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Team of NP + HEP + CS/EE



DOE PI Meeting Presentations

1. Overview, 7’ (sPHENIX, EIC)
- Ming Liu (LANL)/Gunther Roland(MIT)/Nhan Tran(FNAL)/ Dantong

Yu (NJIT)/Callie Hao (GIT)

2. Physics simulation and AI-ML algorithms & plan for EIC, 8’ 
- Dantong Yu (NJIT)/Giogian Borca-Tascuiuc(NJIT)/Cameron 

Dean(MIT)/Zhaozhong Shi(LANL) /Hang Qi(MIT)/Hao-Ren 
Jheng(MIT)/Pan Li(GIT)/Yasser Corrales(MIT/LANL)

3. HLS4ML and firmware implementation, 6’ 
- Callie Hao (GIT)/Hannah Bossi (MIT)/Jovan Mitrevski(FNAL)/Nhan 

Tran(FNAL)/Phil Harris(MIT)/Jakub Kvapil(LANL)

4. Demonstrator implementation, 7’ 
- Jakub Kvapil (LANL)/Jo Schambach(ORNL)/Yasser 

Corrales(MIT,LANL)/Kai Chen(CCNU)

Q & A: 7’
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Overview
- Ming Liu (LANL)
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sPHENIX at RHIC and the Future EIC 
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2015 NSAC Long Range Plan for Nuclear 
Science priority: sPHENIX Experiment at RHIC

• Probe the inner workings of QGP by resolving its 
properties at shorter and shorter length scales

• Complementary to LHC experiments to study relativistic 
heavy-ion collisions 

Heavy Quark physics – a key pillar of RHIC science   

2023 NSAC priority: EIC at BNL

• Complete RHIC science mission 

• EIC as the new NP flagship facility to study strong 
interactions and emergent phenomena 

Data Taking: 2023 – 2025+



Project Goals and Deliverables (I) ~ FY24
- Heavy flavor event AI-trigger demonstrator in sPHENIX
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Selective streaming real-time AI and autonomous detector control:

Deliver a demonstrator for p+p and p+A running for sPHENIX - generalizable for 

applications in experiments at the EIC

4 interconnected key tasks:
Constraints:

MVTX data rate = 200 kHz

INTT data rate = 9.4 MHz
Trigger latency = 10μs



Project Goals and Deliverables (II) ~ FY25
- DIS-electron Identification in Real-Time at EIC

Network

Switch

Buffer Box
EBD

C

DA

MDCMDCM
DCMFEB

RDO

Online 

Data Filter 

& Monitoring

Monitoring

O(10 Tbps) O(0.5 Tbps) O(0.1 Tbps)O(2 Pbps)

ePIC

Timing 
System

Detector 
Control

SRO + AI/ML Fast Data Processing:

- DIS e-tagger: event ID 
+ other rare process, HF-tagger etc. …

Selective streaming readout for AI-Engine:
• tag DIS-electron to define DIS event ID

➢ EMCal + Trker + ePID

➢ DCA~0

• tag other rare must-keep physics signals

➢ HF with Trker etc.

e-tagger + Evt-ID

Adaptive 
Learning
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Project Goals and Progress

• FY-24: 
➢ HF AI-Trigger demonstrator R&D

• Robust AI-algorithms, talk by Prof. Dantong Yu 

• Firmware implementation, talk by Prof. Callie Hao 

• Deploy demonstrator in sPEHNIX, talk by Dr. Jakub Kvapil

➢ sPHENIX experiment challenges in 2024
• Delayed TPC and INTT commissioning, impacted FastML integration 

• Delayed INTT SRO deployment 

• Much delayed TPC operation due to gas/HV-related issues  

• Limited p+p collected with full sPHENIX tracking detectors 

➢ sPHENIX has proposed to BNL PAC to run high statistics p+p
run (also p+A and other small systems) with full sPHENIX
tracking detectors in 2026 

• Our stretch goal: deploy AI-HF system in run 2026 

➢ Big lessons learned on streaming readout and beam background 
challenge at RHIC!

