
is a result of advances in theory, increased computing capabilities, and more complete and
detailed diagnostic data. These advances indibateeed for continued basic theory as well as

the development of comprehensive simulation capabilities to explain new experimental
phenomena and support innovation and new concepts. The Panel applauds and encourages thi:
close coupling of experiment, theory, and simulation.

The OFES theory and computation program has the ultimate goal to achieve a predictive
scientific understanding of the behavior of high-temperature plasmas. The program has dual
objectives:

--Advancing plasma science; and

--Assisting and guiding efforts to realize practical applications of fusion energy.

These objectives are complementary and reinforcing.



The theory and computation program contains both long-range efforts, as well as those that
dynamically respond to nearer term challenges and opportunities. These are often best carried out
in a synergistic manner, rather than being compartmentalized. More specific objectives that
define the appropriate role of the theory and computation are the following:

--Advancing the understanding of complex basic fusion plasma physics;

--Formulating analytical models and developing advanced simulation tools to interpret
experiments;

--Discovering innovative approaches to improve confinement system performance; and
--Predicting plasma performance to guide experimental plans and system studies.

Is the current balance between theory and computing and the rest of the fusion program
reasonable?

In FYO01 the theory and computation research budget increased by 10% to $27.2M. Theory and
computation comprise 11 to 13% of the overall OFES funding. The higher value includes an
estimate of the support funded by experimental research programs. Overall, OFES resources for
FYO01 have been allocated as 55% for science and 45% for the operation of major facilities,
enabling R&D, and equipment. Theory and computation therefore comprise approximately 23%
of the science research in OFES, with the remaining science funds supporting experimental
research, diagnostic instrumentation, data analysis, as well as construction and operation of small
innovative concept experiments.

While the Panel finds this balance to be reasonable, there remain strong arguments for increasing
the support for theory and computation. The advanced computations area is a particular
opportunity, when coupled with a strong underpinning of basic theory. Although the Panel has
not reviewed the total, fusion energy sciences program, it is aware of similar severe funding
limitations in the overall OFES program. Therefore, any changes should take into account the
important complementary needs for other program elements segpesmental operating time,
diagnostic

development and data analysis.

The most compelling arguments to increase the effort in theory and computation include the
following:
--Theory and computation provide exceptionally high leverage to increase scientific
understanding;
--Increased effort would enable the U.S. to maintain areas of international excellence, while
providing valuable and unique contributions to both the U.S. and international programs;
--Some small experimental programs are severely lacking in theoretical and computational
support,
and generally there is an inconsistent approach to providing T/C support to experimental
programs;
--Today’s experiments are increasingly more sophisticated and require more detailed analysis;
--Advanced computational science tools are now available to be exploited for more complex
and comprehensive simulations;
--Theory and computation provide excellent avenues to attract high quality students and new
researchers; and



--Increased local computing capabilities (e.g., Beowolf clusters) would enable the theory
and computation community to make significant advances in terascale computing and would
complement capabilities at NERSC.

The Panel sees advanced computing as an especially high-leverage growth opportunity, in view
of current computational capabilities and fusion energy sciences needs. The OFES program
would benefit significantly from an increase in computational activities, as has occurred in other
areas of science. Recent OFES initiatives to strengthen advanced computing should continue to
be pursued vigorously.

Question A.2. Is the current structure and balance between the elements of the
theory/computing program appropriate? What changes, if any, are needed in program
content?

The Panel finds that the present balance between topical science areas (approximately 38%
transport; 37% MHD; 13% wave-particle interactions; and 12% boundary physics issues) is
approximately correct. The emphasis on transport and MHD helps to sustain U.S. international
excellence in these topical areas, which are critical for innovative concepts exploration. Many
researchers actively reach across these topical scientific areas. Cross-coupling and integrated
research should be highly valued in ranking research proposals. The Panel prefers describing the
OFES program in terms of these scientific topical elements, rather than by confinement concept
or discipline (e.g., theory and computing). Nevertheless, these descriptions also provide
additional valuable measures of balance in overall program content.

OFES experimental research on non-tokamak concepts is supported at a level comparable to
tokamak experimental research. Yet the level of theory research applied to the many non-
tokamak concepts is much less. This has occurred because of the much more detailed data
available from U.S. and international tokamaks, and the important role for mature, high-
performance tokamaks as a test bed for generic plasma studies. Nevertheless, with an increasing
U.S. emphasis on these other confinement concepts, a more effective theory effort is essential, to
guide and extract the underlying science from them. OFES should consider theory and
computation as an essential element of scientific experimental research on all experiments, and
include them as a review element. The underlying theory should be supported.

One decade ago, the U.S. fusion energy sciences program was arguably the leader in scientific
computation and simulation. With recent cutbark$usion funding, the OFES’s computation

effort has fallen behind, and has not taken adequate advantage of advanced computing
capabilities. The Panel's viewsthis regard are discussed in more désdr in this report.

