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Continuous Electron Beam Accelerator Facility

• CEBAF is a CW recirculating linac utilizing 418 SRF cavities to 
accelerate electrons up to 12 GeV through 5-passes 

• it is a nuclear physics user-facility capable of servicing 4 
experimental halls simultaneously

• RF related issues are consistently one of the biggest 
contributors to downtime

3



“AI for Optimized SRF Performance of CEBAF Operations”

The proposal presents a multi-faceted approach to:

1. develop tools to automate cavity instability detection

2. provide real-time fault prediction for C100 cavities

3. minimize radiation levels due to field emission in the linacs
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Improving SRF performance in these ways would
translate to increased beam availability and
reliability of CEBAF, increased beam-on-target for
nuclear physics users, and meet DOE’s mission to
maximize scientific output per operating dollar.
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Anomalous Cavity Detection

• this represents an obvious example
• not all instances are so easily detectable

RF Analyzer Tool (RAT)

• Goal: automate the process of identifying RF cavities that exhibit anomalous behavior, but
do not present as a fault

• Previous Implementation: manual inspection of hundreds of plots looking for an outlier

• New Implementation: use unsupervised learning to identify anomalous cavity behavior
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Anomalous Cavity Detection: Data Acquisition System (DAQ)

• 16 DAQs for NL (reduced scope due to rising costs)

• all legacy cryomodules in NL are outfitted with DAQs
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Anomalous Cavity Detection: Workflow

• when a machine trip occurs, we collect RF signals from across all DAQs if the fault involves a
BLM, ion chamber, or BLA trip but not a cavity trip
✓this represents data that potentially exhibits anomalous cavity behavior

✓data from 1 machine trip = 16 cryomodules x 8 cavities/cryomodule x 2 signals/cavity = 256 signals

• our initial workflow consisted of

✓extract n features from each cavity’s pair of signals

✓use PCA to reduce dimensionality from 2n to 2 for visualization

✓compute centroid of data points

✓compute distance of every data point from centroid and plot

• however, it became evident
that each cavity has its own
distinctive characteristics

• many of the outliers were
cavities that were consistently
more noisy – but stable –
compared to other cavities



Anomalous Cavity Detection: Workflow

• rather than compare many cavities across a single timestamp, build a workflow that compares
each cavity across time

• new workflow
✓collect RF signals from each cavity at various times during normal operation → normal

✓train PCA model on normal data from previous 7 days

✓collect RF signals associated with machine faults from previous 24 hours → potential

✓every day, for each cavity, generate a PCA plot showing the normal and potential data

✓compile report of cavities with the largest distances from centroid of their respective normal data
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Anomalous Cavity Detection: Workflow

• rather than compare different cavities across a single timestamp, build a workflow that
compares a each cavity across time

• new workflow
✓collect RF signals from each cavity at various times during normal operation → normal

✓train PCA model on normal data from previous 7 days

✓collect RF signals associated with machine faults from previous 24 hours → potential

✓every day, for each cavity, generate a PCA plot showing the normal and potential data

✓compile report of cavities with the largest distances from centroid of their respective normal data

The intuition is simple. Look at data that is potentially anomalous and highlight instances 
where it differs from normal operation over the previous week.
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Anomalous Cavity Detection: PCA Plots
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Anomalous Cavity Detection: Results

• the framework was deployed and operational in CEBAF during the Spring 2024 run and
proved to be very effective at identifying anomalous signals

• due to lingering issues with the DAQ system, most of the anomalies are traced to DAQ
system “features” and not to cavity behavior
✓e.g. single-valued (saturated) signals, noise in the system

• several successes are worth noting:
✓RF control module replacement

✓microphonics and power supply failure on a cryomodule

✓note: we analyzed data for less than 4 months and

effectively from only 8 of the 38 legacy cryomodules

• for the next CEBAF operational run:
✓ attenuators have been installed to avoid saturated signals
✓ waveforms from C100 cavities – which already have a system

to output fast sampled signals – added to the framework
▪ NL coverage: 23/25 cryomodules
▪ SL coverage: 5/25 cryomodules
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Interactive Timeline View
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Interactive Timeline View
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Cavity Fault Prediction

• Goal: predict if an RF cavity fault will occur

• Previous Implementation: N/A

• New Implementation: use deep learning to identify features in pre-fault data to
predict slow developing cavity faults

… …

fault event

streaming RF signals

can we leverage 
information in this data 

to predict a fault?
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Cavity Fault Prediction: Sliding Window

• what should the duration of the time window be?

