

New approaches to Bayesian uncertainty quantification for Nuclear Science

Peter Jacobs

Lawrence Berkeley National Laboratory University of California, Berkeley

2024 Artificial Intelligence/Machine Learning Principal Investigator Exchange Meeting

Gaithersburg MD December 4-5, 2024

Bayesian UQ project

Lead PI: Peter Jacobs, LBNL

Co-PIs:

- LBNL: Alan Poon, Jayson Vavrek
- Duke University: Simon Mak
- UC Berkeley: Yury Kolomensky, Uros Seljak
- Wayne State University: Chun Shen

BUQ project outline

Study of complex phenomena often requires the rigorous comparison of theory/model calculations and experimental measurements \rightarrow Inverse Problem

Solution: Bayes's Theorem

$$
P(\vec{\theta}|\text{data}) = \frac{P(\text{data}|\vec{\theta})P(\vec{\theta})}{P(\text{data})}
$$

$$
\vec{\theta} : \text{Model parameters}
$$

Widespread application in NP, HEP, Cosmology, Materials Science,…

- constrain model parameters
- validate the physical picture underlying the models
- discover new effects

Bayesian inference can be computationally challenging in practice because of

- large number of nuisance parameters
- high computational cost of the model calculations

BUQ project

Develop and deploy ML-based analysis tools for efficient Bayesian Inference in a broad range of NP experiments

- mass and fundamental nature of the neutrino
- study of the Quark-Gluon Plasma
- mapping of natural and anthropogenic radiation environments

All require Bayesian inference, very different in character

Uncertainty quantification

Meaningful measurement or parameter constraint requires the specification of uncertainty

- Standard discrete MC methods are not differentiable: uncertainty not well-defined
- UQ requires differentiable samplers: novel ML-based approaches

Neutrino-less double beta decay (0νββ)

$\widehat{A}^{\text{P}}_{\epsilon}$ $\Delta L \neq 0$ Bayesian parameter estimation and uncertainty quantification in Nuclear Science n with focus on (Double) Beta decay

Quark-gluon plasma

PI meeting $12/4/24$ Bayesian UQ 9

PI meeting $12/4/24$ Bayesian UQ 13

Radiation imaging of the environment

Inverse problem \rightarrow Bayesian Inference

Unique computing challenge: accurate real-time image reconstruction

Multi-fidelity ML for reconstruction

Rad image reconstruction

Note: Only 2D map is considered

MCLMC for image reconstruction Micro-canonical Langevin Monte Carlo

Fast MCMC sampler developed by Jakob Robnik and Uroš Seljak

Robnik, Jakob, and Uroš Seljak. "Fluctuation without dissipation: Microcanonical langevin monte carlo." *arXiv preprint arXiv:2303.18221* (2023).

Consistent sampling performance by MCLMC: different prior distribution of the radiation activity leads to similar posterior distribution

Measured counts plotted on top of ground truth radiation activity

"Closure" test: high similarity achieved between the MCLMC reconstructed image with ground truth

Comparison of sampling times for MCMC samplers

For same reconstruction scenario, MCLMC is significantly faster than other MCMC samplers, which enables real-time (or near real-time) image reconstruction with uncertainty quantification.

BUQ project status

Neutrinos:

- evaluate the bottleneck and requirements of the Bayesian methodologies
- validate ML-based sampling approaches; successfully developed a Bayesian Optimization model combining Conditional Neutral Process with a Multi-Fidelity Gaussian Process.

Quark-Gluon Plasma:

- implement multi-fidelity approach to Bayesian Inference (Config model/Duke)
- systematic comparison of GP Emulators for $(3+1)$ D bulk evolution (publication)
- build numerical framework to cross-compare MCMC algorithms (affine invariant, Parallel tempering, pocoMC).
- in progress: comparison of Bayesian evidence in various model setups.

Project status (cont'd)

Radiological imaging:

- development of image upscaling and image inpainting methods for both radiological image reconstruction and ground surface estimation (both multifidelity-based and non-multi-fidelity for comparison).
- Initial upscaling results show good performance. Initial inpainting results also show very good performance (Conference presentsation at IEEE NSS/MIC 2024)

Algorithms:

- working closely with all three NP groups (Neutrinos, Quark-Gluon Plasma, Radiological Imaging)
- Neutrinos: new multi-fidelity Bayesian optimization framework for neutrino shield simulations.
- QGP: new multi-fidelity Bayesian model for cost-efficient emulation of experimental observables (publication in preparation)
- Radiological Imaging: new Bayesian model for image inpainting with promising results (publication in preparation)

Budget

FY23 expenditures were significantly below initial projection Reason: postdoc hiring took several (many) months after start of project

- Positions require special skills, not common in the community
- In one case we waited 12 months for a student to graduate

Project is now fully staffed

 \rightarrow we project the request of an NCE in FY26 for \sim 12 PD-months

Deliverables

FY23

- Neutrinos: Implement fast gradient-based sampling; implement surrogate modeling.
- **QGP:** Implement Multi-fidelity learning and transfer-learning methods; initial performance studies. Integrate gradient-based posterior sampling.
- Radiological Mapping: Implement Multi-fidelity learning, transfer-learning, and gradient-based posterior sampling methods. Carry out initial performance studies.

FY24

- Neutrinos: explore new gradient-based sampling and surrogate modeling methods; implement new methods that integrate more detector information, explore performance.
- QGP: Explore performance of Multi-fidelity learning, transfer-learning, and gradientbased sampling, and utilize for novel, large-scale multi-messenger analyses of QGP data from RHIC and LHC.
- Radiological Mapping: Full assessment of new algorithms and first application in ongoing projects in the field; implement and assess new methods for dimensional reduction.

Extra slides

Multi-fidelity surrogates

Idea: Use **multi-fidelity** data $\{f(\theta_i, t_i)\}_{i=1}^n$ to train a GP surrogate **model** for predicting the **highest-fidelity** simulator $f(\theta, 0)$

Multi-fidelity surrogates

• = 2 **fidelity** parameters (**spatial** mesh size, simulation **timestep**)

$\widehat{\mathbb{C}}^{\mathbb{P}_{\vec{e}}}_{\vec{k}}$ $\Delta L \neq 0$ Bayesian parameter estimation and uncertainty quantification in Nuclear Science
with focus on (Double) Beta decay

20 | Ann-Kathrin Schütz

Bayesian uncertainty quantification for 0vßß decay

04/10/2024

Transfer learning surrogates

Transfer learning GPs (Liyanage et al., 2022 *PRC*; Wang et al., 2024+ *JUQ*):

• **Idea**: Using simulations on a **related** system (e.g., from previous analyses), apply **transfer learning** for **cost-efficient** surrogates on **target** system

- **Comparably** accurate surrogates with **reduced** runs on **target** system
- … or more **accurate** surrogates with **comparable** runs on **target** system

Transfer learning surrogates

Liyanage et al. (2022 *PRC*):

• **Source**: Pb-Pb collisions at 2.76 TeV with Grad viscous correction

Target: Au+Au (Grad) **Target:** Pb+Pb (CE)

More **accurate** surrogates at **reduced** computational cost!

Normalizing flows

29