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Optimizing the Front-End and Experimental End-Station  

The effective operation of any accelerator facility is not limited to the accelerator itself – fully 
optimized operation is realized by optimizing all parts of an experiment, and reducing down-time 
along the entire facility chain. 

We focus on the front end and the end-point of a facility - the VENUS ion source and GRETA 
experiment.  

Ion Source 
(e.g. VENUS)

Accelerator (Cyclotron, LINAC,...)

Experiment 
End-Station 
(e.g. GRETA)
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Applying Machine Learning to LBNL Systems to Impact 88” and 
FRIB Operations
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GRETA

VENUS
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Original FY21 ML/AI VENUS+GRETA Project

• The original effort was funded with a FY21 award, $1M split evenly across two years

• First effort focused on:
– Readying VENUS for application of ML techniques – no data was recorded regularly, combination 

of EPICS and LabView interfaces needed to be made/re-written
– Accumulating data from VENUS from human-driven tuning and source baking to provide a 

starting data set for ML applications
– Automation of the frequent “baking” operation to reduce human time and improve efficiency

– Initial demonstration of Bayesian optimized tuning within limited parameter space

– For GRETA focused on automating the optimization of the electronics signal chains for 
resolution, and providing complete calibration of a crystal; required interfacing to GRETA EPICS 
systems and hardware and explored optimization approaches (traditional Nelder-Mead, GPR, …)

• Ended grant period with $360k of carryover (postdoc joined 10 months into the award period)
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Budget (FY23 Award)

FY23 ($k) FY24 ($k) Total ($k)

Funds Allocated 228 870 1,098

Actual Costs to Date 588** 107 695

** $360k in carryover from previous award
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Research Team - Staff and Postdocs
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Research Team - Undergraduate Researchers
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Gamma-Ray Energy Tracking Array, GRETA
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• U.S. implementation of a gamma-ray 
tracking array

• Complete 4𝜋 solid angle coverage of active 
high-purity germanium (HPGe), consisting 
of 120 individual detector crystals, each 
with 37 electrical signals

• Gamma-ray tracking and Compton 
suppression is enabled by signal 
decomposition algorithm which localized 
gamma-ray scatter events to within ~mm3

volumes

GRETA will be the world-leading gamma-

ray spectrometer once delivered to FRIB in 
2025, where it will be an experimental 

physics workhorse 
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GRETA Optimizations
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In addition to energy resolution optimization across 
the array, GRETA performance is tied to position 
resolution for reconstructing gamma-ray interaction 
points.

Position resolution depends on the fidelity of the 
calculated response of the HPGe crystals.

Simple control parameters include:
• 4-6+ energy filter parameters

per channel
• 2+ calibration parameters 

per channel

~ 30k knobs just for energy spectra
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GRETA Goals and Status

• Automated optimization and calibration of all 4800 channels of electronics
• Improvement of the signal basis used for the process of signal decomposition, exploring 

improvement in the position resolution of interactions in GRETA by improving the calculated 
signals used in the fit through an ML-driven global optimization.

• The automated optimization online is complete for 1 crystal and being extended to all 120 
crystals (the full GRETA array)

• Signal basis refinement is currently at the stage of refactoring and updating the software 
chain to enable an iterative optimization – e.g. superpulse fitting, for electronics response 
characterization, is now working in Python and electronics response function is being 
evaluated

11



GRETA Signal Chain Optimization
Energy Resolution and Calibration



ML/AI PI Exchange | LBNL

Automated Optimization of GRETA Signal  
Chain Resolution and Calibration
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• Optimization of online data completed with interface to the GRETA 
signal filter board hardware for 1 crystal using Gaussian process 
regressor

• Optimization is now being expanded for simultaneous application to 
all 120 crystals 

• LBNL-developed Becquerel package used to calibrate all signals (core 
+ segments) at each step

Work performed by Julia 
Dreiling (undergraduate 

student researcher)



