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LEGEND Collaboration

~270 members from 55 institutions across 12 countries

Mission: The collaboration aims to develop a phased, Ge-76 based double-beta decay 
experimental program with discovery potential at a half-life beyond 1028 years, using existing 

resources as appropriate to expedite physics results.
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Outline

• Neutrinoless Double-Beta Decay in 76Ge
• ML-Enhanced Analysis Tools
– Semi-Autonomous Data Cleaning (E. Leon)

• ML-Assisted Simulations
– Electronics Pulse Shape Emulation (K. Bhimani)
– Pulse Shape Emulation with IQN (S. Giri)
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Why Neutrinoless Double Beta Decay?
• The discovery of 0νββ decay would dramatically revise our 

foundational understanding of physics and the cosmos
– Lepton number is not conserved
– The neutrino is a fundamental Majorana particle
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 Claim

Year

• The search for 0νββ decay is one of the 
most compelling and exciting challenges 
in all of contemporary physics

• 76Ge-based searches have proven very 
successful in searching for this ultra-rare 
process

– There is a potential path for understanding the matter - antimatter 
asymmetry in the cosmos, through leptogenesis

– There is a new mechanism demonstrated for the 
generation of mass
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The 0νββ Signal

e-

W- νe

e-W-

A, Z A, Z+2

νe
2νββ: Standard 
Model process Missing 

energy

0νββ: Only if ν is 
Majorana

e-

W- νM
e-

W-

A, Z A, Z+2

No missing 
energy

Event topology:
• βs don’t travel far in HPGe
• ββ decays are “single-site” events
• γ backgrounds are often “multi-site”
• α and β backgrounds concentrated on 

detector surfaces

Searching at ultra-long half-lives, 1027-1028 years: 
3σ discovery could be based on just 3 to 4 
events, requiring ultra-low backgrounds
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GERDA Final 0νββ results: 𝑇!/#
$%&& > 1.8	×10#'𝑦𝑟𝑠

MJD Final 0νββ results: 𝑇!/#
$%&& > 8.3	×10#(𝑦𝑟𝑠

LEGEND-200: Taking data
LEGEND-1000: Conceptual design 
development continuing
 

From the Current Generation to the Ton Scale 

arXiv: 2107.11462

PRL 125, 252502 (2020)

PRL 130, 062501 (2023)

First 0νββ result released
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Background Rejection in Point Contact Detectors
0νββ signal candidate (single-site) γ-background (multi-site)

Acceptance Window

Weighting Potential and Charge Drift

reje
cte

d

Weighting Potential and Charge Drift

Acceptance Window
Charge 
signal

Current 
signal

accepted

Surface background on n+ contact Surface background on p+ contact 

Acceptance Window

Weighting Potential and Charge DriftAcceptance Window

Weighting Potential and Charge Drift

reje
cte

d
reje

cte
d

Current 
signal

Charge 
signal

External α, β, and 
γ backgrounds all 
create distinctive 
pulse shapes, 
allowing for highly 
efficient ββ decay 
event selection

Charge 
signal

Current 
signal

Current 
signal

Charge 
signal
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Energy and Pulse Shape Parameter Calibration

• Weekly Th-228 source deployments used for 
energy scale calibration

• Also used for pulse shape discrimination 
parameter calibration
– Double Escape Peak: single-site 0νββ proxy
– Single Escape Peak: multi-site proxy

DEP: Single-Site

reje
cte

d

Charge 
signal

Current 
signal

SEP: Multi-Site
Acceptance Window

Charge 
signal

Current 
signal

accepted

Acceptance Window
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LEGEND-200 Design
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LEGEND-200 Analysis Strategy

• Currently use cuts and then fit 
in only 1 dimension, energy

• Multi-dimensional fitting is a 
long-term goal, but requires 
simulation improvements
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Implications for AI/ML
• Granular Detectors + Low Backgrounds 

→ Low rate of physics events (< 1 Hz per detector)
→ Noise-induced events can make up a large fraction of triggered waveforms
→ Allows time-intensive analysis of final waveforms, but algorithms should also run on much 
larger calibration data sets to confirm signal acceptance rate and stability

• “Traditional” pulse-shape parameters perform quite well for background rejection
→ Build network structures that improve on existing pulse-shape parameters or leverage signal 
physics knowledge
→ Use AI/ML for tasks other than signal/background event classification

• To maximize sensitivity, need to design for high-efficiency LAr and PSD rejection and 
model backgrounds in multiple dimensions

