Neural network classifiers for analyzing measurements of fast neutrons for invariant mass spectroscopy

Jaylen Rasberry¹ e of Juan Lois-Fuentes² Justin Brown¹ Thomas Redpath¹ ¹Virginia State University ²Facility for Rare Isotope Beams, Michigan State University

Outline

- Background
 - Science beyond the neutron dripline
 - Multi-neutron unbound systems
 - Invariant mass spectroscopy
- Machine learning for event classification
 - Project status
 - Deliverables
 - Budget summary

Neutron dripline science

- "A powerful way to develop a predictive understanding of the driplines is to changes in n utron number track how nu
 - increases, fro

Understanding involves an interplay between

- Single particle motion
- Many-body correlations
- Neutron continuum

e."

clei is the most lear structure."

REACHING FOR THE HORIZ

The 2015 LONG RANGE for NUCLEAR SCIENCE

The unique data on bound and unbound states of oxygen isotopes have been used to benchmark abinitio modes of nuclei ... resulting in the development of a vastly improved theoretical formalism."

Neutron-unbound systems

NuDat 3.0, S_{2n} nndc.bnl.gov

Invariant mass spectroscopy with MoNA-LISA

Multi-neutron detection

- Plastic scintillator bars
- Indirect, neutron detection via scattering
- Scintillation light detected in PMTs coupled via light guides
- (x,y,z), ToF, scintillation light recorded
- **Sparse** hits are time-sorted

Signal

Causal filters

d₀₁ [cm] 10³ 500 Spatial and time separation examined for causal connections between hits 0.0.10 400 10² 0.8 0.9 10 -0.8 -0.7 True positive rate Positive predictive value False negative rate False omission rate -0.7 0.43 0.57 0.18 0.77 -0.6 Actual Actual -0.6 0.5 0.5 0.4 0.4 10³ False positive rate True negative rate False discovery rate Negative predictive value 0.3 0.05 0.95 0.23 0.82 0.3 0.2 0.1 0.2 10² Background Bredicted Signal Signal Background Predicted 10 100Target 10 20 30 40 50 60 v₀₁ [cm/ns]

For additional causal filtering methods, see:

Kondo et al. Nuclear Inst. And Methods in Physics Research B 463 (2020)

Nakamura and Kondo, Nuclear Inst. And Methods in Physics Research B 376 (2016)

Leveraging machine learning methods

Nuclear Inst. and Methods in Physics Research, A 990 (2021) 164951

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Development of a Deep Neural Network for the data analysis of the NeuLAND neutron detector

C.A. Douma^{a,*}, E. Hoemann^b, N. Kalantar-Nayestanaki^{a,c,*}, J. Mayer^b, for the R³B Collaboration

^a KVI-CART, University of Groningen, Groningen, The Netherlands

^b Institut für Kernphysik, Universität zu Köln, Köln, Germany

^c Present address: Nuclear Energy Group, ESRIG, University of Groningen, Groningen, Netherlands

Nuclear Inst. and Methods in Physics Research, A 1013 (2021) 165666

Classical and machine learning methods for event reconstruction in NeuLAND

Jan Mayer^{a,*}, Konstanze Boretzky^b, Christiaan Douma^c, Elena Hoemann^a, Andreas Zilges^a, for the R³B collaboration

^a Institute for Nuclear Physics, University of Cologne, Germany

^b GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

^c KVI-CART, University of Groningen, Netherlands

- Applied to recover neutron multiplicity and first interaction points
- Tested a number of different ML techniques
- Found that ML methods resulted in marginal improvement for multiplicity extraction; better for determining first interaction points
 Designed for higher neutron energies
 - (200 1000 MeV)

Leveraging machine learning methods

Project goals:

- 1. Investigate application of neural networks to event classification
 - Applicability across experiments
 - Extension to 'multiplicity reduction'
- 2. Provide research training opportunities for VSU undergraduates

Neutron KEs range from 40 – 200 MeV

Calculated Inputs

Testing with LANSCE data

PRELIMINARY	Fraction of multiplicity 2 events predicted to be 1n scattering		
Incident neutron energy	> 5 MeVee	+ gated on target bar	
$\sim 20 { m MeV}$	83%	94%	
$\sim 40 { m MeV}$	84%	98%	
$\sim 60 { m MeV}$	86%	99%	