In summary, the majority of the Panel recommends that increased efforts be directed toward
theory and computing support of the non-tokamak confinement concepts and toward
strengthening advanced computational activities. A minority view in the Panel is that there was
insufficient testimony and discussion to support a recommendation that would result in any
significant shift in resources or priorities in these two areas. Some specific suggestions for
ensuring a more balanced funding between the various concepts are outlined below in response
to the question A.4.

10



Many aspects of the OFES theory and computation effort could be applied to adjacent scientific
fields, yet the existing connectivity is relatively weak. There should be an increased effort to
strengthen outreach and interaction with other scientific fields, including such areas as space and
astrophysical plasmas, fluid dynamics, and high-intensity accelerators. Researchers should be
encouraged to make these connections, and these connections should be an important aspect c
evaluating and ranking proposals to OFES. Scientists should, moreover, make efforts to learn
from other fields, in order to know current developments, be able to describe fusion science in
their vocabulary, and also import and adapt new ideas.

To some degree, the above imbalances arose due to the absence of a detailed community theory
and computation plan. Various theory and computation groups have detailed institutional plans,
as do individual principal investigators. Portions of an overall theory and computation plan are
embedded within various program documents, such as FESAC reports, the Snowmass
proceedings and the IPPA report. Nevertheless, there is no national theory and computing plan
that is clearly documented. Therefore, there is no sense that deliberate choices have been made
in constituting the current program, nor that a clear vision has been articulated concerning

critical challenges and opportunities for future research. The theory and computing/simulation
program should be focussed on the goals of FESAC, as elaborated in the Integrated Program
Planning Activity report. An IPPA report, updated through T/C ingotld demonstrate the key

role of T/C in the overall, fusion energy sciences program and would integrate it with the
experimental activities. A national theory and computation plan would describe the program
content in a clear and compelling way, as part of the overall program plan. Needless to say, such
a plan is not a substitute for simultaneously stimulating innovations, supporting scientific
excellence, and encouraging creative scientists to interact with related areas and other scientific
fields.

The Panel also recommends that there be a vision statement and that a regularly updated list be
published summarizing key scientific issues in theory and computing/simulation. A possible
model could be the Opportunities and Challenges reports issued by the Theory Coordinating
Committee the most recent of which was published in March 1999. These five-page documents,
which listed near- and long-term challenges were particularly useful. In hindsight, it is
impressive to realize the outstanding progress that has been made in addressing both the near
term and the long-term challenges. A body such as the Theory Coordinating Committee might
undertake this activity. Additional discussion of this issue is given in the answer to questions B1
and B3.

Question A.3. Several groups and numerous individual investigators at many institutions
carry out theory/computing research. Isthedistribution of research among these research
performersappropriate?

Theory and computation research is conducted by national laboratories (48% in FYO00),
universities (37% in FY00), and industries (15% in FY00). In FYOL1, the theory and computation
budget increased by 10% to $27.2M, with allocations determined on the basis of proposals
reviewed by OFES. There are seven theory and computation groups with annual funding over
$1M (PPPL, Texas IFS, ORNL, GA, LLNL, MIT, and LANL), four groups with annual funding
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between $0.5M to $1M (NYU, Lodestar, UCSD, Maryland), and approximately 30 smaller
theory grants funded by OFES. Approximately 30% of OFES theory and computation funding is
provided in grants of less than $0.5M. The OFES theory and computation community consists of
nearly 200 individuals.

The Panel heard presentations from several research groups and from principal investigators at a
number of institutions, and concluded that the balance of research activities is reasonably well
distributed. Opinions ranged from the view that the research is too thinly spread, to that it be
more widely distributed. Most importantly, the common view is that the research should be
distributed according to scientific and technical merit. The Panel strongly endorses the new peer
review process being implemented by OFES that provides for comparative ratings based on
scientific excellence. In these reviews, however, technical relevance to the OFES mission and to
the international fusion program should be incorporated into the ranking of proposals.

This diverse distribution of participants, with wsry healthy mix of institutions and individual
investigators, is a strength of the US theory and computation program, in that it provides
valuable cross checks and stimulates innovation. Despite this distribution, there is the perception
that fusion plasma science is not as widely represented in university physics and engineering
departments, in the younger age bracket, relative to other fields of physics. On the other hand,
OFES has an ultimate energy application goal, which calls for a greater degree of focused
scientific research, as well as the integration and synthesis of scientific issues, which is
facilitated by larger research teams. In practice, such categorizations are blurred, as one can find
healthy examples of small university groups that provide design support to large projects, and
large laboratory groups that develop seminal basic theory and support university efforts.

