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The questions driving NTNP
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• The Standard Model is remarkably 
successful, but it is at best incomplete:  
no Baryonic Matter,  no Dark Matter,  no 
Dark Energy,  no Neutrino Mass X

• Low-energy experiments can reveal new physics through:               
(1) precision tests of SM-allowed processes;                               
(2) searches for processes that are rare of forbidden in the  SM;                              
(3) study of light, feebly interacting particles (neutrinos, …).                                               
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New physics: how?
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vEW

Precision Frontier
(indirect access to UV d.o.f)
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(direct access to light d.o.f.)
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The questions driving NTNP
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The precision / intensity frontier spans across  Nuclear Physics  and High Energy Physics 

 “The US program in Nuclear science includes […] carrying 
out a targeted program of experiments […] that reaches 

for physics beyond the Standard Model trough rare process 
searches and precision measurements.”

Two of the six science drivers of the 2023 P5 report 
are “Elucidate the Mysteries of Neutrinos” and 

“Pursue Quantum Imprints of New Phenomena” 

A strategic plan for the High Energy Physics Advisory Panel

Exploring
the
Quantum
Universe

Pathways to Innovation 
and Discovery  
in Particle Physics
DRAFT Report of the 2023 Particle Physics Project Prioritization Panel

2023  |  VERSION 1.3



NTNP focuses on three thrusts of the precision / intensity frontier program, with the goal of                                                            
providing state-of-the-art predictions with quantified uncertainties and assessing their phenomenological impact
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High level goals of NTNP

Precision studies of neutron and 
nuclear beta decays are exquisite 

probes of the electroweak interactions 
and can uncover new physics.

NTNP: radiative corrections to 
neutron & nuclear decays and 
implications for new physics

The discovery of permanent EDMs 
would point to a microscopic ‘arrow 
of time’, with major implications for 
the origin of the baryon asymmetry.
NTNP:  ab-initio calculations of Schiff 

moments of 129Xe, 199Hg,  225Ra

Neutrino-nucleus scattering is a chief 
tool to learn about neutrino properties 
in oscillation experiments, in particular 

CP-violation.
NTNP:  ab-initio calculations of neutrino-

nucleus scattering in A=4,12,16,40

NP experimental programs in β decays at 
ARUNA Labs,  FRIB,  LANL,  NIST,  ORNL 

NP EDM experiments at     
ANL,  FRIB,  LANL,  UW

HEP / NP experimental programs in lepton-
nucleus scattering — JLab & DUNE
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High level goals of NTNP

This theoretical work is essential to turn experimental measurements into discovery tools 

Precision studies of neutron and 
nuclear beta decays are exquisite 

probes of the electroweak interactions 
and can uncover new physics.

NTNP: radiative corrections to 
neutron & nuclear decays and 
implications for new physics

The discovery of permanent EDMs 
would point to a microscopic ‘arrow 
of time’, with major implications for 
the origin of the baryon asymmetry.
NTNP:  ab-initio calculations of Schiff 

moments of 129Xe, 199Hg,  225Ra

Neutrino-nucleus scattering is a chief 
tool to learn about neutrino properties 
in oscillation experiments, in particular 

CP-violation.
NTNP:  ab-initio calculations of neutrino-

nucleus scattering in A=4,12,16,40

NTNP focuses on three thrusts of the precision / intensity frontier program, with the goal of                                                            
providing state-of-the-art predictions with quantified uncertainties and assessing their phenomenological impact
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High level goals of NTNP

The three thrusts share challenges (multi-scale problems!),  techniques, and infrastructure 
Need synergy of EFT / phenomenology,  lattice QCD,  nuclear structure.

Precision studies of neutron and 
nuclear beta decays are exquisite 

probes of the electroweak interactions 
and can uncover new physics.

NTNP: radiative corrections to 
neutron & nuclear decays and 
implications for new physics

The discovery of permanent EDMs 
would point to a microscopic ‘arrow 
of time’, with major implications for 
the origin of the baryon asymmetry.
NTNP:  ab-initio calculations of Schiff 

moments of 129Xe, 199Hg,  225Ra

Neutrino-nucleus scattering is a chief 
tool to learn about neutrino properties 
in oscillation experiments, in particular 

CP-violation.
NTNP:  ab-initio calculations of neutrino-

nucleus scattering in A=4,12,16,40

NTNP focuses on three thrusts of the precision / intensity frontier program, with the goal of                                                            
providing state-of-the-art predictions with quantified uncertainties and assessing their phenomenological impact



Structure of the collaboration
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Lattice QCD Nuclear Structure 

Nuclear Theory for New Physics 
co-chairs:  Vincenzo Cirigliano & Saori Pastore

Andre’  Walker-Loud Emanuele Mereghetti Heiko Hergert

EFT / 
phenomenology 

DEI Coordinator: Maria Piarulli

Neutrino properties & CP violationT & CP violation and  the Origin of Matterβ decays and new particles                

u

d

e

BSM

�

Coordinator: Coordinator: Coordinator:

Figure 9: Organization and high-level goals of the NTNP Topical Collaboration.

sub-community or each participating institution. Examples of this include (but are not limited to) the “in
house” ability to (i) connect energy scales, i.e. use state of the art hadronic input from EFT and LQCD into
many-body nuclear calculations; (ii) solve a given problem with multiple methods, enabling benchmarking
and uncertainty assessments. As an added benefit, the NTNP collaboration will provide support and guid-
ance to the experimental community working on fundamental symmetries and neutrinos. To achieve this
vision, collaboration-wide activities will be essential. We plan to hold semi-annual collaboration meetings
(one in person and one online per year) as well as quarterly thrust meetings (most likely online). We will
engage the experimental community by inviting experimental colleagues to our meetings.

Workforce development: NTNP will foster workforce development in multiple ways. We will train gradu-
ate students and postdocs at participating institutions. Being part of NTNP will benefit junior researchers by
(i) immersing them in a cutting edge research environment; (ii) exposing them to a number of sub-fields of
nuclear theory that are synergistic with their own area of research; (iii) fostering an inclusive environment
where researchers at all career stages will thrive. Last but not least, NTNP will sponsor bridge faculty posi-
tions at Carnegie Mellon University and Old Dominion University, thus boosting the theoretical support for
the NP experimental program in fundamental symmetries.

Diversity, Equity, and Inclusion (DEI): The DEI coordinator will lead the NTNP TC efforts in:
(i) Fostering an inclusive, diverse, and equitable environment in all the collaboration-wide activities,

such as online and in-person meetings. In all these events, NTNP TC will follow the American Physi-
cal Society Code of Conduct. Moreover, by prioritizing the allocation of travel funds, we will maximize
attendance of students and postdocs from underrepresented groups in physics at the NTNP annual meetings.

(ii) Building a more diverse nuclear theory workforce for the future. We will pay special attention to
making our searches for postdocs and faculty as diverse as possible. We plan to achieve this by (i) broadly
advertising the positions, which will include posting the job ads on the National Society for Black Physi-
cists and the Advancing Chicanos/Hispanics and Native Americans in Science web pages, as well as other
designated channels such as the American Physical Society Inclusion, Diversity, and Equity Alliance (APS-
IDEA); (ii) actively surveying leaders in the field to help identify possible candidates; (iii) asking for a diver-
sity statement in the application packages and following up on this during the interviews / selection process.

25

https://a51.lbl.gov/~ntnp/TC/ 

10 Universities,  Institute for Nuclear Theory,  6 National Laboratories
        28 Senior Collaborators + 2 5-year fellows (FRIB-TA+UW & INT)

10 Postdocs,  8 Graduate Students
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Faces of NTNP

Topographic map of the continental US.  
Credit: Epic Maps
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Workforce Development



• NTNP fosters workforce development in multiple ways,  by 

• Providing welcoming and inclusive environment for all the participating researchers —                       
adopted collaboration-wide code of conduct

• Sponsoring two bridge faculty positions  — implementing procedures to attract broad pool of candidates 

• Training, mentoring, and supporting the next generation of nuclear theorists:                                                              
the majority of allocated funds support graduate students and postdocs  

• Facilitating discussions and scientific collaborations across sub-fields of nuclear theory —                            
collaboration meetings & cross-cutting projects 

Workforce development

10
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Code of conduct
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Bridge position 1:  Alex Gnech 

• Alex Gnech joined Old Dominion University / JLAB in January 2024

• Current research 

• Implementation of the electroweak currents in the Neural 
Network Quantum State approach (NQS) (with A. Lovato)

• Derivation of  Time-Reversal-Violating operators in chiral EFT                              
(with A. Clark,  PhD Student at ODU)

• Calculation of response functions of light nuclei using the 
Lorentz Integral Transform

• Future plans

• Calculation of  pion electroproduction on light nuclei using 
Short Time Approximation (with L. Andreoli et al.)

• Calculation of superallowed beta-decays using the NQS in 
pionless EFT  = Beta decay

= EDMs

   = νN scattering

2308.16266

2

a novel computational protocol that allows the NQS to
learn the preferred polarization of the nucleus.

