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Optimizing a Detector Design typically follows:

Detector Description

y

Input from event
generator

Detector response
model (GEANT)

4

Reconstruction

\ 4

Performance metric

A

Challenges:

1) Geant4 is slow, computational expensive and stochastic

2) Reconstruction code typically not optimized for a given Detector Description




Al for detector Optimization

Detector Description

A

Generative model Reconstruction
Input from event N A .
generator > > %/ &A »| Performance metric
_a\ A = X
Advantages:

1) DNN generative model is fast and is differentiable
2) DNN based reconstruction is optimal for a given Detector Description



Ultimate Goal

Our ultimate goal is to co-optimize the detector setup and the reconstruction algorithm, a
challenging computational task that will be possible if both the generator and reconstruction are
differentiable with respect to the detector parameters (e.g., calorimeter segmentation). In this
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Make gradient-descent
optimization possible
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Part I. Generative Part

Perimutter@ NERSC
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https://perlmutter.carrd.co/

State-of-the-art for generative models at the time of proposal
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Figure 3. An illustration of three schemes for building a differentiable detector simulation. The left column represents surrogate



New emerging paradigm is based on Point Clouds

“Point-Clouds” architectures entered
the field in ~2021, as alternative to
image based approaches

First-ever use of point-clouds for
Calorimeter fast generation
was just introduced in 2023

(Buhman et al. arXiv:2305.04847) Point Cloud Deep Learning
Network




Calorimeter Data is naturally a point cloud!

Data is sparse (image format is wasteful)
Typically detectors have non-regular grid geometry (images format is constraining)
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Example of neutron showers in EIC high-granularity ZDC



How do point-clouds methods compared to traditional image
based methods for calorimeter generation?

Point Cloud Image-based approach



arX1v:2307.04780v2 [cs.LG] 31 Jul 2023

In review in JINST

Comparison of Point Cloud and Image-based Models for Calorimeter Fast Simulation
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Arratia,*® Bishnu Karki,* Ryan Milton,* Piyush Karande,® and Aaron Angerami
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FORWARD HCAL
DSL/DSTC: Friederike Bock (ORNL)

Case Study: EIC Forward Calorimeter Deputy DSL/DSTC: Miguel Arrtia
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https://wiki.bnl.gov/EPIC/index.php/Collaboration

Geant4 vs Point-cloud vs Image
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Performance comparison

Model # Parameters | Disk Size (Full) |Sample Time | AUC
Image 2,91 2,161 1016MB (62GB) |8036.19s 0.673
Point Cloud 620,678 509 MB 2631.41s 0.726

Point cloud is:

- Afactor 100 times smaller dataset than image using same zlib compression.
- Samples data 3 times faster.
- Yields ~same performance when emulating Geant4.




arXiv:2307.04780v2 [cs.LG] 31 Jul 2023

“This work establishes a benchmark for future research on generative models,
offering valuable insights into the challenges of modeling hadronic showers in highly
granular calorimeters using image-based techniques, while also exploring the potential
of point-cloud methods.

“The current advantages of point clouds, in combination with improvements to

close the remaining performance gap described earlier, will likely make point
cloud based models a clear choice for highly granular calorimeters”

1st ever AI/ML fast simulation for EIC
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Part ll. Regression Part

Lassen @ LLNL

Leveraging LLNL institutional Computing
Grand Challenge program

Reconstruction

Performance metric

\ 4

A

DNN provide us an optimal
algorithm for a specific detector

configuration, automatically
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https://hpc.llnl.gov/hardware/compute-platforms/lassen

Some Historical Context for Perspective.
It takes years to fully optimize the software used in calorimeter systems.
For example ATLAS (designed in 1994):
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https://cds.cern.ch/record/2825379

Case study: Longitudinal Segmentation of EIC forward calorimeter

Some of the key questions that our Al-driven optimization approach could answer are:

= Given a certain budget, what is the best performance one can expect in longitudinal
readout?

= For which angles would a high segmentation have the largest impact?

= Where should the longitudinal layers be placed?
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https://wiki.bnl.gov/EPIC/index.php/Collaboration

arXiv:2310.04442v1 |[physics.ins-det] 2 Oct 2023

In review in JINST

The Optimal use of Segmentation for Sampling Calorimeters

2,5

Fernando Torales Acosta,'* Bishnu Karki,? T Piyush Karande,® Aaron Angerami,* Miguel Arratia,
1,6

Kenneth Barish,? Ryan Milton,? Sebastian Mordn,? Benjamin Nachman,*® and Anshuman Sinha®
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Data Process for Models.
We explore various longitudinal granularity scenarios

Example of 3 longitudinal
sections by combining hits
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Two AI/ML architectures explored, with same 1/O

Deep Sets

Input Output
—_ — —>@—> — bﬁf(xl,...,xM)
xJﬂ $x) E
Xe RM RNxM RN R

Graph Neural Network

Input Graph GNN blocks Transformed Graph Regression Prediction

INPUT (Point Cloud):

nodes (cells)
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OUTPUT:
Energy and angles
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EIC Calo Performance (ECAL + HCAL) with Optimal Reconstruction

under various longitudinal granularity scenarios
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What information drives performance? X;= = R4

We train Deepsets models on E, E+7, E+ (1D, 2D, 4D)
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Very timely study given recent key EIC forward calo review

From Sep 2023 review:

2. Are the plans for achieving detector performance and construction sufficiently
developed and documented for the present phase of the project? Specifically, are

they commensurate with the initiation of the LFHCAL absorber and casing steel
procurement?

* FB: Yes, advanced detector performance simulations have been shown taking

into account the realistic detector geometries. Moreover, detailed constt
plans have been presented.

* The baseline questions are well understood but an optimization study should be
done.