Still, there is an issue regarding the poor definition of the roles of the different types of
institution and of their T/C groups. It is not clear in many cases how the different institutions and
T/C groups, ranging from large groups to individual contributors, are used systematically to
provide support and leadership to the various program activities involving theory and
computing/simulation. This was seen in the case of a number of small experimental groups, but
is also the case in larger program activities. Do large theory groups associated with major
experiments have a responsibility for the general scientific development of the concept, or is
their primary role to provide for the local experiment? Are the sizes of the various groups
appropriate for their responsibilities? There does not appear to be a systematic approach to
providing T/C support and program leadership. In order for each program element to have the
necessary T/C content funding must be adequate, and the roles and responsibilities of all the
participants defined. For example, a definition of the role of the large T/C groups in supporting a
local experiment and the more general scientific development of the concept needs to be
clarified. The Panel recommends that OFES consider these factors in establishing and reviewing
programs, and ensure that there are adequate memoranda of understanding and program advisor
committees to make the programs function effectively.

There is a significant community concern about the fragmentation of the time ofrsbwdual
researchers in theory and computation. Fragmentation occurs by scientific topical area, and also
by confinement concept, by project, and by institution. Many individuals inefficiently multiplex
their research time in 10-20% allocations. This fragmentation can be inflicted by the individual
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on him/gerself, by the institutions, or by OFES. This is a very important area of concern, which
should be addressed by OFES, by institutions, and by individual theory and computation
investigators. The proposed new interdisciplinary centers and the recent involvement of fluid
dynamicists in the “reconnection” contract are steps in the right direction.

Aretherestructural changesthat would make the program stronger ?

Many fusion researchers tend to spend their entire career at one institution. On-site
collaborations among the staff at the various institutions should be strongly encouraged e.g., by
means of sabbatical leaves and extended visits. Many long-range collaborations have been very
successful, aided by electronic communications, conferences and workshops, video-conferences,
and frequent visits. Greater advantage should be taken of the distribution of research among the
many institutions involved in fusion research by encouraging interdisciplinary research with
scientists in other fields. Universities and laboratory research groups have natural opportunities
for doing this.

As a scientific endeavor, the theory and computation community should take a more proactive
role in community governance. Possibilities include enhancement of the Theory Coordinating
Committee, or greater reliance on groups like the Transport Task Force to build on or as role
models to emulate. This process would cultivate community spokespersons to advocate theory
and computation priorities, and to reach out to other important fields of scientific research.

Question A.4. In many areas of physics" modeling/simulation" studies are now viewed as a
third discipline, distinct from both experimental and theor etical studies. How effectively
are the modeling/simulation and theory communities working together to support the
needs of therest of the fusion program?

While recognizing that computational physics requires a highly specialized set of knowledge and
skills, there is a strong consensus in the community and on the panel to resist any fragmentation
between theory and computation. The two approaches are intrinsically linked in fusion science.
Both theory and experiment provide the necessary underpinnings and interpretation for
simulations. Decoupled from basic theory, computation would be a sterile exercise. At the same
time, progress in theory without computation would be severely limited by the complex,
nonlinear nature of plasma physics. Any attempt to separate these sectors of our community
through funding or management practices could cause harm to both, leading each to develop
their own priorities, to stress narrow, ever more specialized problems and to engender conflicts
over turf.

Some have suggested that integrated modeling be viewed as a fourth discipline, distinguished
from first-principles simulations as well as from experiments and formal theory. For the reasons
cited above, the Panel disagrees with this suggestion, but recognizes that this type of modeling
has an important, but challenging role to play in the fusion energy sciences program. On the one
hand, it must serve as an honest broker, calculating the consequences of theory as it applies to
actual experiments. On the other hand, it is used as a tool for predicting the performance of
future machines and for developing operational scenarios for current ones. In the first role, much
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can be learned from difficulties and discrepancies between the model and experiments. The
second role requires fulfilling the promise of accurate prediction.

It is a finding of the panel that theory and computation are well integrated in the current program.
In general, work is carried forward by small teams containing both formal theorists and
computational specialists or by individuals with expertise in both areas. The Panel also finds that
separating the theory, computation, and modeling communities into distinct disciplines would
lead to detrimental fragmentation of the effort.

Modelers do need to stay current with the latest developments in computer science. We should
explore ways to improve our outreach into the broader computational science community and to
recruit talented computer scientists into our research teams. This would allow us to take

advantage of developments in other fields as well as increase our visibility and reduce isolation.
Although there is a need for "quality assurance" of complex codes through a rigorous regime of
validation and verification, real engagement of the theory and computing must go far beyond

mere benchmarking exercises.