• FY-25:
➢ DIS-electron AI-tagger for EIC

• EIC detector design reconsideration and optimization 

➢ Prepare for challenges of streaming readout 
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New Finding … a good one
- AI HF-Trigger algorithms not sensitive to small IP shift!
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Graph Track Reconstruction

Displaced Vertex Reconstruction

Track Momentum Regression

Trigger Decision (HF identification)

Silicon Pixel Hits

Labelled Track Hits
Displaced Vertices

Reconstructed Track Momentum

Trigger

AI Algorithm block

GNN

Bipartite

Dantong’s talk

Conventional approach:

AI/ML approach:



Successes and Challenges in 2024  

• sPHENIX Run-24 
➢ Installed and commissioned in 2024Run 

• p+p, and short AuAu commissioning run
➢ MVTX re-installed and SRO commissioned (~5/1) 

➢ INTT SRO commissioned, w/ delay (~6/21)
➢ Delayed TPC operation (~8/14)

Implemented and evaluated Fast-ML demonstrator with 
MVTX telescope setup at BNL in September 

➢ robust AI algorithms
➢ AI model in firmware 
➢ evaluated with real sPHENIX p+p data
➢ sPHENIX DAQ and other subsystems not available for full 

system integration in 2024, plan for 2026 pp run

• Work in progress and challenges
➢ further improve AI-algorithms and firmware 

implementation
• FPGA resource usage
• Trigger latency
• algorithm performance   

➢ MVTX and INTT SRO integration into FPGA/AI-Trigger
• sPHENIX full DAQ system integration for TPC readout

• Summary of expenditures
➢ Total budget, $1,600K (FY24-FY25);
➢ About 50% spent, on track
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New Challenge Identified from sPHENIX 2024 Run 
- Streaming readout in high beam background

• NO problem in p+p collisions

• Major beam-related background with Au 
beam
➢ event with just one bunch of beam
➢ Related to beam halo induced particles 

hitting sensor pixels in the MVTX detector 
sensors 

Data rate >> DAQ bandwidth! (>10^3)

EIC: phase-1, e+A program 

• Could be in similar high beam background 
situation

• Smart data management desired on/near the 
detectors for full streaming readout in high 
background environment 
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GEANT Simulation:

Single 100 GeV Au ion striking the end of the 50um thick 

MVTX silicon sensor material 



Topical Highlights



Physics 
simulation and AI-

ML algorithms 
- Dantong Yu and Giorgian Borca-

Tasciuc (NJIT)
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Overview

• Goal: Create an efficient, end-to-end, robust trigger pipeline capable of handling 
event pileup

• Worst-case event pileup in p+p collisions: ~20 events

• Two stages of pipeline:
➢ Stage 1: Tracking

• Connect hits left by the same particle to create tracks
• Reduce data size by eliminating hits left by pileup events

➢ Stage 2: Trigger
• Given tracks, accurately predict whether the event is a trigger event

• Given variation in interaction point, created algorithm to predict the interaction point

• Given variation in interaction point, perform trigger prediction

• Improve efficiency of algorithms by understanding which layers are important to 
trigger prediction
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Trigger Predictions

• Sliding scale between real experiment and ideal data
➢ Experiment extreme: hits only + event pileup

➢ Ideal extreme: ground truth tracks + no pileup

• Develop a set of models targeting each level between the worst-case 
experimental condition and the best-case data, allowing us:
➢ Better understand the latency/accuracy trade-off

➢ Use the more sophisticated models to verify the robustness of algorithms 
using data closer to the experiment

• Experimented with effect of interaction point (IP) offset and have 
verified small performance penalty from IP offset
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Trigger Prediction - Experiment Sliding Scale