Methods.— We model the interactions among pro-
tons and neutrons with the LO /⇡EFT Hamiltonian, “o”,
developed in Ref. [30]. The nucleon-nucleon potential re-
produces the np scattering lengths and e↵ective ranges in
the S/T = 0/1 and 1/0 channels, and it vanishes in odd
partial waves. We assume the electromagnetic compo-
nent to only include the Coulomb force between finite-size
protons. A repulsive three-body force is needed to stabi-
lize the systems with more than two nucleons against the
Thomas collapse. AFDMC and VMC-NQS calculations
showed that the choice R3 = 1.0 fm for the three-nucleon
regulator overbinds 16O and heavier nuclei [30, 42]. To
counter it, we opt for R3 = 1.1 fm, as the extended range
introduces additional repulsion in heavier systems.

We introduce X = {x1 . . . xA} to denote the set of
single-particle coordinates xi = {ri, szi , tzi }, which de-
scribe the spatial positions and the z-projection of the
spin-isospin degrees of freedom of the A nucleons. The
hidden-nucleon wave function [42, 46] reads

 HN (X) ⌘ det


�v(X) �v(Xh)
�h(X) �h(Xh)

�
, (1)

where, �v and �h denote the visible and hidden orbitals,
while X and Xh are the A visible and the Ah hidden
coordinates. Hence, the dimension of the sub-matrices
�v(X), �v(Xh), �h(X), and �h(Xh) are A⇥A, Ah ⇥A,
A⇥Ah, and Ah⇥Ah, respectively. As a major departure
from Ref. [42], all the above matrices are complex val-
ued, and two separate deep neural networks with di↵er-
entiable activation functions parametrize the logarithm
of their moduli and phases. To respect fermion anti-
symmetry, the coordinates of the hidden nucleons Xh

are permutation-invariant functions of the visible ones.
We enforce this symmetry using a Deep-Sets architec-
ture [47, 48] with logsumexp pooling.

As in recent neutron-matter studies [31], we improve
the flexibility of the ansatz by applying equivariant back-
flow transformations to pre-process the single-nucleon co-
ordinates and include correlation e↵ects. These transfor-
mations are implemented by means of a simplified version
of the MPNN employed in Refs. [44, 45]

yi = h

⇣
xi,

X

j

m(xi,xj)
⌘
. (2)

Due to the universality of the hidden-nucleon ansatz,
the single, albeit enlarged Slater determinant in Eq.(1)
is su�cient for modeling the ground-state wave function
of both closed- and open-shell nuclei, regardless of their
deformation. This characteristic represents a significant
advantage compared to “conventional” quantum Monte
Carlo methods, where multiple Slater determinants are
required to model open-shell systems [49, 50]. In stark

FIG. 1. VMC-NQS energy per particle (upper panel) and
charge radii (lower panel) of selected nuclei with up to A = 20
nucleons as obtained from the LO EFT Hamiltonian “o” of
Ref. [30] with R3 = 1.1 fm compared with experimental data.

contrast with the majority of nuclear many-body meth-
ods, the shell structure of the nucleus is not directly en-
coded in the NQS, as the parameters of the network are
randomly initialized and no pre-training on a Hartree-
Fock wave function is performed. All ground-state prop-
erties self-emerge during the training of the network,
which is performed by minimizing the variational energy
of the system. For this purpose, we employ the stochastic
reconfiguration algorithm [51] with regularization based
on the RMSprop method [42]. The expectation value
of the Hamiltonian and other quantum-mechanical op-
erators of interest is evaluated stochastically using the
Metropolis-Hastings algorithm detailed in the Supple-
mental Material of Ref. [39], sampling both the spatial
and spin-isospin coordinates of the A nucleon
Results.— The upper panel of Fig. 1 displays the

ground-state energies per nucleon of selected A  20
nuclei obtained solving the ground-state of the /⇡EFT
Hamiltonian with the VMC-NQS method. The agree-
ment between the computed and experimental values is
remarkably good, given the simplicity of the /⇡EFT in-
put Hamiltonian. Notably, our ground-state energies
are closer to experimental values than those obtained in

Ground state nuclear energies in LO pion-less EFT with NQS  
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Bridge position 2

• Originally planned search at Carnegie Mellon University did not go through (change of dean) 

• With program manager concurrence, we had an internal ‘call’ to probe interest of other NTNP institutions

• Three institutions expressed strong interest in hosting the position  

• We will collect appropriate support letters and make a concrete proposal to DOE by September 2024



Junior investigators

NTNP directly supports a number of students and postdocs

By leveraging other resources, NTNP also provides an 
‘ecosystem’ that facilitates collaboration and growth

  8 graduate students, 10 postdocs, 2 5-year fellows

** = Partially or fully supported by NTNP

NS

EFT

LQCD

NS

NS
LQCD

LQCD

EFT

NS
EFT
NS

NS

EFT/LQCD

EFT

EFT

EFT

NS

EFT
NS

NS = Nuclear Structure 

EFT = Effective Field Theory  

LQCD = Lattice QCD

PRIMARY 
AREA

LEGEND:

14 * = Onboarding next year 

NS
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Collaboration meetings

• Opportunity to share results, plan, and educate

• Schedule for upcoming May 15-17 meeting @ WashU St. Louis: 
majority of talks by junior members of the collaboration

• Leverage cost and infrastructure —                                               
INT (2023) and McDonnell Center @ WashU (2024) 

= Postdoc

= Student

= 5-yr Fellow
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Scientific thrusts 
and 

progress towards objectives

Precision beta decays Nuclear EDMs Neutrino-nucleus scattering



Thrust 1:  precision β decays 

17

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 − 1 = - 15(5)⨉10-4
with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus
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= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
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inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
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possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.
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to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
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Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
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decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
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and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with

3

Example of nuclear 
superallowed decays (0+ →0+)

V
(⇡�)
ud = 0.97386 (281)BR (9)⌧⇡ (14)RC (28)I⇡ [283]total

V
n,PDG
ud = 0.97430(2)�f

(13)�R(82)�(28)⌧n [88]total

V
n,best
ud = 0.97402(2)�f

(13)�R(35)�(20)⌧n [42]total

V
0+!0+

ud = 0.97367(11)exp(13)�V
R
(27)NS[32]total

Vus

Vud

����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡(16)�RC [51]total

Vus

Vud

����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡(16)RC+IB[51]total

V
K`3
us = 0.22330(35)exp(39)f+(8)RC+IB[53]total,

2

• Two tantalizing ‘anomalies’

• At face value point toward BSM vertex 
corrections with ΛBSM~10 TeV (hard to 
probe even at the HI-LUMI LHC)
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 − 1 = - 15(5)⨉10-4
with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to
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where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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• Two ‘anomalies’

• At face value point toward vertex 
corrections with Λ~10 TeV (hard to 
probe even at the HI-LUMI LHC)
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ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 − 1 = - 15(5)⨉10-4

• NTNP objectives:

• BETA-1: Radiative corrections to neutron decay in EFT and Lattice QCD

• BETA-2:  Effective Field Theory  (EFT) analysis of NN systems to O(GFα) → input for nuclear structure

• BETA-3: Radiative corrections to nuclear 0+→ 0+ decays (A=10, 14, 18,  … ) with multiple ab-initio many-body methods

• BETA-4: Implications for new physics

• Two tantalizing ‘anomalies’

• At face value point toward BSM vertex 
corrections with ΛBSM~10 TeV (hard to 
probe even at the HI-LUMI LHC)
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• Permanent EDMs of nucleon, nuclei, atoms, (radioactive) molecules are very sensitive to new 
sources of CP (T) violation,  probing scales up to 103 TeV 

• Nucleon and diamagnetic atoms EDMs plagued by O(1) strong-interaction 
uncertainties:  large dilution of physics sensitivity (e.g. to CPV couplings of the Higgs)

• EDMs of diamagnetic atoms & radioactive molecules (exciting opportunities at FRIB) 
controlled by the nuclear Schiff moment  

• NTNP objective:

• EDM-3:  First calculations of nuclear Schiff moments with ab-initio methods:  VS-IMSRG for 129Xe, 199Hg and 
IM-GCM & CC for 225Ra 

that in Eq. (4.165) is restricted to protons. Rotational symmetry lets us express the ground-state
matrix elements of the three vector Schi↵ operators in terms of a single quantity:

S ⌘ h 0|Sz | 0i , (4.167)

where | 0i is the member of the ground-state multiplet with Jz = J .
The charge-distribution part of the Schi↵ moment, Sch, can only be induced by an e↵ective T� and

P -violating inter-nucleon interaction. Most studies have been dedicated to the OPE part of the TVPV
potential (4.158). The moment SN can have many sources, as we have seen, and can depend on other

quantities besides the ḡ(i)⇡ .
Equation (4.165) is, as mentioned, only approximate. Corrections come from nuclear quadrupole

deformation (which introduces a term proportional to the nuclear quadrupole moment), from relativity
in electronic wave functions (which gives terms of order (Z↵)2) [122, 123], and more subtle electron-
nucleus interactions [124], the complete forms of which are still not entirely settled. Equation (4.158)
is also only approximate, representing the leading-order part of the chiral e↵ective potential. Contact
terms and higher-order pieces in e↵ective field theory (which in heavy systems would be hard to control)
or heavier-meson exchange in older frameworks will modify VTV PV . At present, however, nuclear-
structure theorists have not incorporated any of these corrections save (occasionally) those of order
(Z↵)2 into their calculations of Schi↵ moments.