At the same time we want to encourage strong collaboration and co-development between
theory/computation on the one hand, and experiments on the other. There is general recognition
that the coupling between these communities has steadily increased and has been responsible, ir
large measure, for the remarkable progress in fusion science. Nevertheless, there is still ample
room for improvement. We need theory support and collaboration on a wide variety of
experiments including the full range of confinement experiments as well as small science-
oriented facilities.

Experiments often have specific theoretical and computational needs in direct support of their
programmatic missions. The Panel notes that apparently, to some extent, experiments are funded
rather than complete scientific programs. Therefore, more attention should be given to ensuring
adequate theoretical and computational support. There are various approaches by which
experimental groups can marshal the necessary theory and computational support - all should be
encouraged:

a. Informal collaborations based on mutual interest where the funding of the participants is
independent.

b. Experimental proposals submitted along with companion theory/computation proposals during
the same budget cycle.

c. Experimental groups putting theory/computation specialists on their staff.
However, decisions about which problems to work on and which experiments tomtiork
should be driven principally by scientific opportunities and intellectual excitement from the field.

In a broader scientific context, we have identified specific mechanisms that could foster and
reward collaborations between theory, computation, and experiments.
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1. Explicitly call out such collaborations as a positive factor in the merit criteria for proposals.
This could encourage proposals that seek to reach beyond narrow specializations.

2. Work with program committees of major meetings to include direct comparisons between
theory, computation and experiments as one of the important criteria when invited talks are
selected.

3. Exploit modern computer and communications technologies to increase the availability and
ease of use of codes, to provide transparent access to experimental data and simulation outputs
and to promote the sharing of analysis and visualization tools.

4. Encourage topical physics groups (like the TTF) that are explicitly chartered to generate
dialogue between the sectors of our community. To be effective, the dialogue must be reflected
in programmatic and institutional priorities.

Finally, while recognizing the importance of the confinement-concept orientation which has
been the main organizing principle for the program historically, the panel sees an important need
to encourage cross-cuts based on common science. The physics common to the concepts is
generally greater than that which distinguishes them. Therefore, the free flow of ideas, results
and intellectual capital should not be impeded by organizational or administrative constraints.

Question A.5. How should the modeling/simulations efforts be conducted to increase their
contribution to the overall program, considering issues such as code proliferation, legacy
codes that are expensive to maintain and difficult to upgrade, introduction of modern
computational techniques, and formation and functioning of multi-institutional
modeling/simulation teams?

A balanced approach between computational problem solving and multi-user code development
is required. Small one- or two-person research codes function best with informal procedures and
minimal oversight. Small projects can efficiently develop massively parallel codes with little
structure, but even for them, modern code development practices will be helpful. Larger efforts,
which include both large code efforts and smaller codes that have many users, require more
formal processes, resources and planning. There is a need for the larger efforts to use the more
modern code development tools and practices (e.g. project planning, internal and external coding
reviews, modern version control, adequate documentation, modularity, risk management,
regression testing, formal verification and validation program, good user interface). The fusion
energy sciences program needs to modernize its procedures for the multi-user codes to be more
effective. This will require more resources. Computer scientists will need to be integrated
members of the code development teams, especially if the codes are to be able to exploit the full
potential of massively parallel platforms.

Theory and computing represent an opportunity for the US fusion program to sustain excellence
in plasma physics and fusion science in both the national and international arenas. The US, with
NERSC, has world classomputer facilities. Advances in computing capability offer an
opportunity to improve current solution methods and to attack new problems that were
previously intractable. Increased computing power has brought theory to the point where it plays
an essential role in the planning and interpretation of experiments. An excellent computing and
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theory program provides the US fusion sciences community with necessary tools for increasing
plasma understanding, and offers an effective route for collaborative research with foreign
experiments.

The Scientific Discovery through Advanced Computing (SCIDAC) initiatives provide an
important means of sustaining a leading role for computational physics and theory for the US
fusion program, both nationally and internationally. Within the fusion program, the Plasma
Science Advanced Computing Initiative (PSACI) has as its goals the development and
deployment of better mathematical models and computational methods for optimal utilization of
modern supercomputing resources. However, the level of funding increase envisaged for PSACI
(~$3M) is marginal to take full advantage of the opportunities that advanced simulations offer.
By comparison, in ASCI, a large scale computing effort typically involves 20 FTEs (about 40
people) and around $5M a year. The SCIDAC process and the general view that simulation is an
important method for scientific research offer a significant growth opportunity for the fusion
theory and computation program.

There are a number of promising multi-institutional code development efforts. An advantage of
multi-institutional efforts is that they lead to community owned codes that may be more widely
used, thus eliminating duplication. Furthermore, group-developed codes may be, of necessity,
modular and easier to upgrade. Benchmarking and documentation of these codes is essential.
The community needs to know what equations are being solved, what algorithms are being used,
and what benchmark tests have been performed.