All images from A. Kuchera

Survey for human-assigned event labels

- Provide assessment on a sliding scale 0 (1n) 100 (2n)
- First survey deployed
 - 100 measured events
 - 12 simulated events (tracers)
 - 14 student responses so far
 - Analysis in progress
- Second survey in preparation
 - 200 measured events
 - 20 simulated events
 - Separate into 50-event chunks

Human- and machineassigned labels

- Preliminary comparison for 'tracer events'
- Background is 'easier' to classify
 - More correct IDs
 - Better agreement

Project deliverables

Deliverable	Projected	Status
ROOT + Python codes	May 2024	Completed
Blender animations of data events	June 2024	Completed
Survey for human-determined labels	March 2025	60% complete
Integration into analysis pipeline	August 2025	50% complete
Publication	August 2025	20% complete

Budget summary

	FY23 [k\$]	FY 24 [k\$]	Total [k\$]
Funds allocated	256	224	480
Actual costs	160	45	205

VSU Undergraduate Researchers

- Alaura Cunningham, 2020 2021, DNP & NSBP 2020
- Avery Monroe, 2021, VSU Undergraduate Research Symposium 2021
- Megan Brayton, 2021, MSU AGEP conference 2021
- Darrius Sykes, 2021-2022, MSU AGEP conference 2021
- Kyra Rudolph, 2021 2022, NOBCChE regional 2022, VSU Undergraduate Research Symposium 2022
- Kayla Mills, 2021 2022, VSU Undergraduate Research Symposium 2022
- Clifton Kpadehyea, 2022 2023, DNP 2022
- Jeffrey Walters, 2021 2023, NOBCChE regional 2022, VSU Undergraduate Research Symposium 2023
- Emmanuella Kumi, 2022 2023, VSU Undergraduate Research Symposium 2023
- Jaylen Rasberry, 2022 present, DNP 2022, NOBCChE 2022, NURVa 2024
- Isaiah Leonard, 2023 present
- Trinity Allen, 2024 present
- Jalen Felix, 2024 present, MSU AGEP conference 2024
- Raven Mott, 2024 present
- Sarah Timothy, 2024 present
- Justin Brown, 2024 present

Jaylen Rasberry presents at the Network for Undergraduate Research in Virginia Conference, 26 October 2024

Acknowledgements

- Anthony Kuchera, Davidson College
- Warren Rogers, Indiana Wesleyan University
- The MoNA Collaboration
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Numbers DE-SC0022037 and DE-0024697.

Additional slides

Confusion Matrix

		Predicted condition		Sources: [12][13] [14][15][16][17][18][19] view+talk+edit	
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)	Informedness, bookmaker informedness (BM) = $TPR + TNR - 1$	Prevalence threshold $= \frac{(PT)}{\frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}}$
condition	Positive (P) [a]	True positive (TP), hit ^[b]	False negative (FN), miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate type II error ^[c] $= \frac{FN}{P} = 1 - TPR$
Actual	Negative (N) ^[d]	False positive (FP), false alarm, overestimation	True negative (TN), correct rejection ^[e]	False positive rate (FPR), probability of false alarm, fall-out type I error ^[f] $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$
	$\frac{\text{Prevalence}}{=\frac{P}{P+N}}$	Positive predictive value (PPV), precision $= \frac{TP}{PP} = 1 - FDR$	False omission rate (FOR) $=\frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) = $\frac{FP}{PP} = 1 - PPV$	$\begin{tabular}{l} $Negative$ \\ $predictive value$ \\ (NPV) \\ = \frac{TN}{PN} = 1 - FOR$ \end{tabular}$	$Markedness (MK), deltaP$ (Δp) $= PPV + NPV - 1$	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
	Balanced accuracy (BA) $= \frac{\text{TPR} + \text{TNR}}{2}$	$F_{1} \text{ score}$ $= \frac{2 \text{ PPV} \times \text{TPR}}{\text{PPV} + \text{TPR}}$ $= \frac{2 \text{ TP}}{2 \text{ TP} + \text{FP} + \text{FN}}$	Fowlkes–Mallows index (FM) = $\sqrt{PPV \times TPR}$	Matthews correlation coefficient (MCC) = $\sqrt{TPR \times TNR \times PPV \times NPV}$ - $\sqrt{FNR \times FPR \times FOR \times FDR}$	Threat score (TS), critical success index (CSI), Jaccard index $= \frac{TP}{TP + FN + FP}$