Beyond-the-standard-model and hadronic physics, as we have seen, determine the ḡ(i)⇡ and the nu-
cleon EDMs. The job of nuclear-structure theory, within the framework just defined, is to determine
the dependence of the Schi↵ moment on these quantities. (Atomic physics in turn determines the de-

pendence of the atomic EDM on the Schi↵ moment.) Here we examine only the dependence on the ḡ(i)⇡

and d(i); the dependence on the nucleon EDMs can be computed as well, but is weaker. Only a few of
the calculations cited below (e.g., Ref. [125]) considers this weak dependence. We can parameterize the

dependence on the ḡ(i)⇡ as follows:

S =
2mNgA
F⇡

�
a0 ḡ

(0)

⇡
+ a1 gḡ

(1)

⇡
+ a2 ḡ

(2)

⇡

�
. (4.168)

All nuclear structure information is thus encoded in the coe�cients ai, which have units e fm3.
In what follows we discuss attempts to calculate the ai in several important nuclei. Most take

advantage of the weakness of VTV PV compared to nuclear energies and approximate S in Eq. (4.167,
essentially perfectly, by

S =
X

i 6=0

h�0|Sz |�ii h�i|VTV PV |�0i
E0 � Ei

+ c.c. , (4.169)

where |�0i is the “unperturbed” ground state — that obtained with VTV PV turned o↵ — and the |�ii
are the corresponding excited nuclear states.

4.2.1 199Hg

The atom associated with this nucleus has for years had the best limit on its EDM, and so 199Hg has
received more attention by nuclear-structure theorists than any other nucleus (though still not nearly
enough, as we argue below). Calculations range from the extremely schematic to the very sophisticated.
The table below quotes the results of four, with brief (and inadequate) phrases signifying the techniques
they employ. (A more extensive table, reporting several of the di↵erent estimates in, e.g., Ref. [125]
as well as earlier versions of the 225Ra numbers presented in a later table can be found in Ref. [126].)
The first nontrivial calculation was that of Ref. [127]; it approximated the unperturbed states in Eq.
(4.169) by the eigenstates of a simple one-body potential and then treated VTV PV approximately as
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The perturbing Hamiltonian (the last term above) shifts the unperturbed ground state |0i to

|0̃i = |0i+
X

m

|mi hm|Hd |0i
E0 � Em

= |0i+
X

m

|mi hm| i
P

k
(1/ek)~dk · ~pk |0i (E0 � Em)

E0 � Em

=

 
1 + i

X

k

(1/ek)~dk · ~pk

!
|0i (4.161)

The induced dipole moment ~d0 is then

~d0 = h0̃|
X

j

ej~rj |0̃i

= i h0|
"
X

j

ej~rj,
X

k

(1/ek)~dk · ~pk

#
|0i = �

X

k

~dk

= �~d , (4.162)

so that the net dipole moment of the entire system vanishes. The assumptions underlying this result
are that the constituents are point-like, non-relativistic, and non-interacting except via the Coulomb
force. In real systems, none of these assumptions hold fully. As we shall see immediately below,
the finite nuclear size essentially leads to the replacement the nuclear dipole operator by the nuclear
“Schi↵ operator,” which contains two extra powers of the nucleon coordinate. Moments due to finite
nuclear size are thus generically smaller by O (R2

nucl.
/R2

atom
) than the unscreened nuclear EDM. In

diamagnetic atoms, the nuclear physics of which is discussed next, this suppression is mitigated by
relativistic electrons and can be further mitigated by nuclear octupole deformation. In paramagnetic
atoms, discussed in the next section, relativistic electrons can lead to a large enhancement of the atomic
EDM.

Further analysis leads to the result that the post-screening CP-violating nucleus-electron interaction
is

H = 4⇡~S · ~r�3(~r) + . . . , (4.163)

where the omitted terms come from higher multipoles, e.g. the nuclear magnetic quadrupole (M2) and
electric octupole (E3) multipoles. The operator S is the nuclear Schi↵ operator, defined as

~S = ~Sch + ~SN (4.164)

with

~Sch =
e

10

ZX

p=1

✓
r2
p
� 5

3
hr2i
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◆
~rp (4.165)

~SN =
1
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1
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AX

j=1

✓
~rj(~rj · ~dj)�

r2
j

3
~dj

◆
+ . . . . (4.166)

Here ~Sch is due to the charge distribution of the nucleus (usually the dominant piece), ~SN is due to
the EDM of the nucleon, e is the charge of the proton, hr2i

ch
is the mean squared radius of the nuclear

charge distribution, and ~dj is the EDM of nucleon j. The sum in Eq. (4.166) is over all nucleons, while
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• The success of neutrino oscillations experiments (such as 
DUNE) requires knowing neutrino-nucleus cross sections at 
few % level over a broad range of energies (flux 
determination, ν energy reconstruction, …)

Thrust 3: neutrino-nucleus scattering
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Schiff moments, which determine the EDMs of diamagnetic atoms such as 129Xe, 199Hg, 225Ra and 229Pa.
The landscape of EDM searches is quite diverse and cuts across various communities, from atomic and
molecular physics to nuclear and high-energy physics [61]. The DOE NP presence in this area is substantial,
with leading efforts in the neutron EDM (ORNL) and the EDMs of 129Xe, 199Hg, 225Ra and 229Pa, and with
exciting prospects for developing an EDM program at FRIB [77], where the isotope harvesting program
[78] will produce radioactive isotopes such as 225Ra that have enhanced Schiff moments. We will engage
with all the relevant communities to make sure that ideas for future experiments are coupled to state-of-the
art theory, so that either positive or null results can be usefully interpreted.

2.3 Lepton-nucleus scattering

✐ J.A. Formaggio and G.P. Zeller, RMP 84 (2012) 

DUNE

Figure 4: Total neutrino per nucleon charged current cross
section adapted from Ref. [79].

Neutrino oscillations are the only beyond the Stan-
dard Model (BSM) physics processes that have
been indisputably observed in terrestrial experi-
ments, implying that neutrinos are massive parti-
cles. The origin of their masses—orders of mag-
nitudes smaller than their leptonic companions—
is among the compelling open questions to be ad-
dressed by the DOE intensity frontier program. The
Deep Underground Neutrino Experiment (DUNE)
will determine the ordering of neutrino masses and
measure the CP-violating Dirac phase with un-
precedented accuracy. In order to achieve the max-
imum sensitivity of DUNE, precise theoretical pre-
dictions of neutrino scattering cross sections on tar-
get nuclei are essential. Total cross section uncertainties of 2% are assumed in sensitivity studies described
in the DUNE Conceptual Design Report, and a decrease from 3% to 1% cross section uncertainty is es-
timated to lead to a factor of two decrease in the total exposure required to achieve 5s discovery of CP
violation [80]. Accelerator-neutrino experiments are also a test-bed for BSM theories. For instance, the
existence of a fourth (sterile) neutrino has been proposed to explain the excess of electron neutrinos from
charged current quasi-elastic events reported by the MiniBooNE collaboration [81]. A detailed understand-
ing of neutrino scattering from nuclei is required to both extract neutrino oscillation parameters and reliably
claim discovery of new physics. In neutrino experiments one extracts the oscillation parameters from the
oscillation probabilities that depend on the neutrinos’ initial energy. The latter is a-priori unknown and has
to be reconstructed from the hadronic final states observed in the detector and, in the case of charged-current
transitions, from the kinematics of the outgoing lepton and hadrons. The reconstruction procedure heavily
relies on accurate theoretical calculations of neutrino-nucleus and neutrino-nucleon cross sections. Simulat-
ing neutrino-nucleus interactions for DUNE with a few percent uncertainty is a tremendously challenging
task due to the broad distribution of neutrino energies that will be produced at the Long Baseline Neutrino
Facility (LBNF). This is schematically shown in Fig. 4, broken down according to a variety of reaction
mechanisms involving nucleonic and nuclear degrees of freedom. At energies of the order of hundreds of
MeV, the leading mechanism is quasi-elastic scattering, in which the probe interacts primarily with individ-
ual nucleons inside the nucleus. Corrections to this leading mechanism arise from processes in which the
lepton couples to pairs of interacting nucleons. The higher energy region is dominated by the production of
baryon resonance states that quickly decays into pions or give rise to deep inelastic scattering (DIS). Each of
these regimes requires knowledge of the nuclear ground state and the electroweak coupling and propagation
of the struck nucleons, clusters of correlated nucleons, hadrons, or partons.

Concurrent to the neutrino oscillation programs, experiments carried out at the Thomas Jefferson Na-

7

tional Accelerator Facility (JLab) [82] and other facilities worldwide enable us to understand many-body
dynamics at play in lepton scattering processes. For example, these experimental efforts have highlighted
the importance of the tensor component of the two-nucleon interaction by the observation of a large excess
of neutron-proton correlated pairs with respect to the proton-proton and neutron-neutron ones [83–85]. In
this context, calculations of electron-nucleus scattering are of great importance to validate our theoretical
models because they allow for a direct comparison against the available data which are abundant and known
(in most cases) with great experimental accuracy.

The ab initio community has been, to date, primarily focused on calculations of inclusive processes
induced by electrons and neutrinos scattering from nuclei. These calculations yield a complex picture of the
way electrons and neutrinos interact with nuclei, where many-body correlations and electroweak currents
play a major role in explaining the experimental data. These calculations, due to the high computational
cost, have been limited to light nuclei (A  12), while the active material in the DUNE detector is liquid
40Ar. One of the next goals is then to develop new algorithms that allow for cross section calculations
of larger nuclear system without losing the resolution acquired in the ab initio framework, that is without
losing the important many-body correlations and electroweak currents required to accurately explain the
data. Other very important developments within this thrust are: i) inclusion of relativistic kinematic effects
in the nuclear cross sections; ii) accurate calculations of exclusive processes, such as pion production; and
iii) reliable estimates of theoretical uncertainties. These will be investigated in this proposal.
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Figure 5: Predictions of the n �N cross section, from the re-
view [86], as described in the text.