That multi-institutional efforts and codes exist and are useful bears testimony to the professional
competence and dedication of the team members. However, almost none of these projects is
well enough supported to be really competitive with other large-scale computational physics
projects in the US and international scientific communities. Large multi-user codes need a team
composed of members from several disciplines—physicists, computer scientists, computational
mathematicians, documentation specialists, testers, and others. Similarly, development and
maintenance of a large multi-user code requires long-term, stable funding and support. The entire
life cycle of the code including development and maintenance needs to be considered. Under-
support for multi-user codes, likely, will lead to failure.

While many of the multi-institutional code development efforts have a user community, the
process for identifying the need for the codes, and the potential user community is not clear.
Large scale code development efforts should only be launched when there is a clear and
compelling case that the program needs the capability that the code would provide, and that
resources should be devoted to the code rather than other priorities.

The present fusion computational physics program is not sufficiently engaged with the national
computational physics community. The panel recommends that the fusion community undertake
a strong effort to participate in activities which foster interactions with this group. This includes
participation in the appropriate professional societies and conferences, publishing in journals
such agComputing in Science and Engineerigg well as other activities. If this is done, not
only will fusion be viewed as part of the larger computational physics community, but also the
fusion community will become more conversarith the state-of-the-adf modernmassively-
parallel computing.
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Code proliferation is an issue that must be addressed carefully. Some duplication of research
codes can serve a useful purpose. Parallel development of research codes addressing a singls
topic can serve to identify the best algorithms and physics approach. Cross comparison of results
among codes in a new area is an essential element of verification and validation procedures.
Duplication of more mature codes, however, should be minimized whenever possible.
Consolidation works best for relatively mature codes and algorithms where the physics basis is
stable. Examples include MHD stability, atomic physics, RF and beam heating algorithms, and
data analysis. Important issues that must be addressed prior to undertaking a consolidation effort
include the following: Is there duplication? Do the codes have different purposes and physics?
Who are the users? How is support being provided? Are the codes modern? Are they
maintainable?

Production codes need to be considered separately from research codes. For the reasons listed
above, some duplication of research codes is desirable. However the development and
maintenance support requirements for resources make duplication of large, multi-user production
codes something to be done only when absolutely necessary. Too much duplication can lead to a
number of sub-critical efforts. Code duplication should be minimized and resources should be
collected and concentrated (through peer review not necessarily based on the NSF model) on
fewer codes.

Legacy codes face many of the same issues as production codes. Except for a few cases, the
fusion community has not explicitly provided the necessary support for external users for codes.
Almost all of the codes are maintained by their original developers in their “spare time”. Issues
such as porting to different platforms, updating and maintenance, documentation for users,
adding user requested features, etc. get treated on an informal basis, if at all. The program should
put the support of legacy and production codes on a much more business-like basis rather than
the currenwoluntary basis. Part of this process would be for the community of users to identify
the codes or code capability that is needed, then to develop a plan for modernizing the required
codes (or replacing them).

Question B.1. Are the current management practices of the program, such as program
planning and merit review, sound?

and

Question B.3. What management changes would strengthen the program?

Overall, the oral presentations and written material for the Panel did not indicate any great
unhappiness with the theory and computing program content and manadBmehé¢ory and
computational program has an excellent track record of success. The moves toward
enfranchisement of community groups within some elements of the program have been
beneficial to both the program and DOE. A broadening of such efforts is clearly desirable but it

must be done in the context of minimizing committees, meetings and layers of management. The
concerns raised are discussed below.

The panel finds that the new, better-defined, OFES review process is a move in the right

direction for the program. The strengths of this new process lie in its anonymous and
comparative (i.e., involving a comparison and ranking of different proposals) review procedures
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that give the benefits of constructive feedback. The constructive feedback should be automatic
and timely, as well as interactive, where appropriate. Concerns and negative perceptions about
this process would be best allayed by making the approach transparent and as similar as possible
for all institutions. The approacfgr example, could include comparative, anonymous review of
specific program sub-elementsmaller programs, usually reviewed separately by a set of
reviewers) while using panels, to ensure the integrated coherence of larger programs elements.
Reviews should be made of the separate sub-elements of large programs. The panel recommend:
that a detailed description of the entire procedure should be posted on the OFES web site, as
done, e.g., by the Office of Basic Energy Sciences.

The Panel recognizes that an important element in the theory pragraives collaborations

between theory and experiment and direct theoretical support for experimental programs. It is
therefore important to foster this interaction both at the DOE level and at the programmatic level.
Specifically, the panel suggests new review criteria that reward integration with experimental
programs or large computational projects. A clear plan of the integration should include
description of the proposed mechanisms and identificatioperfonnel involved in the
collaboration. Important programmatic goals are clearly furthered by strong, direct, theoretical
support of the experimental programs. Such support must be encouraged. In the reviews,
technical relevance to the OFES mission and to the international fusion program should be
incorporated into the ranking of proposals.

