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OUTLINE

® Introduction to ODU Vision Lab
* Automated CEBAF SRF Cavity Fault Classification Project

® Introduction to time series data
® Machine learning for time series data analysis

® Deep Learning for time series data analysis
® Experimental Models

®* Novel Deep Cellular Recurrent Learning Architecture for Multi-Sensor Signal

Processing
® Results

® Conclusions and Future Work
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® Multi-disciplinary research group
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® Experience in a broad range of ‘ \  coueor
projects supported by NSF, NIH,
NASA, DOD, DOT, and more
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Contact: Dr. Khan M. Iftekharuddin, kiftekha@odu.edu sites.wp.odu.edu/VisionLab
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COMPUTATIONAL MODELING FOR BRAIN TUMOR  VISION LAB
SEGMENTATION AND SURVIVAL PREDICTION

* Avutomatic Brain Tumor Segmentation and
Classification
® Manual tumor segmentation is time consuming
® Tool for automatic brain tumor segmentation

® Placed 3" in an international tumor segmentation
competition, MICCAI/NIH BRATS GLOBAL CHALLENGE,
2013

Placed 2" in an international tumor type classification
competition, MICCAI/NIH RAD-PATH GLOBAL CHALLENGE,
2019

* Automatic Survival Prediction for Patients with
Brain Tumor
®* Novel machine learning and texture based technique

® Placed 1% in an international survival prediction
competition, MICCAI /NIH BRATS GLOBAL CHALLENGE,
2018
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AUTONOMOUS ROBOTICS & MACHINE VISION pimte

NAQO captures video by
moving its head

Biologically

Face Detection:

Inspired ViSion . . Low Resolution face image
Modeling

Send one face image at a time to the
| Deep Recurrent Network based face
J recognizer

“T* recurrent layers

»

| CLASSIFICATION

Al Driven
Robotics

REPRESENTATION

-

Layer 1: Layer 2 Layer T:
RGB Image RGB 2 Grey & Resize Feed forward NAD gets the classification
result and speaks the name
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Recurrent Recurrent

Biologically inspired deep recurrent model based real-time face recognition using humanoid
robotic platform NAO
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\\5 INTRODUCTION TO CEBAF PROJECT

S * Jefferson Lab CEBAF cavity fault classification task

Cavity:1
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Cryomodule with 8 SRF cavities RF signal recording from cavity 1

Continuous Electron Beam Accelerator
Facility (CEBAF)
® 12 cryomodules * Efficient multi-sensor time-series

® 8 cavities in each cryomodule analysis task .

® Serially located
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\O TIME SERIES DATA

MR
a5

Static data

O

I 1
ol ML AW A
Pattern B i i i

recog n i.l.ion 45 100 50 0 50 100 150 200 %0 e S

\/
'J, 'IJ ‘AR

Time (milliseconds)

Time series
data

B
050 A A w‘wbmw_.f‘/- ﬁJ‘W‘,": \l’nmf"i'5,1”"'\\&"‘"\'}’\'\!‘
i vy i

A A AL 4L A AL
AAAAAAAAARA A WAk

Machine Dl
learning

Machine Deep
learning learning

recurrent
learning

1
1
1
1
1
1
1
1
1
1
1
1
1 | ‘
1 A 4 iy e
1
1
1
1
1
1
1
1
1
1
1
1




K VISION LAB
\] TIME-SERIES DATA ANALYSIS

Feature
: . . . selection
® Machine learning for time series data Input
® Intermediate representation of data: features ;;,%;;;f?.f‘.\%;.‘;.\,-,x;.ii’li’f‘ﬂf‘“j A | | I i classification
® Feature engineering: domain expertise \ . . X .‘ °
: . Feature ° [ \ LY
® Captures the temporal information A 00
® Converts problem to a static classification task ) < =
. Ql,l
® Performance depends on feature quality QOO< <on s
Q.
® Artificial Neural Networks (ANN) and Deep learning Deep RNN

® Recurrent neural networks to process temporal relations

° na: Input ere Lt
Feature learning: usually performs better P classification

® Can get prohibitively large for complex inputs  .Zin .
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® Time series with spatial information
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1\\; FEATURE ENGINEERING FOR TIME SERIES DATA
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Statistics of data Time-frequency Self Similarity

* Mean, variance analysis * Fractal Analysis
* Skewness, kurtosis

e Number of zero * Wavelet transform * Box counting
crossings * wavelet packet

* Autoregressive transform
coefficients e Filter banks
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FEATURE LEARNING WITH DEEP NEURAL
NETWORKS

Machine Learning
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Input Feature extraction Classification Output

Deep Learning
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Input Feature extraction + Classification Output

Image source: https://medium.com/datadriveninvestor/not-so-deep-learning-2c51bae54c9d
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K\) DEEP RECURRENT LEARNING VISION LA

1 Generic Deep Recurrent Neural Network Architectures RS
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\\; EXPERIMENTAL MODELS

Support Vector
Machine
chh!ne . Fe.cl’rur.e Random Forrest

Learning Engineering

O

Logistic
W Models Regression
Generic Deep

LSTM

Architectures

Deep Recurrent

Learning



1\\5 SRF CAVITY FAULT CLASSIFICATION DATASET

S ® SRF Cavity classification dataset preparation

* Approx. 600 samples of cavity fault data

® Each sample contains 17 RF waveforms from each cavity
® Choose 5 most significant RF waveforms based on analysis by expert
®* Each waveform: ~1.6 sec (8196 time samples)

® Pre-processing: z-score normalization + down sampling

* 5 different fault types — 5 class classification task

® Analysis procedure

® 10-fold cross validation
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l\\; SRF CAVITY FAULT CLASSIFICATION RESULTS

/
O Number of.recurreni 10-fold accuracy + : :
neurons in each . . Processing time
standard deviation
layer
Feature Engineering + B 90% = 4% Order of Minutes
SVM
N\ Feature Engineering - 91.5% £ 2% Order of Minutes

+RF

Feature Engineering + [ 87.4% t 4.8% Order of Minutes
LR

Deep LSTM 256, 256 88.83% * 2.4% Order of Seconds
(bidirectional)

Novel DCRNN 5, 5 (unidirectional) 89.1% * 2.7% Order of Seconds
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CONCLUSIONS

® Preliminary analysis for automated fault classification

* Substantial classification performance for all models

®* Machine Learning and Deep Learning models perform with comparable accuracy
®* DL models perform considerably faster
* DL models promising for real-time use
®* Novel Deep cellular Recurrent Neural Network (DCRNN)
® Distributed processing for multi-sensor data such as CEBAF cavity signals
® Highly efficient use of computational resources
®* Comparable performance to other models

® Novel contribution to DL research
17



FUTURE WORK

® Experimentation with larger dataset

® Identification of new fault types

® Robust DL performance with real-time performance

® Efficient models

® Extend deep recurrent learning models for fault prediction
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