The building blocks for an ab initio nu-
clear response function are the nucleonic elec-
troweak form factors, the pion production
amplitudes, and two-nucleon response func-
tions. While the electromagnetic contributions
are well determined from the large wealth of
available experimental data, the axial contri-
butions are affected by large uncertainties and
challenges with isolating the various contribu-
tions, including the most fundamental single
nucleon contributions. For example, Fig. 5,
from the review [86], shows the predicted
n�N charged current cross section using vari-
ous phenomenological extractions of the elec-
tromagnetic (EM) and axial form factor contributions. The lower, outer band is the full uncertainty from
z-expansion parameterizations where the axial form factor, FA(Q2), is extracted from deuterium target
data [87]. The two inner bands arise from different parameterizations of the proton magnetic form fac-
tor from Ref. [88] (BBBA05) and Ref. [89]. When FA is instead taken from the latest lattice QCD (LQCD)
results [90–97], the strikingly different upper (red) band is obtained [86]. While the LQCD results are not
yet finalized, they uniformly predict a slower fall off in Q2 as compared to the phenomenological extrac-
tions, which leads to the ⇡ 30% enhancement of the n �N cross section depicted in Fig. 5. The challenge
of definitively determining the simplest of all the n �A ingredients highlights the overall difficulty of the
problem as well as the critical role for LQCD. LQCD can provide a first principles prediction for the nucleon
form factors with fully quantified and systematically improvable uncertainties.

Moving beyond this simplest quantity, LQCD can also be used to determine the resonant N ! D tran-
sition, and more generally, the pion-production amplitude in the resonant region. Such quantities are even
more challenging to extract phenomenologically. In order to gain confidence in the LQCD determination
of these more complex processes, it is critical to first finalize the determination of the single nucleon form
factors. Achieving this goal, and determining the N ! D transitions will require the use of known methods
to move beyond the state-of-the-art calculations.
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• NTNP objectives: First-principles calculations of inclusive and 
exclusive cross sections 

• XSEC-1 and XSEC-2: Lattice QCD input on single-nucleon 
form factors (elastic and not)

• XSEC-4 and XSEC-5:  Use multiple many-body methods for 
A=4,12,16,40 to compute inclusive and exclusive cross-section 
(& JLAB data on electron scattering for validation)

J. Formaggio, G. P. Zeller,  1305.7513 [

A. Meyer, A. Walker-Loud, C. Wilkinson,  2201.01839   



Progress towards objectives

2 Primary objectives

The high level goals NTNP are:

• Calculations of radiative corrections to nucleon (DV,A
R

) and nuclear (dC,NS) beta decays with the aim to
sharpen the CKM unitarity test. These encompass the primary objectives BETA-1, ... , BETA-4.

• Ab initio calculation of the Schiff moments of 129Xe, 199Hg, and 225Ra (primary objective EDM-3). 1

• Ab-initio calculation of neutrino-nucleon and neutrino-nucleus cross sections, with controlled uncer-
tainties. These encompass the primary objectives XSEC-1, ..., XSEC-5.

We report below the revised primary objectives for each year of the project, indicating in square brackets
the main contributing institutions [⇤ indicates the lead institution]

Year-1 BETA-2 Develop EFT formalism for A=2 systems to O(GFa) [LANL ⇤, UMass, UTK, UW]

Year-2 BETA-1 Two loop calculation of electroweak corrections to charged-current processes [UMass ⇤]

BETA-3 Compute dC in superallowed b decays in VS-IMSRG and IM-GCM. [MSU ⇤, ND]

XSEC-1 Compute with controlled uncertainties in LQCD the nucleon elastic form factors [UCB ⇤,
CMU]

Year-3 BETA-1 Calculation of n ! pen̄ to O(GFa) in Lattice QCD+QED [CMU, LANL, UCB ⇤, UW]

BETA-2 EFT analysis of radiative corrections to few-body systems [LANL, UTK ⇤, UW]

BETA-3 Calculation of dC, dNS in low-A systems with various methods – benchmarking
[ANL, LANL, ND, UCB, UNC, WUSTL ⇤]

EDM-3 VS-IMSRG results with uncertainties for Schiff moments of 199Hg and 129Xe. [MSU,
ND, UNC ⇤]

XSEC-2 First Lattice QCD results for the N ! D transition induced by electro-weak currents
[CMU ⇤, UCB]

Year-4 BETA-3 Ab initio calculations of dC for relevant medium-mass nuclei with multiple methods
[ANL, LANL, ND, ODU, ORNL, UTK ⇤, WUSTL ⇤]

XSEC-4 Calculations of inclusive electroweak cross sections in A = 4,12,16 with QMC meth-
ods supplemented by factorization schemes (Short-Time-Approximation and Spectral
Function formalism). [ANL ⇤, LANL, ODU, WUSTL]

Year-5 BETA-3 Ab initio calculations of dNS in low- and medium-mass nuclei [ANL, LANL, ODU,
ORNL, WUSTL ⇤, UTK ⇤]

BETA-4 Phenomenology of beta decays and CKM unitarity with quantified uncertainties [LANL,
UMass, UW ⇤]

EDM-3 IM-GCM Schiff moment result for 225Ra, with uncertainty analysis [MSU, ND, UNC ⇤]

XSEC-4 Electroweak cross sections in 40Ca. [ANL, LANL ⇤, ODU, WUSTL]

XSEC-5 Determination of theoretical uncertainties in calculations of inclusive and exclusive
cross sections induced by lepton scattering. [ANL ⇤, LANL, ODU, WUSTL]

1EDM-1 and EDM-2 have been eliminated in the revised scope of the proposal.

3

Milestones from final proposal
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Progress towards objectives

2 Primary objectives

The high level goals NTNP are:

• Calculations of radiative corrections to nucleon (DV,A
R

) and nuclear (dC,NS) beta decays with the aim to
sharpen the CKM unitarity test. These encompass the primary objectives BETA-1, ... , BETA-4.

• Ab initio calculation of the Schiff moments of 129Xe, 199Hg, and 225Ra (primary objective EDM-3). 1

• Ab-initio calculation of neutrino-nucleon and neutrino-nucleus cross sections, with controlled uncer-
tainties. These encompass the primary objectives XSEC-1, ..., XSEC-5.

We report below the revised primary objectives for each year of the project, indicating in square brackets
the main contributing institutions [⇤ indicates the lead institution]

Year-1 BETA-2 Develop EFT formalism for A=2 systems to O(GFa) [LANL ⇤, UMass, UTK, UW]

Year-2 BETA-1 Two loop calculation of electroweak corrections to charged-current processes [UMass ⇤]

BETA-3 Compute dC in superallowed b decays in VS-IMSRG and IM-GCM. [MSU ⇤, ND]

XSEC-1 Compute with controlled uncertainties in LQCD the nucleon elastic form factors [UCB ⇤,
CMU]

Year-3 BETA-1 Calculation of n ! pen̄ to O(GFa) in Lattice QCD+QED [CMU, LANL, UCB ⇤, UW]

BETA-2 EFT analysis of radiative corrections to few-body systems [LANL, UTK ⇤, UW]

BETA-3 Calculation of dC, dNS in low-A systems with various methods – benchmarking
[ANL, LANL, ND, UCB, UNC, WUSTL ⇤]

EDM-3 VS-IMSRG results with uncertainties for Schiff moments of 199Hg and 129Xe. [MSU,
ND, UNC ⇤]

XSEC-2 First Lattice QCD results for the N ! D transition induced by electro-weak currents
[CMU ⇤, UCB]

Year-4 BETA-3 Ab initio calculations of dC for relevant medium-mass nuclei with multiple methods
[ANL, LANL, ND, ODU, ORNL, UTK ⇤, WUSTL ⇤]

XSEC-4 Calculations of inclusive electroweak cross sections in A = 4,12,16 with QMC meth-
ods supplemented by factorization schemes (Short-Time-Approximation and Spectral
Function formalism). [ANL ⇤, LANL, ODU, WUSTL]

Year-5 BETA-3 Ab initio calculations of dNS in low- and medium-mass nuclei [ANL, LANL, ODU,
ORNL, WUSTL ⇤, UTK ⇤]

BETA-4 Phenomenology of beta decays and CKM unitarity with quantified uncertainties [LANL,
UMass, UW ⇤]

EDM-3 IM-GCM Schiff moment result for 225Ra, with uncertainty analysis [MSU, ND, UNC ⇤]

XSEC-4 Electroweak cross sections in 40Ca. [ANL, LANL ⇤, ODU, WUSTL]

XSEC-5 Determination of theoretical uncertainties in calculations of inclusive and exclusive
cross sections induced by lepton scattering. [ANL ⇤, LANL, ODU, WUSTL]

1EDM-1 and EDM-2 have been eliminated in the revised scope of the proposal.