The Panel notes that, if indeed national teams are the trend of the future, institutions should offer
recognition for being a strong player, or even a leader, in a national collaboration.

A strong theory program necessarily contains a broad spectrum of elements including activities
ranging from basic theory to direct experimental support. It should be made clear that every
proposal does not have to satisfy all of the review criteria metrics.

While recognizing the need for some forms of programmatic categorization, the Panel feels it is
important to note that in many cases a topical crosscut for categorization of theoretical projects is
more representative of the program than classification by concept or fadilitlitionally, the

program should recognize that excellent scientific progress can be made without necessarily
obtaining the final complete answers to difficult physics questions.

A standing national committee for theory and computing, with broad membership, could play a
valuable role as a program advocate, in preparing a coherent program plan, in fostering outreach
to the broader scientific community, and in encouraging interdisciplinary interaction. The Theory
Coordinating Committee, consisting of leaders and senior members of the theory community,
was formed in 1989 and has been functioning as an informal advocacy group for theory and
computing/simulations. Such a group with a broadened membership to include representatives
from related fields and the experimental community could take on such a role. The leadership
should not be prescriptive and should represent the entire spectrum of the community. This
committee could respond to specific charges from OFES or call attention to OFES and FESAC
overarching issues that require timely resolution.
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Within the theory program, as discussed above, a continued balanced mix of focused and broad
research is important. One area of current imbalance is in the theory and computational support
of the alternate concepts programs. This could be improved through general planning and by
rewarding such efforts in the review process. Diversity of personnel within the program is also
very important to the program’s continued viability. To further this end, thought should be given
to the makeup of review committees, executive committees and other organizational bodies in
order to represent this diversity whenever possible,

In the T/C area, within five years, it is expected that a cadre of senior theoreticians will be
retiring. Since it is anticipated that the US fusion energy sciences program will continue to
broaden the range of its theoretical studies, a broad and flexible theory effort will be required to
ensure the continuing viability of the fieldn important consideration must be the need to
attract and retainthe next generation of plasma theorists. Plasma theory is important both from
a basic-physics point-of-view and from a programmatic/societal point of view. Much of the
science done by the community is intellectually stimulating and broadly relevant “basic” or
applied science. This must be recognized and a better job must be done to communicate it.
Encouraging outreach to the general science community as well as interdisciplinary collaboration
should facilitate achieving this goal. Such encouragement could take the form of rewards at all
levels, from DOE through direct support, to local leaders using annual reviews and “moral”
support. The panel recommends that OFES consider setting up a task force to examine this
concern.

At the introductory level, care must be taken to assure that the Post-doctoral and Graduate
Fellowships are as flexible, competitive, and as well publicized as pos®ibleote two
particular examples. The DOE Fusion Energy Post-Doctoral fellowship program should be
designed to attract the best people in the field. If these positions are not competitive with other
post-doctoral positions, prospective plasma theorists will accept positions elsewhere and will be

lost from the field. The second example addresses the Fusion Energy Sciences Fellowship
Program. It should be recognized that many graduate students start their graduate careers as a
teaching assistant or unsure of exactly what sub-specialty they are interested in pAifstring.

year or two, when these students have decided on pursuing plasma theory, it is desirable that they

have the ability to obtain funding. The present Fellowship program is structured so that students
must apply within their first semester (or sooner). Panel members differed on whether additional
flexibility in the program would remove this starting time issue and would increase the potential
pool for the graduate fusion fellowship program.

A final obvious statement, which nevertheless must be an underlying principle for the program
organization, is “Management should always be value added and not value subtracted”.

Question B.2. Is the role of various organizations in managing certain elements of the
program reasonable (e.g., IFS coordination of the Joint Institute for Fusion Theory {with

Japan} or PPPL coordination of the Plasma Science Advanced Computing Initiative)?

There have been notable successes in the OFES Theory and Computation program in having
various organizations manage elements of the program. Such efforts should be encouraged. Two
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important features of such successes are strong leadership from respected leaders and a clea
decoupling of programmatic and funding decisions from the institutions involved. The use of
independent reviews of proposals and often a program advisory committee (PAC) are essential
for ensuring credibility. The contributions of those who are providing leadership leaders for
such program elements such as the US-Japan Joint Institute for Fusion Theory (JIFT), the Plasma
Science Advanced Computing Initiative (PSACI), the NIMROD computational project, and
Transport task Force (TTF) are highly appreciated by the Panel. This appreciation was also
expressed byscientists who gave input to the Panel. Such efforts are an important part of
enfranchising the fusion energy sciences community in support of OFES.
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Appendix A. Charge L etter
November 9, 2000

Professor Richard D. Hazeltine, Chair
Fusion Energy Sciences Advisory Committee
Institute for Fusion Studies, RLM 11.218
University of Texas at Austin

Austin, TX 78712

Dear Professor Hazeltine:

This letter provides a charge to review a specific element of the Office of Fusion Energy
Sciences (OFES) program - the theory and computation program. Since the restructuring of the
fusion program in 1996, most elements of the program have been reviewed by the Fusion Energy
Sciences Advisory Committee (FESAC). The theory and computation program is the only major
element remaining to be evaluated. Recent changes in the OFES review processes for the theory
and computing program make this an opportune time to review the theory and computing
program.