1. GT Tracks, No Pileup ✓

2. Pred Tracks, No Pileup
a. Tracking Algorithm - Predicts tracks ✓

b. Trigger Algorithm - Takes predicted tracks and predicts trigger ✓

3. Hits, No Pileup ✓

4. Pred Tracks, Pileup ✓
a. Tracking  Algorithm  - Predicts tracks and filters out pileup hits ✓

b. Trigger Algorithm- Takes predicted and filtered tracks and predicts 
trigger  ✓

5. Hits, Pileup ✓
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Tracking Overview

• Edge candidates are created from hits using geometric criteria
➢ Geometric criteria produces roughly O(n) hits, even with pileup date (usually ~2x as many 

edge candidates as there are hits)

• GNN classifies edge candidates based on hits information

• GNN also performs tracking depileup using INTT hits

• GNN trained to prioritize preserving edge candidates arising from trigger particles

• Created efficient, low-parameter count, FPGA-ready effective tracking algorithm

Model Configuration Precision Recall F1-Score

No Pileup 92% 90% 91%

No Pileup, FPGA-ready 79% 87% 83%

Pileup 80% 73% 76%
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Tracking Overview

• Algorithm Effective:
➢ Keeping non-pileup hits

➢ Rejecting pileup hits
➢ Keeping Trigger Hits

Keeping of non-pileup hits Keeping of trigger hits Rejection of pileup hits
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Tracking Algorithm Overview
• Tracking algorithm needs to reject beam halo background, which is not in simulation data

• Halos tend to have high ΔZ between hits as they appear parallel to the beamline. 
➢ Verify ability to reject halos by looking at distribution of ΔZ in rejected tracklets for real data vs simulation data

➢ Real data shows a fatter distribution of rejected ΔZ than simulation data. We expect the real data to have more 
rejected tracks with high ΔZ, which we see when applying the tracking model to the real data.

Rejected Tracklets in Simulation Data Rejected Tracklets in Real Data
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Trigger Prediction - Experiment Sliding Scale

Results with latest data/model version (bbar):

1. GT Tracks, No Pileup: 99.87% Accuracy

2. Pred Tracks, No Pileup: 99.12% Accuracy

3. Hits, No Pileup: 97.26%

4. Pred Tracks, Pileup

5. Hits, Pileup: 97.07%

Work in progress - improving and verifying  the fidelity of the 
simulation
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Trigger Prediction

E: Efficiency

B: Background 

rejection rate

P: Purity
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Interaction Point (IP) Prediction and Effect

• Interaction Point in varies in the real event

• Predict the interaction point from the data

• Results:
➢ R2 = 99.6%
➢ Maximum absolute error = 0.047cm
➢ Root Mean Squared Error = 0.01cm
➢ Mean Absolute Error = 0.008cm

• Impact of offset of interaction point on trigger accuracy:

• Apples-to-apples comparison:
➢ Trigger Performance: 89.56% accuracy (w/offset), vs 91.53% accuracy (no offset)
➢ Offset of IP leads only to a small drop (2%) in accuracy
➢ No pileup used

• Take the model trained on without offset and see how does on the data with the offset
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hls4ml
translation and 

firmware 
implementation

- Callie Hao (GIT) and Jovan 
Mitrevski (FNAL)
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Readout and HF AI-Trigger Implementation Plan

• The sPHENIX tracking detectors use FELIX 

712 PCIe-based boards for the readout

➢ Contain an AMD/Xilinx Kintex UltraScale

FPGA (xcku115-flvf1924-2-e) 

• To the readout DAQ boards, add AI Engine 

boards to perform the b-tagging using AI

• Exploring implement graph neural networks 

(GNNs) with two alternatives

➢ FlowGNN (arXiv: 2204.13103)

➢ hls4ml (arXiv: 1804.06913)
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https://arxiv.org/abs/2204.13103
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https://arxiv.org/abs/1804.06913