GRETA Basis Creation Optimization



ML/AI PI Exchange | LBNL

GRETA Basis Creation Overview

The GRETA basis production has two distinct steps:

1. Pristine basis calculation and signal generation
a. A calculation of the HPGe semiconductor is used to 

calculate the electric fields and weighting potentials within 
each crystal, and from this the shapes of signals on all 
crystal electrodes based on quantities e.g. material 
impurity (profile), temperature, bias voltage, dead layers
(dozens of parameters)

2. Electronics response correction
a. The real data folds the innate crystal response with the 

response of the signal processing electronics – includes 
shaping times, cross-talk (integral + differential), rise times
(includes several hundred parameters)

15
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Non-concurrent, CPU-bound C/C++ libraries currently used to cover each step of 
the signal basis generation:

(1) Calculate electric fields and weighting potentials;
(2) Generate grid and raw basis signals;
(3) Produce simulated superpulse (SP) using the raw signal basis;
(4) Fit simulated SP against experimental SP to determine cross-talk parameters;
(5) Generate cross-talk corrected basis.

Pros: well tested pipeline
Cons: cumbersome, time consuming, not suitable for iterative studies

and ML applications 

GRETAPulseGen: an integrative development framework 

16
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GRETAPulseGen: an integrative development framework 

Migration toward integrative framework:
(1) GRETAPulseGen Engine

Provides backend and HW acceleration. Features 
include:

- C++ / CMake build generator
- Memory management
- Parallelization from CUDA support
- Thread pool for CPU bound parallelizable applications 

(WIP)
(1) GRETAPulseGen Application

Development API for user applications

17
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GRETAPulseGen: an integrative development framework 

Current and future activities:
(1) Migrate current pipeline to GRETAPulseGen framework

- Leverage CUDA kernels for Poisson solver
- Parallelization of CPU bound tasks

(1) Application development
- “Classic” optimization of crystal parameters and electronics response
- Development of ML-based optimization techniques

18
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Superpulse Fitting and Detector Response

• Goal is to streamline the procedure from Geant4 and basis points data to fitting the superpulse, 
to automate procedure and improve the current fit model
– Convert Geant4 and Basis files to python readable input (done)
– Reconstruct superpulse generation pipeline in python (mostly done, cross checking)

– Convert fitting routine to python (currently ongoing)
– Develop updated and simplified physics-driven electronics response function (ongoing)

– Parameter importance investigation

Example of a superpulse created in pure python 
(segment 0) and compared to measured data

Work performed by Arin 
Manohar 

(undergraduate student 
researcher)
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GRETA Project Goals and Status
WBS Milestone Description

2 GRETA Staffing Requirements Met Advertise and hire an undergraduate student and postdoc to work on GRETA 
scope.

2.2.1 Develop Python utilities for signal basis 
representation

Develop a library of Python tools for signal basis representation and 
visualization, including pulses at individual interaction points.

2.2.1 Define electronics response function Define a parameterization for the electronics response function for basis 
generation.

2.2.1 Explore sensitivity of superpulse types to 
parameters

Characterize the sensitivity of different measurement types (superpulse
types) to parameters in the electronics response function.

2.2.2 Evaluate hyperparameter search tools 
for use in GRETA case

Explore the available hyperparameter search tools that we can consider for 
use in optimizing the electronics response and crystal parameters.

2.1 Demonstrate (up to) 120 crystal 
simultaneous optimization Extend the optimization and calibration code to tackle 120 crystals at once.

2.2.1 Implement updated signal basis 
generation tool chain

Implement and configure complete signal basis generation tool chain with 
updated utilities for automated basis generation.

2.2.2 Develop parameterization for crystal 
description

Define a parameterization of the crystal properties such as impurity profile 
etc. 

2.3 Evaluate opportunities for direct ML 
inference of basis signals

Look into techniques that can generate a signal basis without the crystal 
properties calculation based on data only.