The Fusion Energy Advisory Committee reprRestructured Fusion Energy Sciences Program
noted that "theory and modeling, in conjunction with experiment, provide the capability at the
core of the scientific research endeavor.”" The recent Assftssment of the Department of
Energy’s Office of Fusion Energy Sciences Prognamapared by a National Academy of
Sciences committee recommended that increasing scientific understanding of fusion relevant
plasmas should become a central goal of the fusion program. It also recommended that the
program should be open to evolution in terms of content and structure as it continues to
strengthen its portfolio of research. Because the National Academy of Sciences committee has
already provided a detailed review of the scientific quality of the fusion program, FESAC should
focus its effort on reviewing the theory and computation program's overall content, plans,
structure, and governance.

In reviewing the theory and computing program, | request that the review address at least the
following questions:

1. What is the appropriate role of theory and computation in the OFES program? Is the current
balance between theory/computing and the rest of the fusion program reasonable?

2. Is the current structure and balance between the elements of the theory/computing program
appropriate? What changes, if any, are needed in program content?

3. Several groups and numerous individual investigators at many institutions carry out

theory/computing research. Is the distribution of research among these research performers
appropriate? Are there structural changes that would make the program stronger?
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4. In many areas of physics “modeling/simulation” studies are now viewed as a third discipline,
distinct from both experimental and theoretical studies. How effectively are the
modeling/simulation and theory communities working together to support the needs of the
rest of the fusion program?

5. How should the modeling/simulation efforts be conducted to increase their contribution to
the overall program, considering issues such as code proliferation, legacy codes that are
expensive to maintain and difficult to upgrade, introduction of modern computational
techniques, and formation and functioning of multi-institutional modeling/simulation teams?

In reviewing program governance, FESAC should consider the following topics: planning and
goal setting processes, merit review procedures, and coordination of international collaboration.
Specific questions FESAC may wish to consider include:

1. Are the current management practices of the program, such as program planning and merit
review, sound?

2. Is the role of various organizations in managing certain elements of the program reasonable
(e.g., IFS coordination of the Joint Institute for Fusion Theory {with Japan} or PPPL
coordination of the Plasma Science Advanced Computing Initiative)?

3. What management changes would strengthen the program?

Please carry out this review using experts outside of FESAC membership as necessary.
Complete this evaluation and provide recommendations for the theory and computing program

by
May 1, 2001, as this advice will be important for supporting the FY 2002 budget.

| appreciate the time and energy that members of FESAC and FESAC panels have provided to
these continuing efforts to evaluate and to improve the OFES program. | am confident that the
Committee's findings and recommendations on the theory and computation program will also

benefit the OFES program.

Sincerely,
Mildred S. Dresselhaus

Director
Office of Science
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Appendix B. IPPA Program Goals and Objectives

TableB.1 The Program Goals and Objectives.

Goals 5-Year Objectives 10-Year Objectives 15-Year Objectiy
Goal 1. Advance 1.1 Turbulence and Develop fully Develop afully
understanding of Transport integrated validated

plasma, the fourth | Advance scientific understandingapability for comprehensive

state of matter, and | of turbulent transport forming | predicting the simulation

enhance predictive
capabilities,
through
comparison of
well-diagnosed
experiments,
theory and
simulation

the basis for a reliable predictiy
capability in externally controllg
systems.

1.2 Macroscopic Stability
Develop detailed predictive
capability for macroscopic
stability, including resistive and
kinetic effects.

Develop qualitative
predictive

capability for transport
and stability in self-

organizedsystems.

1.3 Wave Particle

I nteractions

Develop predictive capability fq
plasma heating, flow, and
current drive, as well as energg
particle driven instabilities, in a
variety of magnetic confinemer
configurations and especially
for reactor-relevant regimes.

1.4 Multiphase Interfaces
Advance the capability to predi
detailed multi-phase plasma-w
interfaces at very high power-a
particle-fluxes.

1.5 General Science

Advance the forefront of non-
fusion plasma science and
plasma technology across a br|
frontier, synergistically with the
development of fusion science
MFE and IFE.

eperformance of
scexternally-controlled
systems including
turbulent transport,
macroscopic stability,
wave particle physics
and multi-phase
interfaces.

