DECEMBER 2, 2024 2024 NP Accelerator R&D PI Exchange Meeting

A PRACTICAL Nb₃Sn **CAVITY FOR ATLAS**

TROY PETERSEN

Speaker: MIKE KELLY

YANG ZHOU

MARK KEDZIE

TOM REID

BEN GUILFOYLE

PAUL DAVIS

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

‡ Fermilab

GRIGORY EREMEEV BRAD TENNIS SAM POSEN

RadiaBeam SERGEY KUTSAEV

RONALD AGUSTSSON ED SPRANZA ALESSANDRO SCHILLACI

OUTLINE

Introduction – Main goal and approach (slides 3-5) Budget and deliverables (slides 6-8) Experimental details and results (slides 9-17) Plans and work directly related to Nb₃Sn (slides 18-20) Final comments (slides 21)

CONTRACTOR And A Contract of A Contract of Contract of

Our Aim is to Change the Way Ion Linacs Like ATLAS Are Built ³

Large niobium cavity sizes/shapes/operating modes derive directly from properties of niobium

2014 ATLAS Energy and Intensity Upgrade Cryomodule

CONTRACTOR Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Nb₃Sn is Very Different From Niobium at Practical Cryogenic Temperatures

RF Heating into the 4.5 K He bath can be practically eliminated even at higher frequencies

Nb₃**Sn Can Enable Transformation Improvements for Ion Linacs** ⁵ Approach is two-fold: (1) Smaller, higher frequency cavities (2) Coupling to new large cryocoolers

SUMMARY OF EXPENDITURES BY FISCAL YEAR (FY):

	FY22 (\$)	FY23 (\$)	Totals (\$)
a) Funds allocated	619,000	639,000	1,258,000
b) Actual costs to date	548,915	516,965	1,065,880

*new FOA R&D funds for FY24-25 are of similar scale

CONTRACTOR And A Contract of C

MAJOR DELIVERABLES AND SCHEDULE

Deliverable	Forecast Schedule	Status	Additional Comment
a) Coat 1st low-beta niobium cavity	March 2023	Complete June 2023	Re-coated and tested
b) Complete final design of 2 nd cavity	June 2023	Complete June 2023	Adding gusset based on 218 MHz results
c) Testing on the 1 st niobium-tin cavity	July 2023	Complete Sept. 2023	Tested again Jan. 2024
d) 2 nd cavity parts complete	November 2023	Complete January 2024	
e) Coat 2 nd Iow-beta cavity	January 2024	Complete Nov. 2024	Delayed by leak in niobium part
f) Cryocooler testing complete	September 2023	Tested April 2024	Tested twice RadiaBeam/ANL, working on liquefaction

STATUS OF ALL LOW BETA Nb_3Sn CAVITIES 2021 TO PRESENT

Cavity	Status	Additional Comment
Cavity #1: 218 MHz	Coated twice; tested several times; new results here	R&D cavity → HF rinsing likely next step
Cavity #2: 145 MHz	Coated November 2024	Test Dec. 2024; install into ATLAS 2026*
Cavities #3, #4: 145 MHz	Niobium parts in fabrication	Cold test coated 2-cavity superstructure Dec. 2025
LDRD cavity: 1 GHz	Testing September 2024	1 st results; testing ongoing

*FOA funds for cavity fabrication, coating, testing; Funds for ATLAS installation from other sources

CONTRACTOR And A Contract of C

TECHNICAL APPROACH: VAPOR DIFFUSION OF TIN INTO A NIOBIUM CAVITY Step 1: A good "defect-free" niobium cavity is the starting point

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

2024 NP Accelerator PI Exchange Meeting, Monday, December 2

Argonne

2nd Cavity Coating at Fermilab (Nov. 2024) **Fermilab** 10

Particular attention to possible sources of contamination (NbTi flanges, semi-trapped volumes, threads)

Cavities Tested at ANL In 24" Diameter 'Dunk' Dewar All cavities tested pre- and post coating

- Cavity: Immersed in 1meter deep bath of 4.5 K liquid helium
- Refrigeration: By ANL test facility model 1630 helium refrigerator
- Diagnostics:
 - Si-Diode thermometers
 - -3 Fluxgate magnetometers
 - Helium pressure, level
 - -Heaters

Cavity #1 (218 MHz) Test Results for Two Rounds of Coating

Upper curves

- Quality factor in first round of coating exceeds niobium by 3-4 times
- Strong Q slope from plastic deformation during pump down
- Quench induced Q-drop is recoverable; we are not overly concerned

Lower curves - new reenforcement stiffening added to cavity

- Low field Q much reduced as from a "weaklink"
- Q slope not present and exceeds 1st round at high fields

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is U.S. Department of Energy labo

Argonne 🛆

Cavity #1 (218 MHz) Temperature and Magnetic Field Data Near Tc 13

Superconducting transition clearly visible near 18 K but systematically ~400 mK below 18 K

CONTROL OF ARGONNE NATIONAL Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Nb₃Sn Cavities: Issues and Solutions