3

 = Beta decay

= EDMs

   = νN scattering

x

x

• Work underway on our three major thrusts:          
12 research articles, 3 reviews, 42+ talks

• In the rest of this talk and in the 3 research talks: 

• Accomplishments & progress so far  

• On track to reach milestones for current 
and future years
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2 Primary objectives

The high level goals NTNP are:

• Calculations of radiative corrections to nucleon (DV,A
R

) and nuclear (dC,NS) beta decays with the aim to
sharpen the CKM unitarity test. These encompass the primary objectives BETA-1, ... , BETA-4.

• Ab initio calculation of the Schiff moments of 129Xe, 199Hg, and 225Ra (primary objective EDM-3). 1

• Ab-initio calculation of neutrino-nucleon and neutrino-nucleus cross sections, with controlled uncer-
tainties. These encompass the primary objectives XSEC-1, ..., XSEC-5.

We report below the revised primary objectives for each year of the project, indicating in square brackets
the main contributing institutions [⇤ indicates the lead institution]

Year-1 BETA-2 Develop EFT formalism for A=2 systems to O(GFa) [LANL ⇤, UMass, UTK, UW]

Year-2 BETA-1 Two loop calculation of electroweak corrections to charged-current processes [UMass ⇤]

BETA-3 Compute dC in superallowed b decays in VS-IMSRG and IM-GCM. [MSU ⇤, ND]

XSEC-1 Compute with controlled uncertainties in LQCD the nucleon elastic form factors [UCB ⇤,
CMU]

Year-3 BETA-1 Calculation of n ! pen̄ to O(GFa) in Lattice QCD+QED [CMU, LANL, UCB ⇤, UW]

BETA-2 EFT analysis of radiative corrections to few-body systems [LANL, UTK ⇤, UW]

BETA-3 Calculation of dC, dNS in low-A systems with various methods – benchmarking
[ANL, LANL, ND, UCB, UNC, WUSTL ⇤]

EDM-3 VS-IMSRG results with uncertainties for Schiff moments of 199Hg and 129Xe. [MSU,
ND, UNC ⇤]

XSEC-2 First Lattice QCD results for the N ! D transition induced by electro-weak currents
[CMU ⇤, UCB]

Year-4 BETA-3 Ab initio calculations of dC for relevant medium-mass nuclei with multiple methods
[ANL, LANL, ND, ODU, ORNL, UTK ⇤, WUSTL ⇤]

XSEC-4 Calculations of inclusive electroweak cross sections in A = 4,12,16 with QMC meth-
ods supplemented by factorization schemes (Short-Time-Approximation and Spectral
Function formalism). [ANL ⇤, LANL, ODU, WUSTL]

Year-5 BETA-3 Ab initio calculations of dNS in low- and medium-mass nuclei [ANL, LANL, ODU,
ORNL, WUSTL ⇤, UTK ⇤]

BETA-4 Phenomenology of beta decays and CKM unitarity with quantified uncertainties [LANL,
UMass, UW ⇤]

EDM-3 IM-GCM Schiff moment result for 225Ra, with uncertainty analysis [MSU, ND, UNC ⇤]

XSEC-4 Electroweak cross sections in 40Ca. [ANL, LANL ⇤, ODU, WUSTL]

XSEC-5 Determination of theoretical uncertainties in calculations of inclusive and exclusive
cross sections induced by lepton scattering. [ANL ⇤, LANL, ODU, WUSTL]

1EDM-1 and EDM-2 have been eliminated in the revised scope of the proposal.

3

x

x

Heavier upfront load on beta decays

Precision β decays 
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2 Primary objectives

The high level goals NTNP are:

• Calculations of radiative corrections to nucleon (DV,A
R

) and nuclear (dC,NS) beta decays with the aim to
sharpen the CKM unitarity test. These encompass the primary objectives BETA-1, ... , BETA-4.

• Ab initio calculation of the Schiff moments of 129Xe, 199Hg, and 225Ra (primary objective EDM-3). 1

• Ab-initio calculation of neutrino-nucleon and neutrino-nucleus cross sections, with controlled uncer-
tainties. These encompass the primary objectives XSEC-1, ..., XSEC-5.

We report below the revised primary objectives for each year of the project, indicating in square brackets
the main contributing institutions [⇤ indicates the lead institution]

Year-1 BETA-2 Develop EFT formalism for A=2 systems to O(GFa) [LANL ⇤, UMass, UTK, UW]

Year-2 BETA-1 Two loop calculation of electroweak corrections to charged-current processes [UMass ⇤]

BETA-3 Compute dC in superallowed b decays in VS-IMSRG and IM-GCM. [MSU ⇤, ND]

XSEC-1 Compute with controlled uncertainties in LQCD the nucleon elastic form factors [UCB ⇤,
CMU]

Year-3 BETA-1 Calculation of n ! pen̄ to O(GFa) in Lattice QCD+QED [CMU, LANL, UCB ⇤, UW]

BETA-2 EFT analysis of radiative corrections to few-body systems [LANL, UTK ⇤, UW]

BETA-3 Calculation of dC, dNS in low-A systems with various methods – benchmarking
[ANL, LANL, ND, UCB, UNC, WUSTL ⇤]

EDM-3 VS-IMSRG results with uncertainties for Schiff moments of 199Hg and 129Xe. [MSU,
ND, UNC ⇤]

XSEC-2 First Lattice QCD results for the N ! D transition induced by electro-weak currents
[CMU ⇤, UCB]

Year-4 BETA-3 Ab initio calculations of dC for relevant medium-mass nuclei with multiple methods
[ANL, LANL, ND, ODU, ORNL, UTK ⇤, WUSTL ⇤]

XSEC-4 Calculations of inclusive electroweak cross sections in A = 4,12,16 with QMC meth-
ods supplemented by factorization schemes (Short-Time-Approximation and Spectral
Function formalism). [ANL ⇤, LANL, ODU, WUSTL]

Year-5 BETA-3 Ab initio calculations of dNS in low- and medium-mass nuclei [ANL, LANL, ODU,
ORNL, WUSTL ⇤, UTK ⇤]

BETA-4 Phenomenology of beta decays and CKM unitarity with quantified uncertainties [LANL,
UMass, UW ⇤]

EDM-3 IM-GCM Schiff moment result for 225Ra, with uncertainty analysis [MSU, ND, UNC ⇤]

XSEC-4 Electroweak cross sections in 40Ca. [ANL, LANL ⇤, ODU, WUSTL]

XSEC-5 Determination of theoretical uncertainties in calculations of inclusive and exclusive
cross sections induced by lepton scattering. [ANL ⇤, LANL, ODU, WUSTL]

1EDM-1 and EDM-2 have been eliminated in the revised scope of the proposal.

3
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2 Primary objectives

The high level goals NTNP are:

• Calculations of radiative corrections to nucleon (DV,A
R

) and nuclear (dC,NS) beta decays with the aim to
sharpen the CKM unitarity test. These encompass the primary objectives BETA-1, ... , BETA-4.

• Ab initio calculation of the Schiff moments of 129Xe, 199Hg, and 225Ra (primary objective EDM-3). 1

• Ab-initio calculation of neutrino-nucleon and neutrino-nucleus cross sections, with controlled uncer-
tainties. These encompass the primary objectives XSEC-1, ..., XSEC-5.

We report below the revised primary objectives for each year of the project, indicating in square brackets
the main contributing institutions [⇤ indicates the lead institution]

Year-1 BETA-2 Develop EFT formalism for A=2 systems to O(GFa) [LANL ⇤, UMass, UTK, UW]

Year-2 BETA-1 Two loop calculation of electroweak corrections to charged-current processes [UMass ⇤]

BETA-3 Compute dC in superallowed b decays in VS-IMSRG and IM-GCM. [MSU ⇤, ND]

XSEC-1 Compute with controlled uncertainties in LQCD the nucleon elastic form factors [UCB ⇤,
CMU]

Year-3 BETA-1 Calculation of n ! pen̄ to O(GFa) in Lattice QCD+QED [CMU, LANL, UCB ⇤, UW]

BETA-2 EFT analysis of radiative corrections to few-body systems [LANL, UTK ⇤, UW]

BETA-3 Calculation of dC, dNS in low-A systems with various methods – benchmarking
[ANL, LANL, ND, UCB, UNC, WUSTL ⇤]

EDM-3 VS-IMSRG results with uncertainties for Schiff moments of 199Hg and 129Xe. [MSU,
ND, UNC ⇤]

XSEC-2 First Lattice QCD results for the N ! D transition induced by electro-weak currents
[CMU ⇤, UCB]

Year-4 BETA-3 Ab initio calculations of dC for relevant medium-mass nuclei with multiple methods
[ANL, LANL, ND, ODU, ORNL, UTK ⇤, WUSTL ⇤]

XSEC-4 Calculations of inclusive electroweak cross sections in A = 4,12,16 with QMC meth-
ods supplemented by factorization schemes (Short-Time-Approximation and Spectral
Function formalism). [ANL ⇤, LANL, ODU, WUSTL]

Year-5 BETA-3 Ab initio calculations of dNS in low- and medium-mass nuclei [ANL, LANL, ODU,
ORNL, WUSTL ⇤, UTK ⇤]

BETA-4 Phenomenology of beta decays and CKM unitarity with quantified uncertainties [LANL,
UMass, UW ⇤]

EDM-3 IM-GCM Schiff moment result for 225Ra, with uncertainty analysis [MSU, ND, UNC ⇤]

XSEC-4 Electroweak cross sections in 40Ca. [ANL, LANL ⇤, ODU, WUSTL]

XSEC-5 Determination of theoretical uncertainties in calculations of inclusive and exclusive
cross sections induced by lepton scattering. [ANL ⇤, LANL, ODU, WUSTL]

1EDM-1 and EDM-2 have been eliminated in the revised scope of the proposal.
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2 Primary objectives

The high level goals NTNP are:

• Calculations of radiative corrections to nucleon (DV,A
R

) and nuclear (dC,NS) beta decays with the aim to
sharpen the CKM unitarity test. These encompass the primary objectives BETA-1, ... , BETA-4.