• how many consecutive windows should be used to make a prediction?

• for the choice of those parameters, is the predictive power sufficient?
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Cavity Fault Prediction: Sliding Window

100 ms

3
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• what should the duration of the time window be?

• how many consecutive windows should be used to make a prediction?

• for the choice of those parameters, is the predictive power sufficient?
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Cavity Fault Prediction: Model Development

• model architecture: CNN + LSTM
✓the spatial features produced by the CNN branch

and the temporal features generated by the LSTM
layers are concatenated and passed through a fully
connected layer

• model training

✓collect examples of slow faults from the last several years

✓collect examples from normal operation

✓train the model to distinguish between normal and pre-faulty signals by using 100 ms random
samples from each type
▪ use the faulty samples within 500 ms of the fault onset – further from the fault and the signal is difficult

to distinguish from a normal signal

• model optimization: minimize false positives
✓number of consecutive windows to use for a fault prediction (3)

✓fine-tuning confidence threshold (cavity dependent)
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Cavity Fault Prediction: Simulated Deployment

• collected semi-continuous normal data from March 3-6, 2023 and tested model

Cavity 1 Cavity 2 Cavity 3 Cavity 4 Cavity 5 Cavity 6 Cavity 7 Cavity 8

# of Examples* 6856 6588 6944 6874 6770 6816 6932 6949
Normal 6856 6588 6937 6874 6770 6816 6932 6949
Faulty 0 0 7 0 0 0 0 0

Accuracy 100 100 99.90 100 100 100 100 100
*1 example = 16 inferences

• viewed collectively:
✓a total of 875,643 out of 875,664 inferences correctly predicted normal data

• collected 33 labeled faults from March 7-20, 2023 and tested model

✓accurately identifies normal data (with minimal false positives)
✓is able to predict slow faults

▪ with hundreds of milliseconds prior to the fault

✓can do so in the context of a highly imbalanced data set

Fault Type Predicted Not Predicted Total Accuracy

Slow 4 1 5 80.0%

Fast 1 27 28 3.6%
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model was not trained on 
pre-fault data from fast faults



Cavity Fault Prediction: Domain Adaptation

• domain shift: refers to a situation where the
distribution of the data used to train a machine
learning model differs from the distribution of
the data the model is applied to during
inference or deployment.

• domain adaptation: aligning the source and
target data distributions through techniques
like adversarial training or feature alignment

CNN

Source

LSTM

CNN

Target

LSTM

Classifier loss

Classifier loss

Contrastive loss

• current efforts are aimed at implementing
and evaluating a variety of techniques for
domain adaptation
✓i.e. incorporating contrastive loss to make

the same (differing) labels from different
domains more alike (different)
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Field Emission Management

• Goal: reduce radiation due to SRF cavities through gradient redistribution through an
automated process

• Previous Implementation: manual, trial and error tuning of cavity gradients during a
dedicated beam study (i.e. no beam to users)

x8

• New Implementation: pair an optimization algorithm with a
surrogate model of radiation readings



Field Emission

damaged beamline valveradiation area damaged magnet and cables

• field emission (FE) is process where electrons are emitted from a cavity wall
when experiencing high electric field

• FE electrons can be captured by CEBAF cavities and accelerated over long
distances to produce radiation, excess heat load, and vacuum spikes

• radiation can damage and activate beamline components
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Field Emission Management: Data Collection

• invasive data collection software
✓changes gradients to effect radiation 

response

✓change random combinations of cavities
▪ sample from all cavities or every nth

cryomodule

✓change individual cavities

✓typical range is [-4, +0.5] MV/m from 
starting point

✓monitors linac systems and pauses 
operation if anything goes wrong

• typically takes 2-4 hours, as little as 30 
minutes is useful if no problems
✓RF and/or cryo problems can slow progress
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Field Emission Management: Models

• train one model per NDX detector
✓inputs are cavity gradients from 

cryomodules neighboring the 
detector

✓simultaneous quantile regression 
neural network model

✓prediction error estimated by 
difference between 84th and 16th

quantile (one sigma for 
Gaussian)

✓overall predictions are 
reasonable, but sometimes 
misses individual contributions

Radiation Changes From Baseline

• collecting sufficient data is a challenge
✓huge sample space (2200 = 1.6e60)

