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* Proof of principle demonstration of electron
cooling with the first particle-level detailed
simulations (Jones Report:: line 3: High, A)

* Develop a high-performance code with these
capabilities, and other beam dynamics
challenges beyond cooling (Jones Report:: line 4:
High, A)

* Applications to electron-ion collider (JLEIC)
modeling, design, and optimization (Jones
Report:: line 39: High)



Expenditures and Milestones

| FY104FY11 | FY124FY13 | FY144FY15 | FY164FY17 | TOTALS

F
unds 0+56  55+52=107 50+54=104 50+50=100  $367K
Allocated
Actual Costs 56 107 104 100 $367K
to Date
- FYL7 FY18
Shared memory parallelization of FMM Identification of speed and parallel
Quarter 1 data structures and integration with efficiency bottlenecks in the current
parallel FMM version of PHAD

Variable order Picard integrator with

Quarter 2 automatic step size control
parallelization

Amelioration of speed and efficiency
bottlenecks in PHAD

. . . L DC electron cooling initial rate
Binned time step implementation in g

Quarter 3 estimations for different ion species
parallel
(charge states) at low energy
. . Low energy electron cooling initial rate
Quarter 4 Parallel PHAD integration, estimations for different initial

benchmarking and optimizations

distributions and external fields




PHAD Overview i
4

* Accurate at expense
of speed.

° o * No approximations
e ¢ (exact treatment).
y . * Algorithms employed
o ¢ NC are the most efficient
o available.



Main Outcomes I]'Tgl
NIy

Stability & Performance User friendliness

* Improved FMM. * Parameter tracking.

* Improved local solver * Additional timers.
(Simo integrator).  Error messages.

* Memory « Relaunch capability.
Improvements. . New example.

* Avoidance of digit
cancelation.



Parallel Simo Integrator
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Efficiency of weak scaling
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|dentifying Bottlenecks

* Implemented several different parallelization
strategies.

e Strategies have competing benefits and costs.

Load balancing Memory usage

Parallel computation Communication



PHAD Parallelization Strategies
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Balanced strategy
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Parallel Simo Vs.
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Subprocedure Breakdown
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Balanced Vs. Unbalanced
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Subprocedure Breakdown
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Improvements

Stability & Performance I]'m’l
NIy

* Simo integrator ensures large timesteps leading
to nonphysical results are not taken.

* Relativistic gamma computed to avoid digit
cancelation.

 Modification allows smaller Simo order for small
PHAD timesteps.

e Several memory improvements.



Memory improvements @

* FMM memory requirements do not scale with
the number of processors.

« Memory for Taylor series in Simo integrator
depends on q parameter instead of N.

* Memory improvement in indices storage.



number 11 12 NN, x X 2D
of n21r N2z -+ MN2IN,| X X
neighborhoods
ni1 N1z« NNy M21 N22 =+ N2|Ny| M31 1D

Bonuses:  Communication efficiency.
Larger N with same RAM.



User friendliness £
i

 Parameter tracking - Simo integrator largest
order and minimum timestep used.

e Separate timers for read/write and some
communications.

* Descriptive error messages.

* Relaunch capability.

* Website improvement (in progress).
* New example - beamlets.



Beamlets example script

 Generates all PHAD input files.

* Positions generated using 2D Gaussian and
uniform beam size.

* Momentum generated from Maxwell-Boltzmann
distribution.

e Detailed documentation.



Beamlet Setup
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Beamlet Simulation
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Snapshots
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Summary and | Beam Physis Code Repository
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Conclusions

NIU Beam Physics Code Repository

Beam Physics Code Repository

dedicated to sharing our group's code development results with
ed in charged particie beam dynamics. Most of our codes are COSY
1, the genssal purpose narliness Synamics cade wath an underlying
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