• Ab initio calculation of the Schiff moments of 129Xe, 199Hg, and 225Ra (primary objective EDM-3). 1

• Ab-initio calculation of neutrino-nucleon and neutrino-nucleus cross sections, with controlled uncer-
tainties. These encompass the primary objectives XSEC-1, ..., XSEC-5.

We report below the revised primary objectives for each year of the project, indicating in square brackets
the main contributing institutions [⇤ indicates the lead institution]

Year-1 BETA-2 Develop EFT formalism for A=2 systems to O(GFa) [LANL ⇤, UMass, UTK, UW]

Year-2 BETA-1 Two loop calculation of electroweak corrections to charged-current processes [UMass ⇤]

BETA-3 Compute dC in superallowed b decays in VS-IMSRG and IM-GCM. [MSU ⇤, ND]

XSEC-1 Compute with controlled uncertainties in LQCD the nucleon elastic form factors [UCB ⇤,
CMU]

Year-3 BETA-1 Calculation of n ! pen̄ to O(GFa) in Lattice QCD+QED [CMU, LANL, UCB ⇤, UW]

BETA-2 EFT analysis of radiative corrections to few-body systems [LANL, UTK ⇤, UW]

BETA-3 Calculation of dC, dNS in low-A systems with various methods – benchmarking
[ANL, LANL, ND, UCB, UNC, WUSTL ⇤]

EDM-3 VS-IMSRG results with uncertainties for Schiff moments of 199Hg and 129Xe. [MSU,
ND, UNC ⇤]

XSEC-2 First Lattice QCD results for the N ! D transition induced by electro-weak currents
[CMU ⇤, UCB]

Year-4 BETA-3 Ab initio calculations of dC for relevant medium-mass nuclei with multiple methods
[ANL, LANL, ND, ODU, ORNL, UTK ⇤, WUSTL ⇤]

XSEC-4 Calculations of inclusive electroweak cross sections in A = 4,12,16 with QMC meth-
ods supplemented by factorization schemes (Short-Time-Approximation and Spectral
Function formalism). [ANL ⇤, LANL, ODU, WUSTL]

Year-5 BETA-3 Ab initio calculations of dNS in low- and medium-mass nuclei [ANL, LANL, ODU,
ORNL, WUSTL ⇤, UTK ⇤]

BETA-4 Phenomenology of beta decays and CKM unitarity with quantified uncertainties [LANL,
UMass, UW ⇤]

EDM-3 IM-GCM Schiff moment result for 225Ra, with uncertainty analysis [MSU, ND, UNC ⇤]

XSEC-4 Electroweak cross sections in 40Ca. [ANL, LANL ⇤, ODU, WUSTL]

XSEC-5 Determination of theoretical uncertainties in calculations of inclusive and exclusive
cross sections induced by lepton scattering. [ANL ⇤, LANL, ODU, WUSTL]

1EDM-1 and EDM-2 have been eliminated in the revised scope of the proposal.
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2 Primary objectives

The high level goals NTNP are:

• Calculations of radiative corrections to nucleon (DV,A
R

) and nuclear (dC,NS) beta decays with the aim to
sharpen the CKM unitarity test. These encompass the primary objectives BETA-1, ... , BETA-4.

• Ab initio calculation of the Schiff moments of 129Xe, 199Hg, and 225Ra (primary objective EDM-3). 1

• Ab-initio calculation of neutrino-nucleon and neutrino-nucleus cross sections, with controlled uncer-
tainties. These encompass the primary objectives XSEC-1, ..., XSEC-5.

We report below the revised primary objectives for each year of the project, indicating in square brackets
the main contributing institutions [⇤ indicates the lead institution]

Year-1 BETA-2 Develop EFT formalism for A=2 systems to O(GFa) [LANL ⇤, UMass, UTK, UW]

Year-2 BETA-1 Two loop calculation of electroweak corrections to charged-current processes [UMass ⇤]

BETA-3 Compute dC in superallowed b decays in VS-IMSRG and IM-GCM. [MSU ⇤, ND]

XSEC-1 Compute with controlled uncertainties in LQCD the nucleon elastic form factors [UCB ⇤,
CMU]

Year-3 BETA-1 Calculation of n ! pen̄ to O(GFa) in Lattice QCD+QED [CMU, LANL, UCB ⇤, UW]

BETA-2 EFT analysis of radiative corrections to few-body systems [LANL, UTK ⇤, UW]

BETA-3 Calculation of dC, dNS in low-A systems with various methods – benchmarking
[ANL, LANL, ND, UCB, UNC, WUSTL ⇤]

EDM-3 VS-IMSRG results with uncertainties for Schiff moments of 199Hg and 129Xe. [MSU,
ND, UNC ⇤]

XSEC-2 First Lattice QCD results for the N ! D transition induced by electro-weak currents
[CMU ⇤, UCB]

Year-4 BETA-3 Ab initio calculations of dC for relevant medium-mass nuclei with multiple methods
[ANL, LANL, ND, ODU, ORNL, UTK ⇤, WUSTL ⇤]

XSEC-4 Calculations of inclusive electroweak cross sections in A = 4,12,16 with QMC meth-
ods supplemented by factorization schemes (Short-Time-Approximation and Spectral
Function formalism). [ANL ⇤, LANL, ODU, WUSTL]

Year-5 BETA-3 Ab initio calculations of dNS in low- and medium-mass nuclei [ANL, LANL, ODU,
ORNL, WUSTL ⇤, UTK ⇤]

BETA-4 Phenomenology of beta decays and CKM unitarity with quantified uncertainties [LANL,
UMass, UW ⇤]

EDM-3 IM-GCM Schiff moment result for 225Ra, with uncertainty analysis [MSU, ND, UNC ⇤]

XSEC-4 Electroweak cross sections in 40Ca. [ANL, LANL ⇤, ODU, WUSTL]

XSEC-5 Determination of theoretical uncertainties in calculations of inclusive and exclusive
cross sections induced by lepton scattering. [ANL ⇤, LANL, ODU, WUSTL]

1EDM-1 and EDM-2 have been eliminated in the revised scope of the proposal.
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• Connection of β decays to electroweak 
precision tests and BSM physics 

• EFT framework for radiative corrections 
to β decays of neutron and nuclei 

In this talk:
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EFTs for β decays:  from BSM to nuclei
Widely separated scales:   ΛBSM,  MW,  Λχ,  mπ,  me ~ qext               ⇒        Tackle the problem through a tower of EFTs

E

Λχ 
 (~GeV)

kF, mπ

   MW.Z

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded
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only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by
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Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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1

freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.

56

γ

e
n

e
n

e
n

(a) (b) (c)

V
ud

V
ud

V
ud

e
n

V
ud

(d)

Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)

• Two tantalizing ‘anomalies’

• At face value point toward vertex 
corrections with ΛBSM~10 TeV (hard to 
probe even at the HI-LUMI LHC)
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on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)

18

VC-Crivellin-Hoferichter-Moulson  2208.11707 
and references therein

β decays and CKM unitarity

• Two ‘anomalies’

• At face value point toward vertex 
corrections with Λ~10 TeV (hard to 
probe even at the HI-LUMI LHC)

dj
uig Vij

g

W e−

νe
_

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 − 1 = - 15(5)⨉10-4

e
n

V
ud

Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
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particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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where the errors refer to experiment, lattice input for the matrix
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situation depicted in Fig. 1: on the one hand, there is a ten-
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global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
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R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
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R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
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and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
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⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by
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Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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1

freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)

• Two tantalizing ‘anomalies’

• At face value point toward vertex 
corrections with ΛBSM~10 TeV (hard to 
probe even at the HI-LUMI LHC)
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K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to
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where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)
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• Two ‘anomalies’

• At face value point toward vertex 
corrections with Λ~10 TeV (hard to 
probe even at the HI-LUMI LHC)
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
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transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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• Widely separated mass scales play a role in neutron decay & EFT approach not fully embraced in the literature

• Small ratios appear as expansion parameters and arguments of logs
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• Widely separated mass scales play a role in neutron decay & EFT approach not fully embraced in the literature

• Small ratios appear as expansion parameters and arguments of logs
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Fermi Theory + QCD + QED

Perturbative matching

BSM

εSMEFT = (MW/ΛBSM)2   

εW = (Λχ/MW)2   

The EFT expands amplitudes in ε’s and re-sums large logarithms ~ ɑn+m (ln(ε))n
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EFTs for β decays:  from BSM to nuclei
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.