✓using neighboring cryomodules is a trade off

✓training, validation, or test sets cover small portion of possible gradient
distributions



Optimization Problem

• objectives:
✓minimize total neutron radiation

✓minimize total gamma radiation

✓minimize total neutron uncertainty

✓minimize total gamma uncertainty

✓maximize linac energy

• constraints:
✓require linac energy within tolerance (±0.5 MeV)

✓bound cavity changes based on real operational constraints

✓limit gradients to within [-3, +0.5] MV/m of initial setting to mitigate OOD effects

• NSGA2 handles all of above
✓greedy algorithm only focuses minimizing total neutron radiation, but respects constraints

• minimizing RF trip rate is an obvious new objective

• uncertainty objectives have had mixed effectiveness depending on the UQ technique
32



Field Emission Management: Optimization Software

• loads a historical CEBAF 
configuration

• ML-model provides 
radiation and 
uncertainty estimates 
for objectives

• supports multiple 
optimizers

• runs optimization for 
user-specified number 
of iterations

• lets user investigate 
family of different 
solutions

• provides shell script to 
apply a given solution 33



Field Emission Management: Demonstrations

• six gradient distributions generated and applied
✓three models trained on different ranges of historical data

✓two different optimization strategies

• March 29 - May 19 model demonstration built on solution of May 9 - NSGA2 run

• gradient distributions only consider field emission and energy gain
✓no trip rates, klystron power limits, energy lock cavities, etc.

Model Optimizer
Egain Delta 

(MeV)
Neutron Start

(rem/h)
Neutron Change

(rem/h)
Gamma Start

(rem/h)
Gamma Change

(rem/h)
Arc Trip Rate 
(Trips/Hour)***

March29-May14 Greedy -23.59* 19.01 -13.61 (-72%) 288.81 -163.75 6.93

March29-May14 Greedy -3.63* 19.01 -11.27 (-59%) 288.81 -117.67 6.93

May9 NSGA2 -4.08* 19.01 -8.53 (-45%) 288.81 -112.55 6.92

May9 Greedy -3.70* 19.01 -8.05 (-42%) 288.81 -107.01 6.92

March29-May19 NSGA2 -0.49 10.93 -5.45 (-50%) 183.30 -57.24 11.57

March29-May19** NSGA2 -4.47 19.01 -13.98 (-74%) 288.81 -169.80 11.57

*Bypassed cavity resulted in ~3 MeV of unexpected energy loss
**Includes effects of May9-NSGA2 and March29-May19 combined

***Baseline trip rate 3.90 trips/hour 
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Field Emission Management: Demonstration

not shown: cavity 
gradients that were 

increased to maintain 
linac energy
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SUMMARY



Anomalous Cavity Detection

• deployed in CEBAF and demonstrated to be a robust solution moving forward

• because we train new models every day using the latest 7 days of data, our
framework automatically adapts to domain drift

• proposal submitted to management to fund additional DAQs to provide
coverage of legacy cryomodules in SL
✓would provide fast-sampled RF signals from 94% of the North and South Linacs

• prepared manuscript “Detecting Anomalous SRF Cavity Behavior with
Unsupervised Learning”
✓submitted to journal, under review

• H. Ferguson to defend his dissertation in Spring 2025
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Fault Prediction

• achieved a proof-of-principle demonstration that has important implications
for future RF system design

• prepared manuscript “Accelerating Cavity Fault Prediction Using Deep Learning
at Jefferson Lab”
✓published in the Journal of Machine Learning: Science and Technology

• Md. M. Rahman to defend his dissertation spring 2025
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Field Emission Management

• demonstrated the ability to significantly reduce FE radiation in an automated
manner

• presented to Operations as a viable solution moving forward
✓note, as with most of these applications, there is significant overhead in implementing

and maintaining this systems to operational standards beyond the initial proof-of-
principle demonstration

• prepared manuscript “Data-Driven Gradient Optimization for Field Emission
Management in a Superconducting Radio-Frequency Linac”
✓submitted to journal and under review

• K. Ahammed to defend his dissertation ~2026

https://doi.org/10.48550/arXiv.2411.07018
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Project Summary: Major Deliverables and Schedule

Project Deliverable Date

Cavity Instability Detection Publish manuscript, prepare framework for next operational run 01/2025

C100 Fault Prediction Demonstrate domain-adaptation 01/2025

Field Emission Management Publish manuscript 01/2025
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Project Summary: Annual Budget
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