

DOE NP AI/ML PI Exchange Meeting December 4-5, 2024 Gaithersburg, MD

STREAMLINE Collaboration: Machine Learning for Nuclear Many-Body Systems

Principal Investigator: Dean Lee, Facility for Rare Isotope Beams, Michigan State University

Institution Investigators [Co-Investigators [*] , Senior Personne		
Michigan State Univ.	ate Univ. Pablo Giuliani [†] , Kyle Godbey [†] , Morten Hjorth-Jensen [*]	
	Dean Lee [*] , Witold Nazarewicz [*] Xilin Zhang [†]	
Argonne Nat. Lab.	Alessandro Lovato [*]	
Fermilab	Noemi Rocco*	
Florida State Univ. Kévin Fossez [*] , Jorge Piekarewicz [*]		
North Carolina State Univ. Sebastian König [*]		
Oak Ridge Nat. Lab.	Gaute Hagen [*]	
Ohio State Univ.	Richard Furnstahl*	
Ohio Univ.	Christian Drischler [*]	
Univ. Tennessee	Thomas Papenbrock [*]	

Our team will perform research in the areas of fast and accurate emulators, smart model extrapolation, learning correlations in wave functions and operators, and predicting nuclear dynamics, including nuclear fission, and heavy-ion fusion.

Institutions = 9, PIs + Senior Personnel + Collaborators = 18, Postdocs + Students = 13

Scientists

STREAMLINE Collaboration Meeting May 9-10, 2024, at FRIB

PROGRAM

Thursday, May 9 in FRIB 1221

8:30 - 8:45 AM	Registration
8:45 - 8:50 AM	Thomas Glasmacher (FRIB Director)
9:00 - 9:15 AM	Dean Lee (FRIB)
9:15 - 9:30 AM	Manouchehr Farkhondeh (DOE Program Manager)
9:30 - 10:00 AM	Daniel Lay (FRIB)
10:00 - 10:30 AM	Kyle Godbey (FRIB)
10:30 - 11:00 AM	Coffee Break
11:00 - 11:30 AM	Chinmay Mishra (UTK)
11:30 - 12:00 noon	Simon Sundberg (OSU)
12:00 - 1:30 PM	Lunch at Snyder Phillips Cafeteria
1:30 - 2:00 PM	Danny Jammooa (FRIB)
2:00 - 2:30 PM	Patrick Cook (FRIB)
2:30 - 3:00 PM	Pablo Giuliani (FRIB)
3:00 - 3:30 PM	Coffee Break
3:30 - 4:10 PM	Daniel Lee (Cornell Tech)
4:10 - 5:00 PM	Morten Hjorth-Jensen (Oslo)
5:00 - 5:30 PM	Discussion
6:00 - 8:00 PM	Dinner at Pizza House

Welcome to FRIB Announcements Q&A about AI/ML at DOE Nuclear Physics (via Zoom) Neural network emulation of spontaneous fission Emulation Prospects For Time Dynamics

A Nuclear Mass-Model Rooted in Chiral Effective Field Theory Criticality Analysis of Artificial Neural Networks in Nuclear Physics

Parametric Matrix Models for Scientific Computing Parametric Matrix Models for General Machine Learning Beyond projections: Learning reduced equations from data

Geometry and Latent Signal Representations in Machine Learning Mathematics of discriminative and generative deep learning, from deep neural networks to diffusion models

Friday, May 10 in FRIB 1221

8:30 - 9:00 AM	Joshua Maldonado (Ohio)
9:00 - 9:30 AM	Christian Drischler (Ohio)
9:30 - 10:00 AM	Nuwan Yapa (FSU)
10:00 - 10:30 AM	Coffee Break
10:30 - 11:00 AM	Jane Kim (Ohio)
11:00 - 11:30 AM	Alessandro Lovato (Argonne)
11:30 - 12:00 noon	Xiiln Zhang (FRIB)
12:00 - 12:30 PM	Discussion
12:30 PM	Symposium Adjourns

A Greedy Emulator for Nuclear Two-Body Scattering A Bayesian mixture model approach to quantifying the empirical nuclear saturation point Emulators for Unbound Nuclei