Advancethe

forefront of non-
fusion plasma

science and

technology across a
broad frontier,
synergistically with the
development of fusion
rscience.

2tic

t

ct
all
nd

oad

in

capability applicable
to the broad range of
magnetic confinement
configurations.

Advance the for efront
of non-fusion plasma
science and

technology across a
broad frontier,
synergistically with the
development of fusion
science.

23

es



Goals 5-Year Objectives Medium Term to 20 Years

Goal 5: Advance the 5.1 Beam Target Interaction and Couplin| Develop optimized target
fundamental understanding| Advance the understanding of driver designs based on information from
and predictability of high interaction and coupling in IFE targets tg the IRE and NIF and other intertial
energy density (HED) a level sufficient to determine tradeoffs | fusion programs.

plasmas for IFE, among driver beam focusing, absorptior,

leveraging from the ICF x-ray production, beam-plasma instability,

target physics work and target preheat.

sponsored by the National
Nuclear Security Agency’s | 5.2 Energy Transport and

Office of Defense Symmetry

Programs. Advance the understanding of energy
transport to a level sufficient to determine
the tradeoffs between the number of beams
and chamber geometry, beam spatial
profile, beam pointing accuracy and beam
power balance, as well as hohlraum
geometry for indirect drive.

5.3 Implosion Dynamics and

Equations of State (EOS) of

Materials

Advance the understanding of implosion
dynamics and EOS of fusion materials to
a level sufficient to determine the pulse
shape and timing requirements for IFE
targets.

5.4 Hydrodynamic Instability and Mix
Advance the understanding of
hydrodynamic instability and mix
sufficient to determine the tradeoffs
between techniques to optimize ablation
stabilization as well as other approaches to
reducing instability growth, and the driver
requirements on intensity, spatial
uniformity and pulse shaping.

5.5 Ignition and Burn
Propagation
Advance the integrated understanding of
coupling, symmetry, pulse shaping, and
instability sufficient to specify the
optimal assembly of fuel for ignition and
burn propagation subject to tradeoffs in
driver, chamber and target fabrication
specifications.
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Table B.2.. Matrix of Activities vs. Goals, for the Theory and Computation areas, from the IPPA
report..
(P refers to a primary relationship and S refers to a Secondary Relationship)

G-1 G-2 G-3 G-4 G-5 G-6

1.1. Magnetic Confinement Theory P P P S

1.2. Inertial Fusion Theory P S
1.3. Plasma Simulation P P R S5 P S
1.4. Basic Plasma Theory P R 5 P

Facilities, Technologies, Materials,
Etc. 1.5. through 4.0.

Report of the Integrated Planning Activity for the DOE Fusion Energy Sciences Program,
DOE/SC-0028, December 2000.
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Appendix C Panel Meetings
UCLA Meeting January 31/February 1, 2001.

January 31.
09.00 am Panel only.

10.00 am Input to Panel. S.Eckstrand (DOE-OFES), R.Taylor (UCLA), J.Cary (U.Colorado),
D.Schnack (SAIC) , V.Chan (GAT).

12.30 pm Lunch.

01.30 pm Input to Panel. A.Glasser (LANL), R.Cohen (LLNL), A.Friedman (LLNL),
J-N LeBoeuf (UCLA),

03.30 pm Break.

03.45 pm. Input to Panel. M.Tabak (LLNL), J. Van Dam (U.Texas), vugraphs R. Aamodt
(Lodestar).

06.00 pm Adjourn.

J. Dawson (UCLA) also attended on January 31.

February 1 - Panel only.
08.30 am General discussion
12.00 noon Adjourn.

Written input was received from R. Hazeltine (U.Texas), W. McCurdy (LBNL), P. Peterson (UC
Berkeley), W. Stacey (Georgia Tech), F. Waelbroek (U.Texas).

PPPL Meeting March 29/30, 2001.

March 29.
9.00 am S. Eckstrand (DOE-OFES). W. McCurdy (LBNL), A. Bhattarcharjee (U.lowa).
10.30 am Break
11.00 am G. Bateman (Lehigh U.), P. Catto (MIT), W. Tang (PPPL).
1.00 pm Lunch (PPPL)
2.00 pm D. Batchelor (ORNL), N. Sauthoff (PPPL), C.Hegna (U. Wisconsin).
3.30 pm Break
4.00 pm A. Boozer (Columbia U.), E. Synakowski (PPPL), T. Antonsen (U. Maryland),
J.Van Dam (U.Texas).
5.30 pm other
6.00 pm Adjourn

March 30 - Panel only
8.30 am to 4.00 pm.

Written information was also received from A. Boozer (Columbia U.) and J. Corones (Krell
Institute).
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