Algorithm Pipeline

1. Hit decoding and clustering - conventional algorithms (will be discussed in next section)

2. Event building

3. Track reconstruction - using GNNs in two parts

➢ Edge candidate generation - connect clusters (nodes) with edges, with geometric constraints

➢ Edge candidate classification - using graph convolutional network (GCN) (arXiv: 1609.02907) 

➢ Construct final tracks

4. Use a least squares method to perform pT prediction from track curvature

5. Tagging of the heavy flavor signal

Also consider an alternate implementation, taking the clusters directly without explicit track reconstruction.
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hls4ml

BGN-ST

https://arxiv.org/abs/1609.02907


Approach 1: FlowGNN

• FlowGNN is a flexible architecture for GNN acceleration on FPGAs 

https://arxiv.org/abs/2204.13103

• Two manual implementations, from PyTorch → C++ → Verilog, using High-Level Synthesis

➢ Version 1: Track construction only: 

• 8.82 us per graph (Freq. 285 MHz), tested with: 92 nodes, 142 edges

➢ Version 2: from Hit Clustering → Triggering:

• 9.2 us per graph (Freq. 180 MHz), Tested with: 92 nodes, 142 edges

• (New this year) Extending to supporting more types of GNNs, e.g., EdgeConv, to facilitate 

better algorithm support

• (New this year) Perfecting the automation flow from PyTorch → Verilog, based on GNNBuilder

https://arxiv.org/abs/2303.16459
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Approach 2: hls4ml

• hls4ml is a compiler taking Keras, Pytorch, or ONNX input and producing High Level 

Synthesis (HLS) code implementing the network as spatial dataflow.

• HLS code is usually C++ or similar with directives to guide the produced hardware.

• hls4ml has different “backends” for the different flavors of HLS desired by tools.

• GNN support is under development:  currently the process is not as automated as for other 

network types.

Vitis  backend

• hls4ml (arXiv: 1804.06913)
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Heavy Flavor Event Tagging

● Trigger detection using Bipartite Graph Network with Set 

Transformer (BGN-ST)  (DOI: 10.1007/978-3-031-26409-2) 

➢ Input vectors contain a total of 37 features including: 5 

hits (INTT + MVTX), length of each edge, angle between 

edges, total length of the edges, track radius 

➢ Not yet supported in hls4ml

➢ 97.38% accuracy for b-decays, no pileup

● Current approach: The initial implementation uses an MVTX-only MLP-layerwise tagger that takes the 

clusters directly: 

➢ Uses MLP to bring clusters into higher-level embedding space: layer wise pooling is done before final trigger 

prediction using aggregated layerwise embeddings.

➢ Has better hls4ml support

➢ 59.5% accuracy for b-decays, with pileup  (350 hits + 65 noise)

➢ 88.5% accuracy w/ above setup with INTT included. 
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https://doi.org/10.1007/978-3-031-26409-2


hls4ml Initial Implementation (MVTX-only MLP) 

● The MLP-layerwise model has been synthesized for the FPGA

● The model consists of two parts

➢ The first part, called the aggregation step, collects all the clusters. It is called for each 

cluster in a bunch crossing. This needs a high throughput:  initiation interval (II) every 1 

clock cycle, 117 ns latency

➢ The second part, called the prediction step, is called once per bunch crossing, to make a 

prediction based on the ingested clusters:  II 63 clock cycles, 308 ns latency

● The two models are synthesized separately, with the FPGA utilization for the FELIX 712 given 

below, using Vitis HLS and Vivado 2024.1.

aggregation step prediction step

LUT 23 587 (3.56%) 16 582 (2.50%)

FF 15 129 (1.14%) 31 226 (2.35%)

DSP 19 (0.34%)  498 (9.02%)  

BRAM 0 (0%) 30.5 (1.41%) 
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Next Steps and Challenges 
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hls4ml

BGN-ST

• In parallel, also working on a demonstrator for the full procedure! 