Variational methods with neural networks Hypernuclei with neural network quantum states Emulators for quantum continuum states

STREAMLINE Collaboration Progress

On schedule: All first-year and early second year milestones complete or nearly complete

Projected Date	Task	Milestone	Projected Date	Task	Milestone
1/31/2024	3.2.1	Theory and development of parametric matrix models	4/30/2025	3.2.1	Parametric matrix models for neutron separation energies
			8/31/2025	3.2.2	Demonstration of extended three-body scattering emulator
5/31/2024	3.2.2	Proof-of-principle demonstration for greedy algorithm (with error estimates) for two-nucleon scattering with	8/31/2025	3.2.4	Emulators for key nuclei in the "island of inversion" to be studied at FRIB
		realistic interaction.	8/31/2025	4.2.1	Quantified predictions based on long-range extrapolations for
8/31/2024	3.2.2	First implementation and testing of three-body			nucleonic phases in the neutron star crust
		scattering emulator for Nd system.	8/31/2025	4.2.2	Inference of neutron-star radii via smart model extrapolations
7/31/2024	3.2.3	Implementation of few-body resonance emulators in			
		the Berggren basis	8/31/2025	4.2.3	Extrapolations for resonances in few- and many body systems
7/31/2024	3.2.4	Initial setup of emulators key nuclei in the "island of			
		inversion" to be studied at FRIB	8/31/2025	5.1.2	Demonstration that RG unitary transformations can be learned
8/31/2024	4.2.1	Quantified predictions of nuclear properties based on			
		long-range extrapolations for r-process nuclei	8/31/2025	5.1.3	Demonstration of real-time dynamics for ANN wave functions
6/31/2024	5.1.3	Development of ANN wave functions of A = 40 nuclei			
8/31/2024	5.1.4	Light hypernuclei with ANN wave functions	8/31/2025	5.2.1	Unsupervised/supervised learning of nuclear matter quantum
7/31/2024	5.2.1	Unsupervised/supervised learning of alpha clustering			phases in deformed traps
		in medium-mass nuclei	4/30/2025	5.2.2	Application of ML to nuclear spectra extrapolation with quantified
8/31/2024	5.2.2	Correlations for spectra learned from model-space			errors based on learned correlations
		dependence	1/31/2025	5.2.3	Parametric matrix models for ⁸ Be resonances using finite volume
1/31/2024	6.1.1	Development of PES emulator for fission using a			energies
		committee of NNs	4/30/2025	6.1.1	Development of RB for physics-informed/intrusive PES emulation
8/31/2024	6.1.3	Apply RBs to speed-up nuclear DFT calculations			for single nucleus
8/31/2024	6.2.1	Analysis of dynamic modes in TDDFT using time-	4/30/2025	6.1.1	Dimensionality reduction investigation of PESs
		dependent emulators	8/31/2025	6.1.2	Develop and test fission fragment observable emulation from each PES
			1/31/2025	6.1.4	Develop framework for ML-directed nuclear EDF determination
			1/31/2025	6.1.4	Improvements to the energy density functionals
			12/31/2024	6.2.1	Begin development of Neural Implicit Flow emulator for TDDFT

STREAMLINE Collaboration Budget

	FY 2024 (\$k)	FY 2025 (\$k)	Totals (\$k)
a) Funds allocated	605	605	1210
b) Actual costs to date	605	151	756

WBS or ID#	Institution	Subtotals (\$k)
271819	MSU	352
271828	ANL	122
271837	FNAL	124
271823	FSU	187
271870	OSU	90
271873	OU	92
271812	ORNL	71
271846	NCSU	87
271858	UTK	85
Total		1210

STREAMLINE Collaboration Highlights

Relevance

Many-body calculations in exotic nuclei are critical for FRIB & astrophysics, but **computationally costly and sometimes unstable** in decaying systems.

Eigenvector continuation (EC) recently emerged as a powerful method to build emulators and perform extrapolations

Goal: Generalize EC to complex-energy problems to perform efficient and reliable bound-to-resonance extrapolations in exotic nuclei.

Context (pre-STREAMLINE)

New method: Complex-augmented EC (CA-EC).