1

4

a1) b1) c1) d1)

f1) g1) h1) i1)

e1)

j1)

c2)a2) b2)

LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD
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⇣
1 + �

(�)
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� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
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=
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A,em ��(0)

V em

⌘
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For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me

γ

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N
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4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with

3

Thrust 1:  precision β decays 

6

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
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interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
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R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
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Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
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BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.
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log2
f t
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Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
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for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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⇡ and L

p
⇡N , while diamonds represent insertions of L
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⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
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only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.
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Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with

3

e
n

e
n

e
n

(a) (b) (c)

V
ud

V
ud

V
ud

e
n

V
ud

(d)

Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with

3

Thrust 1:  precision β decays 

6

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
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pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these
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between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):
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(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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situation depicted in Fig. 1: on the one hand, there is a ten-
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tarity in Sec. 2. The consequences for physics beyond the SM
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
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Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
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interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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Figure 1. The �W -box diagrams for the semileptonic decay
process Hi →Hfe⌫̄e.

that computed using lattice QCD. The study of �V V

�W
has

so far included estimations inspired by the holographic
QCD model [19] and dispersion relations [11].

Lattice QCD o↵ers a direct nonperturbative approach
to compute the box correction �V A

�W
, especially for Q2 ≤ 2

GeV2. First lattice calculations of �V A

�W
were successfully

conducted in the pion [20] and kaon channel [21, 22], and
have recently been confirmed by an independent lattice
calculation [23]. The data reported in [20] were also used
for a joint lattice QCD - dispersion relation analysis [17].
This letter extends this calculation to the neutron decay
channel, which entails a direct computation of the
nucleon four-point function at the physical pion mass.
We also briefly discuss our numerical result of �V V

�W
, and

its implication to the radiative correction to axial charge.

Methodology: The notations used in this work align
with those used in [20]. We define the hadronic function
H

V A

µ⌫
within Euclidean space

HV A

µ⌫
(t, �x) ≡ �Hf �T �Jem

µ
(t, �x)JW,A

⌫
(0)� �Hi�, (3)

where Hi�f represents the zero-momentum projected
neutron/proton state, created by a smeared-source nu-
cleon operator. The computation of box contribution
�V A

�W
involves a momentum integral

�V A

�W
= 3↵e

2⇡ �
dQ

2

Q2

m
2
W

m
2
W
+Q2

Mn(Q2). (4)

Mn(Q2) is a weighted integral of the hadronic function
H(t, �x) = ✏µ⌫↵0x↵HV A

µ⌫
(t, �x), defined as

Mn(Q2) = −1
6

�
Q2

mN

� d
4
x!(t, �x)H(t, �x), (5)

with mW and mN the masses of the W -boson and the
nucleon. The weighting function is

!(t, �x) = �
⇡
2

−⇡
2

cos3 ✓ d✓

⇡

j1 �� �Q���x��
��x�

cos (Q0t) , (6)

where � �Q� =
�
Q2 cos ✓, Q0 =

�
Q2 sin ✓ and jn(x) are the

spherical Bessel functions.
To evaluate Mn(Q2) as prescribed in Eq. (5), it is

necessary to extend the temporal integration range suf-
ficiently to reduce truncation e↵ects. However, as the

time separation between the two currents increases, the
lattice data tend to exhibit greater noise-to-signal ratio.
Here we employ the infinite volume reconstruction (IVR)
method [24] to incorporate the long-distance (LD) con-
tribution arising from the region where �t� > ts. Here, ts
is the time slice at which the short-distance (SD) and
LD contributions are separated. The IVR method, in
addition to eliminating the power-law suppressed finite
volume error, can also reduce the lattice statistical error
in the long distance region. To elaborate, we divide the
integral into SD contribution, weighted by !(t, �x), and
LD contribution, weighted by !̃(t, �x)

Mn(Q2) =MSD
n
(Q2

, ts) +MLD
n
(Q2

, ts, tg) (7)

with

M
SD
n
(Q2

, ts) = −
1

6

�
Q2

mN

�
ts

−ts dt� d
3�x!(t, �x)H(t, �x),

M
LD
n
(Q2

, ts, tg) = −
1

6

�
Q2

mN

� d
3�x !̃(ts, tg, �x)H̄(tg, �x),

(8)

and

!̃(ts, tg, �x) =2�
⇡
2

−⇡
2

cos3 ✓d✓

⇡

j1 �� �Q���x��
��x�

×

Re� e
−iQ0ts

E �Q −mN + iQ0
� e−(E �Q−mN )(ts−tg).

(9)

Here, H̄(t, �x) = [H(t, �x)+H(−t, �x)]�2, E �Q =
�

m
2
N
+ � �Q�2

and tg is chosen to be large enough to ensure the ground-
intermediate-state dominance. Once tg is fixed, ts can be
varied to further verify the ground-state dominance. In
the final results, it is natural to choose ts = tg.
Due to the factor 1�Q2 in Eq. (4), we observe that
�V A

�W
encounters a notably increased noise originating

from Mn(Q2) at small Q2 region. To mitigate this noise,
we can use the model-independent relation

� d
3�x H̄(tg, �x) = −3̊gA(µ̊p + µ̊n) (10)

to substitute M
LD
n
(Q2

, ts, tg) with

M
LD
n
= −1

6

�
Q2

mN

� d
3�x [!̃(ts, �x) − !̃0] H̄(tg, �x)

+ 1

2

�
Q2

mN

!̃0gA(µp + µn). (11)

Above, as far as ground-state dominance is satisfied,
H̄(tg, �x) is independent of tg. µ̊p,n denote the pro-
ton/neutron magnetic moments defined in the isospin
limit. During the substitution process, we incorporate
experimentally measured values for gA and µp,n as de-
picted in Eq. (11). The di↵erence is of a higher order

Supplementary Information – S2

Inserting Eq. (S 8) into Eq. (S 7), we arrive at Eq. (8).

Demonstration of Eq. (10)

Here we demonstrate that once the ground-state dom-
inance is satisfied at �t� ≥ tg, the spatial summation of the
hadronic function H(t, �x) can be written in terms of g̊A,
µ̊p and µ̊n. We start with the expression

✏µ⌫↵0Q↵H̃V A

µ⌫
(t ≥ tg, �Q)

= ✏µ⌫↵0Q↵ � d
3�xe−i �Q⋅�xHV A

µ⌫
(t ≥ tg, �x)

= ✏µ⌫↵0Q↵

e
(mN−E �Q)t
2E �Q

×

1

2
Tr �mN(1 + �0)Vµ �E �Q�0 − i �Q ⋅ �� +mN�A⌫� ,

(S 9)

where

Vµ = �µF1(Q2) −
�µ�Q�

2mN

F2(Q2),

A⌫ = �⌫�5GA(Q2) + Q⌫

2mN

�5G̃P (Q2). (S 10)

In the small � �Q� limit, the above expression can be sim-
plified as

lim� �Q�→0
✏µ⌫↵0Q↵H̃V A

µ⌫
(t ≥ tg, �Q)

= − i
4
✏µ⌫↵0Q↵Q�GM(Q2)GA(Q2)Tr[�0�µ���⌫�5]

+O(� �Q�3)
= 2i� �Q�2GM(0)GA(0) +O(� �Q�3), (S 11)

where GA(0) = g̊A. GM(Q2) = F1(Q2) + F2(Q2) is the
magnetic form factor. For t ≥ tg, we have GM(0) = µ̊p.
For t ≤ −tg, the expression is similar as Eq. (S 11), albeit
with GM(0) = µ̊n. We thus have

lim� �Q�→0
✏µ⌫↵0Q↵ �H̃V A

µ⌫
(tg, �Q) + H̃V A

µ⌫
(−tg, �Q)�

= 2i� �Q�2g̊A(µ̊p + µ̊n) +O(� �Q�3) (S 12)

On the other hand, we have

✏µ⌫↵0Q↵H̃V A

µ⌫
(t ≥ tg, �Q)

= ✏µ⌫↵0 � d
3�xe−i �Q⋅�x(−i@↵)HV A

µ⌫
(t ≥ tg, �x)

= ✏µ⌫↵0 � d
3�x j0(� �Q���x�)(−i@↵)HV A

µ⌫
(t ≥ tg, �x)

= −i� d
3�x j1(�Q���x�)

��x�
� �Q�H(t ≥ tg, �x) (S 13)

In the small �Q limit, it yields

lim� �Q�→0
✏µ⌫↵0Q↵ �H̃V A

µ⌫
(tg, �Q) + H̃V A

µ⌫
(−tg, �Q)�

= −2i� d
3�x �
�Q�2

3
H̄(tg, �x) +O(� �Q�3). (S 14)

Combining Eqs. (S 11) and (S 14), we obtain

� d
3�x H̄(tg, �x) = −3̊gA(µ̊p + µ̊n). (S 15)

In our calculation, we find that the lattice results for the
24D, 32Dfine ensembles, and the continuum extrapola-
tion are all consistent with the PDG value, as depicted
in Table S I.

24D 32Dfine Cont. PDG−3gA(µp + µn) −3.31(49) −3.02(53) −2.65(1.31) −3.366(3)
Table S I. The lattice results of ∫ d

3�x H̄(tg, �x) for the 24D,
32Dfine ensembles, and the continuum extrapolation con-
trasted with the PDG value of −3gA(µp +µn). Here, tg takes
a value of ∼ 0.6 fm.

Demonstration of the necessity of using the IVR
method

To demonstrate the necessity of using the IVR method
in our calculation, we use the ensemble 24D as an exam-
ple and present in Fig. S 2 the results of MSD

n
(Q2

, ts) as
a function of Q2 for di↵erent values of ts. Notably, even
when increasing ts to 1.16 fm while maintaining �ti+�tf

fixed at 0.77 fm (resulting in a total source-sink separa-
tion of 1.93 fm), sizeable temporal truncation e↵ects per-
sist.