* Recommendation:

Our project
delivered Al/ML
tools that

_— significantly
enchanged our
ability to
explore these

I

* Implement software-®mpensation as soon as possible and re-assess the
benefits of the tungsten section.

24




“Implement software compensation as soon as possible and Enhanced capaci_lity to
re-assess the benefits of the tungsten section.” perform these with AI/ML

Performance comparison between OW and 4W results

Graphnet results
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We implemented “Software compensation” with AI/ML. Optimal software for each design choice. Note that
this would have taken far too long to do otherwise with traditional methods.

As far as we know, this is the first instance were Al/ML is used to inform a non-trivial design choice in EIC. .
(tungsten vs no tungsten section in HCAL is a million dollar type question). Links: one, two.


https://indico.bnl.gov/event/21011/#3-studying-impact-of-w-layers

Recap: Al-methods have real impact on EIC detector design
In general, automatic and optimal methods for data-generation and reconstruction

save time and enable us to better explore various design options.

Detector Description

Generative model Reconstruction
—7 N7 7 7
Input from event > % % % . % % \ 5| Performance metric
generator SRS 1 S B
\_// AW / \
/f N

100,000 factor reduction on
computational cost of
bottleneck of simulations
(Geant4 modelling of
calorimeter showers)

Automatic and optimal software reconstruction,
which would take too much time to develop for
every detector design option
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We processed the data to explore conditioning on detector parameters

(i.e. layers position).
> \\
At 1101
S g
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2™

The network now gets trained on various layer positions, and can later interpolate

Hit Energy [MIP]
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Differentiable function of energy resolution conditioned on detector parameters.
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Deliverables &

FY 2022 FY 2023
a) Funds allocated 490 490
B u d g et b) Actual costs to date 200 720

Timetable of Activities

1]2]3]alt]2]3]4

T1: Implement G4 model of realistic calorimeter and develop
training framework

T2: Setup full learning pipeline using simplified setup _
D1: Write methods paper

T3: Apply pipeline to EIC G4 simulation

T4: Complete full detector/reconstruction codesign
D2: Write optimization paper

D3: Deliver DNN fast sim and event reconstruction tools to EIC
community

Most of our goals (and more) completed.
We made foundational progress to our ultimate goal. Poised for delivering more. 30



Highlights

“We seek to exploit the opportunities provided by the EIC to achieve the first
use of DNNs to design a detector, a milestone in the field.”

Delivered

DNN used in design optimization of forward calorimeter.

- Used to justify & motivate longitudinal granularity
- Inform key (million-dollar type) questions
such as impact of tungsten section.

1st of its kind for EIC
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https://indico.bnl.gov/event/21011/contributions/82612/attachments/50751/86760/TungstenStudy.pdf

Highlights

“Other outcomes will include a DNN based fast-simulator with high
fidelity, and DNN-based reconstruction software.

These will improve the detection capabilities of future EIC experiments,as
well as cement the use of Al techniques from an early stage.”

Delivered

- AL/ML reconstruction of combined forward calorimeter system
established and used in numerous studies.
1st of its kind for EIC

- Diffusion generative model for HCAL and ZDC established.
1st of its kind for EIC
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Data and Code Sharing
- Simulations available in - Code available in

- https://github.com/eiccodesign/regressiononly
- https://github.com/ftoralesacosta/GSGM for EIC Cal
https://github.com/ViniciusMikuni/Calo4EIC

- https://doi.org/10.5281/zeno0do.8128598

https://doi.org/10.5281/zenodo.8384822

| & Open | 117 O eiccodesign / regressiononly  pubic

& DOWNLOADS

We have ensured that all our work is reproducible and have widely
advertised our open datasets and code, enabling the EIC community to
build upon our work, which was one of the goals of our project.
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https://doi.org/10.5281/zenodo.8128598
https://doi.org/10.5281/zenodo.8384822
https://github.com/eiccodesign/regressiononly
https://github.com/ftoralesacosta/GSGM_for_EIC_Calo
https://doi.org/10.5281/zenodo.8128598

Highlights

“Our studies will be synergistic with the ongoing EIC R&D activities and will seek to inform them”

Delivered. Our Al/ML studies have enhanced and influenced calorimetry R&D at EIC
Forward HCAL _
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https://arxiv.org/abs/2208.05472
https://indico.bnl.gov/event/20648/contributions/81412/attachments/50280/85992/TIC_ZDC_SiPMonTile.pdf
https://arxiv.org/abs/2307.12531

Highlights

“To help train the “Al workforce” of the future, we will engage
Students at the graduate and undergraduate levels”

e 3 postdoc, 2 graduate students and 2 undergraduates were
initiated into state-of-the-art Al/ML methodologies, along with th
. use of HPC resources at LLNL and NERSC
Delivered
e Over the entire summer 2023, UCR team visited LLNL and
LBNL: Ryan Milton, Sebastian Moran-Vasquez,
Jiadun Huang, and Chase Owen (50% of whom are first gen)

e Inspired by their project experience, UCR graduates Ryan and
Sebastian plan to take graduate-level Al/ML classes, integrating
them into their thesis.
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Summary

Our project established a new collaboration between teams at LLNL, LBNL with
expertise in Al/ML, and UC Riverside team with expertise in detector R&D.

We have set the foundations of a framework for combining generative models and
regression models for co-optimization, reaching milestones results along the way.
Most of our milestones were completed.

2 journal articles submitted for publication + 2 conf. Proceedings. 7 conference
presentations.

Pivotal AI/ML developments for EIC calorimetry, already producing real-world impact.

3 postdoc, 2 graduate students, 2 undergraduate trained, all with limited previous
experience, were trained on state-of-the-art Al/ML methods and utilization of HPC
resources at LLNL and NERSC.
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