N. Yapa et al., Phys. Rev. C 107, 064316 (2023), Editor's Suggestion.

- Proof-of-concept for two-body resonances using toy model.
- Method tested using only complex-scaling.

Funding of the STREAMLINE collaboration provided **critical support** to go beyond initial findings.

Achievements & Future Directions

- Scaling of CA-EC to N-body decay & demonstration in 3-body case.
- **Berggren basis** formulation to improve numerical scalability for N>3.
- Configuration-interaction and lattice formulations tested.
- First application in realistic system (6He).

Currently working towards an ambitious realistic case recently observed (5p decay of 9N).

New directions identified based on developments within the STREAMLINE collaboration.

Emulator training

Maldonado, CD, Furnstahl *et al.*, in prep. Josh Maldonado's Master's thesis (2024)

- Space-filling sampling combined with a Proper Orthogonal Decomposition (POD)
- 2. Active learning approach based on error estimation and a greedy algorithm

The greedy method uses far fewer FOM solutions to construct its basis, iteratively adding snapshots where the (estimated) emulator error is maximum.

Active learning emulators

Maldonado, CD, Furnstahl *et al.*, in prep. Josh Maldonado's Master's thesis (2024)

STREAMLINE demonstrated that an **active learning approach to snapshot selection** allows for the construction of fast & accurate emulators for **two-body scattering**.

This is a **warm-up for three-body scattering**, where active learning is critical to keep calculations tractable.

A greedy algorithm iteratively refines the emulator basis in the training stage, placing training points where the emulator's error is estimated to be maximum.

Includes estimation of emulator errors.

Tested with **chiral potentials** commonly used in quantum Monte Carlo calculations of finite nuclei & infinite matter.

Extension to coupled channel & momentum space in progress

emulator error across the parameter space

Estimate the

Place the next snapshot(s) at the location(s) of maximum estimated error

Reduced-basis-method-based emulator for nucleon-deuteron scattering

- Emulating $[E H(\theta)] | \psi(\theta) \rangle = 0$ w/ real E in the θ -parameter space
- Nd emulator \rightarrow
 - Emulation computing costs: milliseconds and 10s MB
 - χ EFT calibration in the Bayesian statistics framework
 - Fundamental inputs for modern nuclear ab initio calculations
 - Coupling with the NSF-funded Bayesian Analysis of Nuclear Dynamics (BAND) collaboration
- Preliminary results for *R*-matrix: χ EFT (Norfolk interaction model IIa*); varying 3b int. C_D ; two training pts $C_D = -1, 1; \frac{1}{2}^+$ channel w/ s and d waves
- To implement new emulation technologies (greedy algorithms) soon

Pisa group

Criticality analysis for artificial neural networks in nuclear physics

STREAMLINE: Simon Sundberg and Dick Furnstahl (OSU)

- What ANN architecture/initalization for nuclear applications is best?
- **STREAMLINE:** Adapt *Theory of Deep Learning* (Roberts, Yaida, Henin)
- Exploits ideas from effective theories and the renormalization group

0.00 -40 -20 20 40 Values ReLU Output Distribution with Gaussian Fit. n=25 listogram Fit: $\mu = -0.02$, $\sigma = 11.37$ 0.04 ر 0.03 م کې Nearly n=25 Gaussian! ษั 0.02 0.01 0.00 -75 -50 -25 25 50 75 0 Values ReLU Output Distribution with Gaussian Fit, n=120 0.040 Histogran Fit: μ = 0.02, σ = 11.30 0.035 Gaussian 0.030 o.025 ج n=120 0.020 0.015 0.010 0.005 0.000 -60 -40-20 20 60 Values

ReLU Output Distribution with Gaussian Fit. n=1

Histogram

Fit: $\mu = -0.04$, $\sigma = 11.04$

n=1

17

0.05

0.04

<u> </u> 0.03

분 0.02

0.01

Not

Gaussian

- Expand about large width (n) limit; when $n \rightarrow \infty \rightarrow Gaussian$ (see figures)
- Use field theory-inspired organization of correlators
- Take small ratio of depth-to-width (= r) for controlled perturbative expansion
- Model complexity is determined by r, not number of model parameters
- Apply criticality analysis to initialization and learning to avoid gradient issues

Criticality analysis for artificial neural networks in nuclear physics

STREAMLINE: Simon Sundberg and Dick Furnstahl (OSU)

- Test case for criticality analysis: learning variational wave functions for the deuteron recently explored by <u>Rozalén Sarmiento et al.</u>
- They favored shallow depth L=1,2 and sigmoid activation function.