Figure S 2. SD and LD contributions to Mn(Q2) as a function
of Q2 with various choices of ts for 24D. �ti+�tf is set at 0.77
fm. The error band denoted as “SD+LD” is the lattice result
which incorporates the reconstruction of the LD contributions
using IVR and tg = ts = 0.58 fm.

Widely separated scales:   ΛBSM,  MW,  Λχ,  mπ,  me ~ qext               ⇒        Tackle the problem through a tower of EFTs

• Improving precision at each step:
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
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horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].
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for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)
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circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
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(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
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The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including

38

1024 models

• Performed ‘CLEWed’ analysis within  
SMEFT.   Scanned model space by ‘turning 
on’ certain classes of effective couplings 

• Akaike Information Criterion favors  
models with Right-Handed Charged 
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• Best fit to CLEW data:  two RH CC 
vertex corrections and the S parameter. 
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including

38

1024 models

• Performed ‘CLEWed’ analysis within  
SMEFT.   Scanned model space by ‘turning 
on’ certain classes of effective couplings 

• Akaike Information Criterion favors  
models with Right-Handed Charged 
Currents of quarks (V+A)  

• Best fit to CLEW data:  two RH CC 
vertex corrections and the S parameter. 

Standard Model

More favored 
models

Less favored
 modelsCHud



CP violation and EDMs

2 Primary objectives

The high level goals NTNP are:

• Calculations of radiative corrections to nucleon (DV,A
R

) and nuclear (dC,NS) beta decays with the aim to
sharpen the CKM unitarity test. These encompass the primary objectives BETA-1, ... , BETA-4.

• Ab initio calculation of the Schiff moments of 129Xe, 199Hg, and 225Ra (primary objective EDM-3). 1

• Ab-initio calculation of neutrino-nucleon and neutrino-nucleus cross sections, with controlled uncer-
tainties. These encompass the primary objectives XSEC-1, ..., XSEC-5.

We report below the revised primary objectives for each year of the project, indicating in square brackets
the main contributing institutions [⇤ indicates the lead institution]

Year-1 BETA-2 Develop EFT formalism for A=2 systems to O(GFa) [LANL ⇤, UMass, UTK, UW]

Year-2 BETA-1 Two loop calculation of electroweak corrections to charged-current processes [UMass ⇤]

BETA-3 Compute dC in superallowed b decays in VS-IMSRG and IM-GCM. [MSU ⇤, ND]

XSEC-1 Compute with controlled uncertainties in LQCD the nucleon elastic form factors [UCB ⇤,
CMU]

Year-3 BETA-1 Calculation of n ! pen̄ to O(GFa) in Lattice QCD+QED [CMU, LANL, UCB ⇤, UW]

BETA-2 EFT analysis of radiative corrections to few-body systems [LANL, UTK ⇤, UW]

BETA-3 Calculation of dC, dNS in low-A systems with various methods – benchmarking
[ANL, LANL, ND, UCB, UNC, WUSTL ⇤]

EDM-3 VS-IMSRG results with uncertainties for Schiff moments of 199Hg and 129Xe. [MSU,
ND, UNC ⇤]

XSEC-2 First Lattice QCD results for the N ! D transition induced by electro-weak currents
[CMU ⇤, UCB]

Year-4 BETA-3 Ab initio calculations of dC for relevant medium-mass nuclei with multiple methods
[ANL, LANL, ND, ODU, ORNL, UTK ⇤, WUSTL ⇤]

XSEC-4 Calculations of inclusive electroweak cross sections in A = 4,12,16 with QMC meth-
ods supplemented by factorization schemes (Short-Time-Approximation and Spectral
Function formalism). [ANL ⇤, LANL, ODU, WUSTL]

Year-5 BETA-3 Ab initio calculations of dNS in low- and medium-mass nuclei [ANL, LANL, ODU,
ORNL, WUSTL ⇤, UTK ⇤]

BETA-4 Phenomenology of beta decays and CKM unitarity with quantified uncertainties [LANL,
UMass, UW ⇤]

EDM-3 IM-GCM Schiff moment result for 225Ra, with uncertainty analysis [MSU, ND, UNC ⇤]

XSEC-4 Electroweak cross sections in 40Ca. [ANL, LANL ⇤, ODU, WUSTL]

XSEC-5 Determination of theoretical uncertainties in calculations of inclusive and exclusive
cross sections induced by lepton scattering. [ANL ⇤, LANL, ODU, WUSTL]

1EDM-1 and EDM-2 have been eliminated in the revised scope of the proposal.

3

• Infrastructure is in place, exploratory work in 
VS-IMSRG* and IM-GCM** already underway

• On track to reach this milestone 

* VS-IMSRG =  Valence-Space In Medium Similarity Renormalization Group 

** IM-GCM =  In Medium Generator Coordinate Method
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2 Primary objectives

The high level goals NTNP are:

• Calculations of radiative corrections to nucleon (DV,A
R

) and nuclear (dC,NS) beta decays with the aim to
sharpen the CKM unitarity test. These encompass the primary objectives BETA-1, ... , BETA-4.

• Ab initio calculation of the Schiff moments of 129Xe, 199Hg, and 225Ra (primary objective EDM-3). 1

• Ab-initio calculation of neutrino-nucleon and neutrino-nucleus cross sections, with controlled uncer-
tainties. These encompass the primary objectives XSEC-1, ..., XSEC-5.

We report below the revised primary objectives for each year of the project, indicating in square brackets
the main contributing institutions [⇤ indicates the lead institution]

Year-1 BETA-2 Develop EFT formalism for A=2 systems to O(GFa) [LANL ⇤, UMass, UTK, UW]

Year-2 BETA-1 Two loop calculation of electroweak corrections to charged-current processes [UMass ⇤]

BETA-3 Compute dC in superallowed b decays in VS-IMSRG and IM-GCM. [MSU ⇤, ND]

XSEC-1 Compute with controlled uncertainties in LQCD the nucleon elastic form factors [UCB ⇤,
CMU]

Year-3 BETA-1 Calculation of n ! pen̄ to O(GFa) in Lattice QCD+QED [CMU, LANL, UCB ⇤, UW]

BETA-2 EFT analysis of radiative corrections to few-body systems [LANL, UTK ⇤, UW]

BETA-3 Calculation of dC, dNS in low-A systems with various methods – benchmarking
[ANL, LANL, ND, UCB, UNC, WUSTL ⇤]

EDM-3 VS-IMSRG results with uncertainties for Schiff moments of 199Hg and 129Xe. [MSU,
ND, UNC ⇤]

XSEC-2 First Lattice QCD results for the N ! D transition induced by electro-weak currents
[CMU ⇤, UCB]

Year-4 BETA-3 Ab initio calculations of dC for relevant medium-mass nuclei with multiple methods
[ANL, LANL, ND, ODU, ORNL, UTK ⇤, WUSTL ⇤]

XSEC-4 Calculations of inclusive electroweak cross sections in A = 4,12,16 with QMC meth-
ods supplemented by factorization schemes (Short-Time-Approximation and Spectral
Function formalism). [ANL ⇤, LANL, ODU, WUSTL]

Year-5 BETA-3 Ab initio calculations of dNS in low- and medium-mass nuclei [ANL, LANL, ODU,
ORNL, WUSTL ⇤, UTK ⇤]

BETA-4 Phenomenology of beta decays and CKM unitarity with quantified uncertainties [LANL,
UMass, UW ⇤]

EDM-3 IM-GCM Schiff moment result for 225Ra, with uncertainty analysis [MSU, ND, UNC ⇤]

XSEC-4 Electroweak cross sections in 40Ca. [ANL, LANL ⇤, ODU, WUSTL]

XSEC-5 Determination of theoretical uncertainties in calculations of inclusive and exclusive
cross sections induced by lepton scattering. [ANL ⇤, LANL, ODU, WUSTL]

1EDM-1 and EDM-2 have been eliminated in the revised scope of the proposal.

3

Lepton-nucleus scattering

See talk by Saori Pastore for progress on 
the nuclear structure front

See talk by Andre’ Walker-Loud for 
progress on the lattice QCD front

32



33

Summary and outlook
The NTNP collaboration addresses multi-scale problems to maximize the 

discovery potential of experiments  at the precision / intensity frontier

β decays as probes of new physics

• Controlled uncertainties with EFT 
+ ab-initio nuclear structure 

• CKM unitarity test:  are we 
uncovering right-handed currents? 

Lepton-nucleus scattering 

• Lattice QCD + many-body methods 
→ precise microscopic description 
of cross sections

• Key input for the interpretation of 
neutrino oscillation experiments 

EDMs as probes of new 
sources CP violation 

• First ab-initio calculations of 
nuclear Schiff moments 

• Impact on EDM searches 
with diamagnetic atoms and 
radioactive molecules 

The NTNP collaboration fosters the development of a much-needed  
workforce to attack these multi-scale problems  (2023 NSAC LRP)

• One bridge position filled and one in the works 

• We provide an environment for exchange and growth,  across sub-
discipline boundaries, for both junior and senior researchers   



Thank you!

Bruno Touschek 
(1921-1978)

T. D. Lee in a drawing by 
Bruno Touschek 
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Publications
https://a51.lbl.gov/~ntnp/TC/ 