➢ See next few slides by Jakub and Jo!

• Need to synchronize input/output format for the ML with the other steps and start to test with 

real data!! 

• ML-components of the analysis pipeline 

are synthesized for the FPGA. 

• Future improvements

➢ Further reduce utilization of flow GNN

➢ Improve performance with pileup

➢ Test the inclusion of INTT hit 

information



Demonstrator 
Implementation 

- Jakub Kvapil (LANL) and 
Joachim Schambach (ORNL)



Demonstrator Implementation 

• We are using FELIX-712 board as the target due to its use in sPHENIX readout
➢ two boards, each analyzing a single hemisphere

• There are several modules to develop and validate: 
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Module written Validated - sim Validated - test file Validated - detector

PCIe comms new new new

Optics - - new

Decoder new new

Clusteriser (C++) 

Ongoing (VHDL) new

Ongoing Ongoing

Event build and 

coordinates 
transform

new new Ongoing

AI module FlowGNN

hls4ml new new

Ongoing



PCIe and Detector Communication
• Since FELIX-712 was designed as readout board, the PCIe is used to receive 

data from the optics
➢ We use this to save the timing (Bunch Crossing ID) and trigger decision from the AI
➢ We have configured the PCIe uplink (normally used just for configuration) to load real 

detector data to the board, in order to have a controlled validation environment

• Successfully received and decoded data from single stave of the MVTX 8-
stave telescope

• Added ILA via Xilinx virtual cable for additional debugging
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AI-Engine FLX-712

MVTX Telescope in sPHENIX
(=⅙ of MVTX sensors)



PCIe and Detector Communication

Challenge:
• MVTX has 6 FELIX readout servers with two optical connectors each with 48 links
• We had originally planned to use the 6x 2nd connectors to pass data to AI module
• However, the MVTX is now using both connectors to ease the single connector stress

➢ There are still 24 links available on the second connectors, however now we cannot have easy 
geometry remap in FPGA and board to board connection

➢ We need to create a new optical switchboard, to connect 288 links between detector and AI, to 
geometrically separate half-barrels
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Decoder Development

• First FPGA-based decoder for ALPIDE sensors
• New from last year:

➢ The design has been simplified
• There is only one set of buffers (instead of per event)

➢ The design was validated on simulation, PCIe and Telescope data
• Several bugs for edge cases have been fixed
• This also helped to validate the PCIe and Telescope comms

➢ Due to MVTX data compression we need 1 decoder module per detector (FeeID) link
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LUT (663K) FF (1.3M) BRAM (2K)

Frame decoder 151 287 0

ALPIDE decoder (x3) 343 256 0

FIFOs (x6) 31 36 1

Total per FeeID 1366 1271 6

Total per half- barrel 98K (14.7%) 91K (7%) 432 (21%)

Last year’s numbers 189K (28.5%) 102K (7.7%) 648 (30%)

CHIP FIFO
Frame 

decoder CHIP FIFO

CHIP FIFO

ALPIDE decoder

ALPIDE decoder

ALPIDE decoder

Pixel FIFO

Pixel FIFO

Pixel FIFO



Clusterizer Development
• Clusterizer is utilizing HLS workflow and provides 13.5 um precision
• New from last year:

➢ The design has been integrated and monitoring has been added
➢ Currently we are creating a test-bench validation framework

• Will perform parallel on-FPGA validation next week
➢ As we have the first pp data from sPHENIX it is found the cluster size is bigger than 

expected from detector simulation
• Clusterizer was updated from maximum cluster size of 6 to 15

• This unfortunately leads to doubling the FPGA resources
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Simulation Reality



Clusterizer Development

Challenges
• The ideal design would be 1-cluster per chip (lowest latency); currently for dev we have 1 

per stave
➢ Worry is that the latency might be too high and throughput too low
➢ By reusing the clusteriser we always need to wait to cluster 1st event adding 5us latency