- **First stage:** pre-train the ANN to a variational ansatz, exploring different architectures and activation functions, testing impact of tuning the initialization and learning rate to criticality (above).
 - Sigmoid bad (no fixed point), tanh and ReLU good (above)
 - When critically tuned, improvement with depth (right)
- In progress: use variational energy to refine pre-trained network.

STREAMLINE NQS PROGRESS

ALESSANDRO LOVATO

HYPERNUCLEI WITH NQS

Goal: achieve an accurate description of hypernuclei and hyper-nuclear matter.

Method: neural wave function ansatz for modeling Λ -hypernuclei

Achievements: ground-state energies in excellent agreement with experimental data

Impact: guide the experimental program and contribute solving the *hyperon puzzle*

Streamline: A. Lovato (Argonne) **Collaborators**: A. Di Donna, F. Pederiva (University of Trento, Italy)

NEURAL WAVE FUNCTION FOR A=40 NUCLEI

Goal: develop a neural wave function suitable to model A=40 nuclei.

Method: leverage the Pfaffian ansatz, which exhibit favorable scaling with A.

Achievements: Better ground-state energies of ⁴⁰Ca than the AFDMC method

Impact: achieve a high-resolution description of medium-mass nuclei

Streamline: A. Lovato (Argonne), J. Kim (Ohio) **Collaborators**: B. Fore (Argonne)

What drives nuclear deformation?

Objective:

- Find how nuclear interactions from effective field theories of quantum chromodynamics yield deformed nuclei
- Tie energy ratio $R_{42} \equiv E(4^+)/E(2^+)$ in ²⁰Ne, ³²Ne and ³⁴Mg to low-energy constants Procedure:
- Global sensitivity analysis ("main effect") based on Hartree-Fock emulators used to compute R_{42}

• Created emulators for "island-of inversion nuclei" ³²Ne and ³⁴Mg

rotor

- For the first time provided high-resolution picture of what drives nuclear deformation
- Deformation mostly sensitive to short-range s-wave interactions and pion nucleon couplings
- Paper Zhonghao Sun et al., arXiv:2404.00058

A Bayesian mixture model approach to quantifying the *empirical* nuclear saturation point Drischler, Giuliani, Bezoui, Piekarewicz, and Viens, Phys. Rev. C 110, 044320.

Goal: rigorous benchmarks of saturation properties of chiral NN+3N interactions (using Skyrme & RMF models)

 1σ

 2σ

MICHIGAN STATE UNIVERSITY

Skyrme and relativistic mean field (RMF) models constrain (n_0, E_0) tightly, but when multiple DFT constraints are considered together, they are clearly inconsistent: not all DFT predictions can be both precise and accurate simultaneously (left figure).

We developed a Bayesian hierarchical model that estimates the true empirical saturation point by mixing multiple DFT constraints. This results in a posterior distribution for the empirical saturation point that enables statistically meaningful benchmarks of microscopic interactions in terms of nuclear saturation (center figure).

Neural Implicit Flow for time dynamics

Beam control

Transport matrix M as a function of current l

$$\hat{M}(I) = M_0 + \sum_k a_k(I)M_k$$

~ 3,000 faster than high fidelity

aiii				
ion in	# of Bases	Emulation Time (to FP1)	Max Position Error (x)	Max angular Error (ax)
	3	(9.7 ± 0.3) ms*	1 µm	1 nrad
	10	(10.9 ± 0.6) ms*	0.01 µm	7.5 prad
	15	(12.1 ± 0.2) ms*	0.7 nm	0.3 frad

Efficient Emulation of the SECAR beam

Genetic programming

n

1) Find good reduced coordinates

Linear embedding

$$\hat{\phi}(x) = \phi_0 + \sum_k^n a_k \phi_k(x)$$

2) Find equations from data

$$\hat{\rho}(x;\alpha) = \sum_{k}^{n} a_{k}(\alpha) \rho_{k}(x)$$

$$f_{i} = X_{1} * 0.5 + X_{2} - X_{k}$$

$$+$$

$$x_{1} \quad 0.5 \quad x_{2} \quad x_{k}$$

10,000 speed-up!