2.2.2 Complete final code base for open-
source distribution.

Assuming success for previous steps, clean up code and package for open-
source distribution following LBNL policies.
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The Electron Cyclotron Resonance (ECR) Ion Source VENUS

VENUS @ LBNL

VENUS:
• World’s first fully-superconducting ECR ion 

source designed for 28 GHz operation
• One of the world’s two highest-performing ECR 

ion sources
• Injector for LBNL’s 88” Cyclotron
• Prototype ECR ion source for FRIB, where a 

near-identical copy has been installed

Example beams:
• > 4.7 mA O6+, > 20 mA He+ from source
• > 2 pμA, 5 MeV/u 48Ca11+ and > 1.4 pμA 48Ti11+ 

from cyclotron for superheavy element 
research

• Beams up to U, Xe and Au (v. high charge 
states, demanding tunes)
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VENUS Primary Control and Diagnostic Parameters
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ion beam

extraction 
coil (I)

injection 
coil (I)

middle coil 
(not shown)

Sextupole
(I)

plasma

material:
gases, 
ovens, 

sputtering

RF:
18 and 28 

GHz

biased disk 
(V)

(not shown)

Diagnostics:
• Faraday cup/analyzing magnet

○ Charge state 
distributions

• Emittance scanner
• Drain, bias currents
• Cryostat x-ray load
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VENUS Project Goals and Status

• Enhance VENUS capabilities by adding two hardware systems enabling fast measurement of 
beam emittance and charge state distributions, and a non-interruptive measure of beam 
current using a flying-wire system  – enable full use of all VENUS operations data for algorithm 
training, and to provide key information to develop a more fully optimized cost function for 
VENUS

• Extend optimization of the VENUS system to the full parameter space available, utilizing tools of 
reinforcement learning

• Explore methods for running VENUS in a continuously optimized and stable configuration
• Fast charge state distributions are now enabled, as well as faster beam current 

measurements; emittance and flying wire are in design stages
• Offline reinforcement learning and random forest show promise for improved optimization
• Algorithm for stable and continuously optimized operation is ready to test
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VENUS database

• Almost continuous recording of 
VENUS data to SQLite database
– More than 880 days of data
– More than a dozen scans of 

parameter space (2 – 4 
parameters)

• Outlook
– Add full charge state distribution 

data to database, whenever one 
is run

– Possible switch to time series 
database (Prometheus)

Switch to daily 
backups



VENUS Bayesian Optimization and Improved 
Charge State Distributions
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Machine Learning: Full Bayesian Optimization of 124Xe37+
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Parameter Min Max

Bias voltage [V] 40 105

Oxygen valve 11.6 12.5

Xenon valve 8.0 13.0

Inj coil [A] 185.6 186.0

Ext coil [A] 136.6 136.8

Mid coil [A] 152.0 152.3

Sext coil [A] 430.3 430.5

18 GHz [kW] 1.4 1.8

28 GHz [kW] 5.2 6.0

(~5 min/point)

• VENUS completely under 
computer control

• Computer “knows” 
nothing about VENUS
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Machine Learning: Full Bayesian Optimization of 124Xe37+

28(~5 min/point)

Records:
• VENUS: ~40 μA
• SECRAL II: ~50 μA

(fields and power much more 
conservative than LBL records) 

• VENUS completely under 
computer control

• Computer “knows” 
nothing about VENUS

Parameter Min Max

Bias voltage [V] 40 105

Oxygen valve 11.6 12.5

Xenon valve 8.0 13.0

Inj coil [A] 185.6 186.0

Ext coil [A] 136.6 136.8

Mid coil [A] 152.0 152.3

Sext coil [A] 430.3 430.5

18 GHz [kW] 1.4 1.8

28 GHz [kW] 5.2 6.0
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What the experiment looks like
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1+