• The target is to have one per FeeID, though 40% utilisation is still too much
➢ Need to focus on reducing the utilisation and we have few possible directions how to do 

that
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LUT (663K) FF (1.3M)

Clustering 3711 + 135 (memory) 2964

per chip (x216) 801K (120%) 640K (49%)

per feeID (x72) 267K (40%) 213K (16.4%)

per stave (x24) 89K (13.4%) 71K (5.4%)



Event Building

• With the current MVTX-only setup the event building is easy
➢ Since the detector links contain Bunch Crossing ID we 

can just read event by event link by link
• Challenge: once we add INTT stream this will be much more 

complicated due to different reading stream lengths and 
latencies

• Important is to first have the simpler MVTX-only 
implementation working! 
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INTT frame

MVTX 
frame/data

INTT data



Coordinate Transformation

• The clusterizer provides - layer, stave, chip, row, column
• The AI requires - layer, r, phi, z
• A new transformation module has been created to transform coordinates
• The BRAM usage is quite large, need to look into how to better 

parametrize the transformation

12/04/2024 Fast-ML Status and Plan @DOE Presentations 39

LUT (663K) FF (1.3M) BRAM (2K) DSP (5.5K)

Clustering 347 + 44 (memory) 310 7.5 8

per chip (x216) 75K (11.2%) 67K (5.1%) 1620 (81%) 1728 (31%)

per feeID (x72) 25K (3.8%) 22K (1.7%) 540 (27%) 576 (10%)

per stave (x24) 8.3K (1.2%) 7.4K (0.5%) 180 (9%) 192 (3.5%)



Resource Utilization
• Currently we have single stave implementation to validate modules

➢ 3 decoders, 1 clusteriser, 1 transformation

• Target is 72 decoders, clusterisers, and transformations
➢ Current projection:
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LUT (663K) FF (1.3M) BRAM (2K) DSP (5.5K)

Infrastructure 87K (13.1%) 196K (14.8%) 879 (40%) -

Decoder 98K (14.7%) 91K (7%) 432 (21%) -

Clustering 267K (40%) 213K (16.4%) - -

Transformation 25K (3.8%) 22K (1.7%) 540 (27%) 576 (10.4%)

AI module (FlowGNN) 194K (29%) 214K (16.4%) 406 (20%) 488 (8.8%)

AI module (hls4ml) 40K (6.1%) 45K (3.5%) 31 (1.5%) 517 (9.4%)

green: PCIe 

purple: decoder 
yellow: clusterizer
turquoise: local to global

brown: hsl4ml aggregate 
pink: hsl4ml predict

LUT (663K) FF (1.3M) BRAM (2K) DSP (5.5K)

1-stave 163K (24.5%) 359K (27.6%) 1K (50%) 525 (9.5%)

8-staves 232K (35%) 412K (31.6%) 1.2K (60%) 581 (10.5%)



Summary of AI Demonstrator R&D
• Several models developed with various difficulties to implement on FPGA

• The MVTX decoder was optimized, and its size was reduced by ½

• The clusteriser was debugged, more sim validations in progress

➢ The size unfortunately increased by factor 2 -> need to look at how to reduce it

• Coordinate transformation and event building is implemented

➢ Need to look how parametrize the transformation to lower the BRAM usage

• We have a clear idea of the fiber optics switch box design and need to make it

• PCIe can be used to load actual MVTX pp data to test the AI-engine at around 65% throughput

• Current validation is done on 1-stave implementation

➢ Changing it to 24-stave is just single parameter change

• Once MVTX-only chain is validated we will add INTT

➢ We have started developing INTT decoder

➢ But MVTX only design barely fits, we need to reduce its resource utilization first!

• or consider analyzing ¼ of detector instead of ½ (need model study)

• or daisy-chaining two FPGA (increase the latency)

• Plan to deploy the system in sPHENIX during the 2026 p+p (p+Au) runs
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