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Study of complex phenomena often requires the rigorous comparison of 

theory/model calculations and experimental measurements

→ Inverse Problem

Solution: Bayes’s Theorem

Widespread application in NP, HEP, Cosmology, Materials Science,…

• constrain model parameters

• validate the physical picture underlying the models

• discover new effects 

Bayesian inference can be computationally challenging in practice because of 

• large number of nuisance parameters 

• high computational cost of the model calculations



BUQ project
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Develop and deploy ML-based analysis tools for efficient Bayesian Inference in a broad 

range of NP experiments

• mass and fundamental nature of the neutrino

• study of the Quark-Gluon Plasma

• mapping of natural and anthropogenic radiation environments

All require Bayesian inference, very different in character



Uncertainty quantification
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Meaningful measurement or parameter constraint requires the specification of uncertainty

• Standard discrete MC methods are not differentiable: uncertainty not well-defined

• UQ requires differentiable samplers: novel ML-based approaches



Neutrino-less double beta decay (0νββ)
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Quark-gluon plasma

PI meeting 12/4/24 Bayesian UQ 9

Parameter space is modest: 5~30

Bottleneck: computationally 

expensive forward model
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Posterior distributions for 

collective flow and jet quenching 

observables
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Differentiable samplers: UQ



Radiation imaging of the environment
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Inverse problem → Bayesian Inference

Unique computing challenge: accurate real-time image reconstruction



Multi-fidelity ML for reconstruction
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Fast MCMC sampler developed by Jakob Robnik and Uroš Seljak

Synthetic data used for 
testing

Measured counts plotted 
on top of ground truth 

radiation activity

Consistent sampling performance by MCLMC: different prior 
distribution of the radiation activity leads to similar posterior 

distribution 

“Closure” test: high similarity achieved between the 
MCLMC reconstructed image with ground truth

Robnik, Jakob, and Uroš Seljak. "Fluctuation without 
dissipation: Microcanonical langevin monte carlo." arXiv 
preprint arXiv:2303.18221 (2023).

MCLMC for image reconstruction
Micro-canonical Langevin Monte Carlo



For same reconstruction scenario, MCLMC is significantly faster than other MCMC samplers, 
which enables real-time (or near real-time) image reconstruction with uncertainty quantification. 

sampler
Number of samples; 

computation time
convergence

MCLMC 1e5; ~ 13 s Fully converged

HMC

1e4; ~ 1 hour 6 mins Fully converged

1000; ~ 7 mins
Some convergence, but not fully 

converged

100; ~ 30 s Far from convergence

NUTS 100; ~ 2 mins Far from convergence

RMHMC 100; ~ 1 min 20s Far from convergence

Metropolis-Adjusted Langevin Algorithm 

(MALA)

1000; ~ 40s No convergence at all

1e5; ~ 1 hour 9 mins Far from convergence

random walk 
100; 36 s Far from convergence

1e4; 6 mins Far from convergence

ellip_slice No convergence at all

Comparison of sampling times for MCMC samplers



BUQ project status
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Neutrinos: 

• evaluate the bottleneck and requirements of the Bayesian methodologies 

• validate ML-based sampling approaches; successfully developed a Bayesian 

Optimization model combining Conditional Neutral Process with a Multi-Fidelity 

Gaussian Process. 

Quark-Gluon Plasma: 

• implement multi-fidelity approach to Bayesian Inference (Config model/Duke)

• systematic comparison of GP Emulators for (3+1)D bulk evolution (publication)

• build numerical framework to cross-compare MCMC algorithms (affine invariant, 

Parallel tempering, pocoMC). 

• in progress: comparison of Bayesian evidence in various model setups.

Roch, Jahan and Shen, PRC  110 (2024) 044904



Project status (cont’d)
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Radiological imaging: 

• development of image upscaling and image inpainting methods for both 

radiological image reconstruction and ground surface estimation (both multi-

fidelity-based and non-multi-fidelity for comparison). 