Discovering reduced order model equations of many-body quantum systems using genetic programming: a technical report

Illya Bakurov,¹ Pablo Giuliani,² Kyle Godbey,² Nathan Haut,³ Wolfgang Banzhaf,¹ and Witold Nazarewicz^{2, 4}

Application to Axial HFB with Realistic Functional

Order-of-magnitude speedup obtained in axial HFB calculations (CAT plot for toy model)

Localization functional reproduced with negligible error, suggesting usefulness for downstream applications (e.g. fission)

Paper in preparation

Neural network emulation of spontaneous fission D. Lay et al., Phys. Rev. C 109, 044305 (2024)

The ratio of the lifetime predicted by the NN emulator to the lifetime predicted by the DFT PES. Lifetimes are computed using NEB on the surface. The lifetimes are typically within the same order of magnitude, indicating that the NN is able to accurately reproduce the parts of the PES relevant to (spontaneous) fission.

Parametric matrix model (PMM)

Patrick Cook

Danny Jammooa

Patrick Cook, Danny Jammooa, Morten Hjorth-Jensen, Daniel Lee, Dean Lee, arXiv:2401.11694

Multivariable function interpolation

Parametric Matrix Model (PMM), Kernel Ridge Regression (KRR), Multilayer Perceptron (MLP), k-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), Support Vector Regression (SVR), and Random Forest Regression (RFR)

Heisenberg spin chain

Image recognition

14XEWIN8K99~ HAPAVOORHJBH
15HGh61CD89hEFVUP996345Qm
harsbakgt195,9m4416H81hem
nwvoont25XB60V204eHm+trcA
J3EFZWSFWW264JJJBPZD92VOB
vfqJJEfab38GJTSJXrYmQbY7d
06272D50Nf4/b507waomrBNBP
+9hAkz/Een/mKFOBHXVarfGWF
63+N9F9WCZF9AW965N98446A
49REGAECYRPZFUR9SAZ60TSNX
W2HREE95RJQE79BPJNM/EPFS5
4 \JOLGFEYL8G0465838H+T16/
WFA5784 FF7C9A04N05F4NZ3HZ
h G b F N J U J G K J Z F Y W J A J B Y F U J A A C D Z C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
1 + 0 4 C 11 3 C 6 4 P 3 8 1 1 6 / 6 0 0 F 3 + 3 >

Dataset	Model	Accuracy	Trainable float
	PMM^\dagger	97.38	4990
	DNN-2 ⁵⁴	96.5	5500
	DNN-3 ⁵⁴	97.0	80598
MNIST	DNN-5 ⁵⁴	97.2	175180
Digits ⁵³	GECCO ⁵⁵	98.04	19000
	CTM-250 ⁵⁶	98.82	31750
	CTM-8000 ⁵⁶	99.33	527250
	Efficient-CapsNet ⁵⁷	99.84	161824
	PMM [†]	88.58	16744
	GECCO ⁵⁵	88.09	19000
Fashion	CTM-250 ⁵⁶	88.25	31750
MNIST ⁵⁸	CTM-8000 ⁵⁶	91.18	527250
	MLP ^{†59}	91.63	$2.9 imes10^6$
	$VGG8B(2x)^{59}$	95.45	$28 imes 10^6$
	Fine-Tuning DARTS ⁶⁰	96.91	$3.2 imes 10^6$
	PMM^\dagger	81.57	13792
	OPIUM ^{†61}	78.02	$8.32 imes 10^6$
EMNIST	HM2-BP ⁶²	85.57	6.7×10^{5}
Balanced ⁶¹	CNN ⁶³	79.61	21840
	CNN (Spinal FC) ⁶³	82.77	13820
	CNN (Spinal FC) ⁶³	83.21	16050

Gross-Pitaevskii equation

$$i\frac{\partial\Psi}{\partial t} = -\frac{1}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi + g|\Psi|^2\Psi$$