2+
3+

4+

5+

6+

7+
8+
9+

VENUS source and analyzing system
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Many ways to same result
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Later search maximized 124Xe37+ to ~10 uA
• However, CSD shows many ways to get 

there
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Many ways to same result
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Later search maximized 124Xe37+ to ~10 uA
• However, CSD shows many ways to get 

there124Xe37+
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Many ways to same result
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Takeaways:
• optimizing charge state’s current 

without CSD knowledge is 
restricting

• CSD is slow: ~2-3 minutes each
• Even beam statistics are slow: ~3 

Hz

Later search maximized 124Xe37+ to ~10 uA
• However, CSD shows many ways to get 

there124Xe37+
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Goals:
• Let computer try for record beam
• Speed up data gathering

Many ways to same result
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• However, CSD shows many ways to get 

there124Xe37+
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Goals:
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Takeaways:
• optimizing charge state’s current 

without CSD knowledge is 
restricting

• CSD is slow: ~2-3 minutes each
• Even beam statistics are slow: ~3 

Hz

Later search maximized 124Xe37+ to ~10 uA
• However, CSD shows many ways to get 

there124Xe37+
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Faster beam measurements

35

At 100 Hz:
• Set dipole current
• Read dipole’s hall probe
• Read beam current

Faster CSDs
• agree well with slower 

ones
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Unwrapping fast CSDs
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• Reduction in measured 
current on return, especially 
for high charge states

• Reduction recovers by the 
next CSD sweep

• Use only “increasing 
current” CSDs for 
comparison
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Visualizing Dynamic CSD Information 
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Note: this visualization problem 
is ours only.  Machine learning 
can deal with multiple 
dimensional arrays, etc.

Frequent CSD are now a reality 
for VENUS and are being 
incorporated now into our 
existing Bayesian optimizers and 
other optimization approaches.

The next target is to similarly 
optimize emittance scanning to 
incorporate this information.



Modeling VENUS Across Data Sets with 
Random Forests



ML/AI PI Exchange | LBNL

Variation Across VENUS Data Sets

After pre-selection of data for 
stability and “settled-ness”, 
the variation in data sets all 
optimized for O7+ becomes 
apparent – there are 
similarities in features, but 
high variability.

This variation presents 
challenges for training models 
robustly.

Work performed by Ezra 
Apple (undergraduate 

student researcher)
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Modeling with Random Forests

• Random forests were chosen to be explored for their 
robustness and expressiveness

• They are also quick to train, and the inherent randomness helps 
prevent over-fitting

• Applied random forest for regression – uses an ensemble 
method using multiple decision trees, and makes predictions 
using the average output of all trees

• Very effective for modeling complex non-linear relationships 
with the possibility for feature importance analysis
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Predictive Performance with Random Forest Modeling

The predictive performance depends strongly on training data – dramatically worse 
performance when predicting on unseen data sets.
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Predictive Performance with Minimal Training Data

Even when setting aside 90% of the data to 
validate with, the model performs well if it has 
trained on at least part of the set.

We are exploring how much training data is 
required to achieve predictive power – given the 
speed of Random Forest training, it is possible to 
update the predictions in real time and couple to 
our current methods to improve optimization of 
the source.



Offline Reinforcement Learning for VENUS
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Why Offline Reinforcement Learning?

Compared to traditional methods:

● Fully models expected VENUS feedback, including 
long time horizon effects (stability)

● Ignores long stretches of suboptimal 
control/inactivity (unlike behavior cloning)

● Can be potentially adapted to online reinforcement 
learning

Compared to online reinforcement learning:

● Can be applied directly to vast (years) of collected 
human control

Tools used: Google JAX + DeepMind ACME’s 
implementation of conservative Q-learning (CQL), 
customized for regularization

Delayed loss of current in simulated surrogate model
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Offline reinforcement learning

Offline reinforcement learning training

● The first known offline 
reinforcement learning (RL) for ion 
source

● Utilizes recorded human control, but 
actively learns strategies with high 
beam current reward (e.g. ignores 
time ranges with low activity)

● Bypasses the high cost of performing 
sample-inefficient online RL on live 
VENUS

● Converges to a reasonable biased 
disk voltage with random samples 
from a human operator scan
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Offline reinforcement learning

Older live VENUS running

● RL trained with long time horizon, 
including possible instability at high 
biased disk voltage

● RL control generally chooses to stay 
at a safe reward region

Next Steps
● A surrogate for VENUS has now been 

developed using recurrent NN –
hopefully will allow larger scale off-
line RL for VENUS

● Future tests with on-line running are 
planned over the next several months

Lai et al., in preparation.



