Department of Energy Announces \$8.3 million for Research on High Energy Density Plasmas

Annoucement Number:	DE-FOA-0002633		1	List Posted:	8/8/2022
Principal Investigator	Title	Institution	City	State	9-digit zip code
Reis, David	Probing Strong-field Effects in QED on FACET-II	Board of Trustees of the Leland Stanford Junior University	Redwood City	CA	94305-2004
Arefiev, Alexey	Laser-plasma instabilities driven by helical laser beams	The Regents of the University of California - UCSD	La Jolla	CA	92093-0417
Dollar, Franklin	Nonlinear Plasma Compression for Ultraintense Relativistic Laser Science	Regents of the University of California, Irvine	Irvine	CA	92697-0001
Wang, Shoujun	Highly relativistic laser-matter interactions driven by ultrashort pulses with selected polarization: a new capability for LaserNetUS experiments at the ALEPH laser	Colorado State University	Fort Collins	со	80523-2002
Lavine, Eric	Driving Self-Organized Shear Flows in Stable Laboratory HED Plasma Jets	Cornell University	Ithaca	NY	14850-2820
Koniges, Alice	Modeling the Interaction of Laser-Produced Proton Beams with Matter	University of Hawaii	Honolulu	н	96822-2234
Johnsen, Eric	A theoretical/computational framework to measure SiO2 and MgO viscosity at high pressure	Regents of the University of Michigan	Ann Arbor	МІ	48109-1274
Oleynik, Ivan	High Energy Density Physics of Inertial Confinement Fusion Ablator Materials	University of South Florida	Tampa	FL	33617-2008
Tracy, Sally	High Energy Density Physics of Inertial Confinement Fusion Ablator Materials	Carnegie Institution of Washington	Washington	DC	20015-1305
Edwards, Matthew	High-Power Photonics Using Adaptively Controlled Plasmas as Diffractive Optical Elements	Board of Trustees of the Leland Stanford Junior University	Redwood City	CA	94305-2004
Mori, Warren	Controlling the nonlinear optics of plasmas using spatially and temporally structured light	The Regents of the University of California, Los Angeles	Los Angeles	CA	90095-1406
Shvets, Gennady	Super-Ponderomotive Effects in Ultra-Intense Laser-Plasma Interactions: Towards Novel X-ray and Current Sources	Cornell University	Ithaca	NY	14850-2820
Joshi, Chan	Generating Ultra-bright VUV and X-ray sources beyond existin	The Regents of the University of California, Los Angeles	Los Angeles	CA	90095-1406
Gilmore, Mark	Exploring the Connection of Magnetohydrodynamic Instabilities to Earlier Electrothermal Instability from Controlled Surface Perturbations on Metal Driven by Intense Current	University of New Mexico	Albuquerque	NM	87131-0001
Bauer, Bruno	Exploring the Connection of Magnetohydrodynamic Instabilities to Earlier Electrothermal Instability from Controlled Surface Perturbations on Metal Driven by Intense Current	Board of Regents, obo, Nevada System of Higher Education (NSHE) - University of Nevada, Reno	Reno	NV	89557-0325
Srinivasan, Bhuvana	Exploring the Connection of Magnetohydrodynamic Instabilities to Earlier Electrothermal Instability from Controlled Surface Perturbations on Metal Driven by Intense Current	Virginia Polytechnic Institute and State University	Blacksburg	VA	24061-0001
Shang, Jessica	Probing transport mechanisms in HED flows	University of Rochester	Rochester	NY	14627-0140
Li, Chikang	Study of Magnetized, High-Energy-Density Hydrodynamics at OMEGA	Massachusetts Institute of Technology	Cambridge	МА	2139-4307
Safronova, Alla	Understanding atomic properties in HED plasmas by studying line and continuum emission from high Z ions	Board of Regents, obo, Nevada System of Higher Education (NSHE) - University of Nevada, Reno	Reno	NV	89557-0325
Suryanarayana, Phanish	Density functional theory at extreme conditions warm dense matter from first principles	Georgia Tech Research Corporation	Atlanta	GA	30332-0420