• Initial upscaling results show good performance. Initial inpainting results 

also show very good performance (Conference presentsation at IEEE 

NSS/MIC 2024)

Algorithms: 

• working closely with all three NP groups (Neutrinos, Quark-Gluon Plasma, 

Radiological Imaging) 

• Neutrinos: new multi-fidelity Bayesian optimization framework for neutrino 

shield simulations. 

• QGP: new multi-fidelity Bayesian model for cost-efficient emulation of 

experimental observables (publication in preparation)

• Radiological Imaging: new Bayesian model for image inpainting with 

promising results (publication in preparation)



Budget
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FY23 ($k) FY24 ($k) Total ($k) 

Allocated

LBNL 338K 354K 692K

Duke 64K 66K 130K

UC Berkeley 182K 180K 362K

Wayne State 77K 39K 116K

total 661K 639K 1300K

Expenditures

LBNL 306K 38K 344K

Duke 48K 4K 52K

UC Berkeley 49K 11K 60K

Wayne State 70K 6K 76K

Total 473K 59K 532K

FY23 expenditures were significantly below initial projection

Reason: postdoc hiring took several (many) months after start of project

• Positions require special skills, not common in the community

• In one case we waited 12 months for a student to graduate

Project is now fully staffed

→ we project the request of an NCE in FY26 for ~12 PD-months 



Deliverables
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FY23

• Neutrinos: Implement fast gradient-based sampling; implement surrogate modeling.

• QGP: Implement Multi-fidelity learning and transfer-learning methods; initial 

performance studies. Integrate gradient-based posterior sampling.

• Radiological Mapping: Implement Multi-fidelity learning, transfer-learning, and 

gradient-based posterior sampling methods. Carry out initial performance studies.

FY24

• Neutrinos: explore new gradient-based sampling and surrogate modeling methods; 

implement new methods that integrate more detector information, explore 

performance.

• QGP: Explore performance of Multi-fidelity learning, transfer-learning, and gradient-

based sampling, and utilize for novel, large-scale multi-messenger analyses of QGP 

data from RHIC and LHC.

• Radiological Mapping: Full assessment of new algorithms and first application in 

ongoing projects in the field; implement and assess new methods for dimensional 

reduction.



Extra slides
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Multi-fidelity surrogates

Idea: Use multi-fidelity data 𝑓 𝜽𝑖, 𝒕𝑖 𝑖=1
𝑛  to train a GP surrogate 

model for predicting the highest-fidelity simulator 𝑓(𝜽, 𝟎)

CONglomerate multi-FIdelity 

Gaussian process modeling

(CONFIG; Ji et al., 2024 JUQ)

Standard surrogate modeling
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Multi-fidelity surrogates

Multi-fidelity emulation of the QGP (Ji et al., 2024):

• 𝑟 = 2 fidelity parameters (spatial mesh size, simulation timestep)

CONFIG

Standard surrogates

Multi-fidelity surrogates
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Transfer learning surrogates

Transfer learning GPs (Liyanage et al., 2022 PRC; Wang et al., 2024+ JUQ):

• Idea: Using simulations on a related system (e.g., from previous analyses), 

apply transfer learning for cost-efficient surrogates on target system

• Comparably accurate surrogates with reduced runs on target system

• … or more accurate surrogates with comparable runs on target system

Grad CE PTB Grad CE PTB
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Transfer learning surrogates

Liyanage et al. (2022 PRC):

• Source: Pb-Pb collisions at 2.76 TeV with Grad viscous correction 

Target: Au+Au (Grad) Target: Pb+Pb (CE)

More accurate surrogates at 

reduced computational cost!



Normalizing flows

28

𝑧 = 𝑓(𝜃)

𝑝𝑧 𝑧 = 𝑝𝜃 𝑓−1(𝑧) 𝑑𝑒𝑡
𝜕𝑓−1 𝑧

𝜕𝑧

𝜃 = 𝑓−1(𝑧)



Normalizing flow preconditioning
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