VENUS Stable and Optimized Operation
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Dynamics of the VENUS System

• One of the challenges of the VENUS source is that the optimal conditions evolve with time, 
so the maximum beam current moves in parameter space as do source instabilities

• The state of the system is described by a couple of unknown functions f (.) and g(.) 
depending on a set of parameters θ and varying along time t

• While the system runs, the search for optimum is constant and must obey two constraints: 
– Objective function f(θ, t) > αo at every running point
– System stays under control and that the control function g(θ, t) < αc at every running 

point
• We developed a Bayesian optimizer for non invariant dynamic systems (NIDSO) creates an 

adaptive statistical model of f(.) and g(.) while the system is running and optimizes it while 
respecting the constraints
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Toy Model for Stable VENUS Operations

• We can mock-up the VENUS dynamics by 
defining a surface with maximum(s) in f(θ,t) 
and negative-going regions of instability, 
g(θ,t)

• In order to capture dynamics, an isotropic 
kernel is used which depends on the 
distance between evaluated points

• As the Gaussian process update with each 
new measurement, the expected 
improvement acquisition function 
provides the next point 
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Results 

Comparison of three methods: 
• ‘standard’ Bayesian 

optimization with no 
instability awareness 
(StdBO);

• the newly-developed 
method of NIDSO;

• adaptation of ASafeBO
(Han et al.) which provides 
a mechanism to stay out of 
high-risk areas but had to 
be adapted to force 
exploration of the 
parameter space when the 
maximum drifts Han, G., Jeong, J., and Kim, J.-H. (2023). Adaptive bayesian optimization for fast 

exploration under safety constraints. IEEE Access, 11:42949–42969.
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Stable and Optimized Performance

• The newly-developed NIDSO is able to optimize the system close to in a 
difficult case where g(.) is close to the threshold
• Both the adapted ASafeBO and our NIDSO give rather good result in terms of 
following the maximum

• The new method will be implemented on VENUS – the challenge is to introduce 
test instabilities in a predictable way to evaluate performance

Method
Standard Bayesian 
Optimization

Adapted 
ASafeBO

NIDSO

Performance failure f(θ, t) below threshold 2.2% 3.5% 0.9%

Instability failure g(θ, t) above threshold 16% 17.5% 7.1%

Watson et al., in preparation.
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VENUS Project Goals and Status

WBS Milestone Description

1.1 Implement a monitoring code to predict/warn 
of instabilities

Based on training with recorded data, implement an online 
stability monitoring program for VENUS.

1.3 Implement ML-driven baking for VENUS Implement an ML-based program for baking VENUS and 
benchmark performance against human and automated script.

1.2 Incorporate emittance scanning into VENUS 
optimization

Following upgrade of emittance scanner hardware incorporated 
into optimization as a separate parameter to optimize.

/



Thank you
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Automatic superpulse generation
Superpulses are a compressed/filtered representation (shape: 37x36x50) that allows to compare 
simulation to measurements => Input to a complex fitting routing of >500 parameters

• Measured superpulse:
– Data are collected with a radioactive source, signals are filtered and summed

• Simulated superpulse:
– Basis generation: simulate expected signals on a grid (5000 points) in the germanium crystal
– Geant4 simulation: interaction pattern of gamma rays from a radioactive source in the crystal
– Modeling of expected pulse shape for each of the simulated events
– Filtering and summing signals according to procedure done with measured superpulse

Example superpulse
(segment 15)
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