Practical solutions for mechanical and thermocurrents seem in hand; coating purity/quality is the focus

Issue and impact

 Plastic deformation after coating: Nb₃Sn film damage leading to Q drop

- Seebeck effect: Thermocurrents produced during cooldown produce magnetic fields that reduce Q
- Thermometry uncertainties: Doubts at level of ~400 mK on thermometers near 18 K → misinterpretation of temp. gradients or value of Tc
- Coating quality/purity: Possible issues → NbTi flanges, contamination in threads or trapped volumes, non-optimal amounts Sn/SnCl₂, water, incomplete Sn incorporation

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

2024 NP Accelerator PI Exchange Meeting, Monday, December 2

Solution or approach

- Integral or detachable stiffening after coating: Must account for all scenarios (pumping, cooling, tuning)
- Slow uniform cooldown through Tc: More than ½ dozen cooldowns; no evidence for impact on Q; (Q drop can be induced for externally applied field)
- Calibrated thermometry: New purchase with calibration better than 100 mK
- Study and control of contamination: Niobium sample analysis from coated cavities, elimination of tapped holes, newest cavities are 100% Nb, no NbTi

Using Sample Analysis to Improve Coating Quality

SEM/EDS analyses of samples show indications of impurities in some cases

CONTROL OF ARTMENT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

After 20 years Restarted In-house Checks on Niobium Purity

4-wire AC and DC Measurements of Residual Resistivity Ratio support no Issues with niobium

CONTRACTOR And A Contract of C

2024 NP Accelerator PI Exchange Meeting, Monday, December 2

Argonne

1 GHz Nb₃Sn Cavity Quarter-wave Cavity (ANL LDRD)

Postdoc 8-month project of Yang Zhou to demonstrate proof-of-principle for Nb₃Sn low-beta at high frequency

2024 NP Accelerator PI Exchange Meeting, Monday, December 2

Argonne 스

Revised Plan: Installing a Nb₃Sn coated cavity in ATLAS

The 2nd Cavity (145 MHz) is a better match to the end of ATLAS and will be installed in the last buncher cryostat

- Re-buncher test bed: Rebunching does not require the highest performance but forces us to address practical issues
- Major decision: Commit to use of 10-Watt cryocooler or use **ATLAS** refrigerator
- I0-Watt cryocooler: Tested looks promising, but want to show we can make liquid helium
- Mechanical slow tuner: Novel design tested at room temp, also looks promising
- Helium vessel/cryostat/coupler: Large effort outside scope of FOA R&D; **Requires ATLAS support**
- Timescale: 2026

ENERGY U.S. Department of Energy lab

2024 NP Accelerator PI Exchange Meeting, Monday, December 2

Sumitomo 10 W Cryocooler Testing at RadiaBeam and Argonne

Cryocooler cooldown (He tank press. 200 mT) -JT stage - GM stage **GM-JT cryocooler** 100 Termperature (K) 10 Vacuum cryostat 9 ¹/₂ hours 1 Nov-116:00 Nov-119:00 Nov-11 12:00 Nov-11 15:00 Nov-11 18:00 Nov-11 21:00 Nov-12 0:00 50 K Shield 4.1 K stage 10.41 W 10.91 W stability starts at 9.92 W 11.91 W Heater power (Watts) GM coldst JT conden Power [W] Temperature (K) Argonne RadiaBeam 9.42 W 8.93 W 8.43 W 7.93 W Vacuum cryostat Не 50 K Shield collection vessel Time (hours)

Cryocooler cooled nicely to 4.1 K at RadiaBeam and Argonne, supports > 9.5 W load; Needs more work on ANL cryostat to make liquid

U.S. DEPARTMENT OF U.S. Department of Energy laboratory is a U.S. Department of Energy laboratory managed by Uchicago Argonne, LLC,

2024 NP Accelerator PI Exchange Meeting, Monday, December 2

Argonne

19

New Top-mounted Slow Tuner

Beam port located tuners only squeeze. The top-mounted tuner operates in push/pull allowing us to aim directly at the frequency "bullseye"

CONCEPTION Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Final Comments

- The team of Argonne, Fermilab and RadiaBeam is four years into an effort to prove Nb₃Sn on low-beta cavities, such as those for ATLAS upgrades or other future ion linac applications
- We have coated and tested one cavity twice with encouraging results including, a transition temperature Tc close to 18 Kelvin, high quality factor, and high gradient, but the latter two not (yet) simultaneously
- A second 145 MHz cavity intended for ATLAS has been coated and is scheduled for testing before the end of 2024.
 - Additional lab LDRD investment was secured to build and test a 1 GHz quarter-wave cavity.
 - The team has initial test results for a new 10-Watt cryocooler and a top-mounted pneumatic tuner, which they believe can be made "accelerator ready" in a short time.
- Challenges encountered creating a practical and high-performing Nb₃Sn cavities for ion accelerators are not a surprise. History tells us that only through a sustained and determined program of building, testing, learning, and improving are we likely to make the type of transformative breakthrough that RF superconductivity itself was five decades ago.

CONTROL OF A Regione National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Backup