• Discovery could be claimed based on as few as 3 events
→ Analysis interpretability is key
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Project Goals and Team
• Overall goal: leverage interpretable machine learning 

to improve analysis and simulations in the LEGEND 
program
– Accelerate analysis development by automating “nuisance 

tasks” like multi-step parameter calibration
– Enable future multi-dimensional likelihood analysis

• 4 projects within these goals:
– Semi-autonomous Data Cleaning for LEGEND-200
– Electronics Response Emulation and Removal for LEGEND
– Pulse Shape Emulation for Multi-Dimensional Background 

Modeling
– Interpretable Boosted Decision Tree for LEGEND

J. Gruszko, PI E. Leon, PhD Student, 
Graduated Nov. 2024

K. Bhimani, 
PhD Student

M. Mayhew, 
undergraduate

S. Giri, PhD 
Student

Past participants: Niah O’briant, 
Natalie Grey (UNC undergrads)
Externally-funded collaborators: 
William Quinn (UCL postdoc)



ML-Enhanced Analysis Tools
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Data Cleaning
• Process of tagging signals captured by HPGe detectors
• Goal: accurately distinguish physics (signal-like and background-like) 

from anomalous waveforms

Flat 
baseline

Fast 
rising 
edge

Decaying 
tail

Physics Anomalous

N
or

m
al

ize
d 

Am
pl

itu
de

 [a
rb

.]

Time [𝜇s]



16

Ju
lie

ta
 G

ru
sz

ko
 | 

M
L 

fo
r 

G
e 

0ν
ββ

 | 
 A

I/
M

L 
PI

 E
ch

an
ge

 2
02

4

AI-Powered Data Cleaning

1. Extract pulse shape information 
from waveforms

2. Group waveforms based on their 
similarity with a  clustering 

algorithm + human supervision

3. Expand clustering with a 
classifier

Discrete 
Wavelet 

Transform 
(DWT)

Affinity 
Propagation 

(AP)

∗

Support 
Vector 

Machine 
(SVM)
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Semi-Autonomous Data Cleaning: AP-SVM
• Extract relevant pulse shape 

information using wavelet 
decomposition, normalize 
waveforms

• Use unsupervised Affinity 
Propagation to cluster training set 
waveforms and produce exemplars

• User studies exemplars and 
provides labels, used to train 
Support Vector Machine (SVM) 
that draws boundaries between 
categories

• All other data is labeled using SVM

…

SVM 3D visualizations 
developed by A. 
Bahena Schott
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Data Cleaning for LEGEND-200
pygama primary software stack:
• AP-SVM model used to cross-validate 

traditional bit cuts
• Identified cross-talk population that 

traditional cuts were missing
208Tl full escape peak (FEP) survival 

fractions re-scaled to 𝑄!! 

• AP-SVM model used as primary data-
cleaning method, supplemented by 
simple traditional checks when needed

Juleana secondary 
software stack:

Maximum 
pygama 

efficiency!

Per-detector and per-partition 
efficiency in Juleana
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Full Chain Test (FCT) Deployment

• AP-SVM also deployed for characterization and 
test-stand measurements

• Conducted salting studies to study efficiency as 
a function of energy: promising approach for 
low-energy data cleaning

LAr 
Cryostat

HV 
Crate 

Flange

HE 
Crate 

Flange

Source 
Insertion 

Tube

IR ShieldGe 
Detector

CC4 Board

Upper 
Chamber

Detector 
Unit

LMFE
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Adapting AP-SVM for SiPM Analysis

• Background rejection in LEGEND leverages LAr instrumentation coincidences
• Untagged cross-talk between Ge and SiPM channels prevents us from further 

lowering coincident light threshold

Time and Amplitude Analysis

Sample True Coincidence Sample Crosstalk

Time and Amplitude Analysis

Cross-talk 
occurring 
in cableSiPM

Ge

SiPM

Ge
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Tagging Cross-Talk with AP-SVM
• SiPM cross-talk depends on Ge waveform current, not amplitude/energy: leads to large 

variety in cross-talk signal shape and makes this difficult to tag
• Cross-talk waveform shape also varies between SiPM channels
• AP-SVM may be easier to implement and more accurate than traditional data cleaning tag

Cross-talk with Fast-Rise Alpha Events

Ge

SiPM

Single-Site Event Cross-Talk

Multi-Site Event Cross-Talk

SiPM

SiPM
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AP-SVM for Silicon Photomultipliers (SiPMs)

Crosstalk Normal Noise TriggerPre-processing steps were adapted for SiPM 
signals: 
• Use current-derivative trigger to center 

and window signals
• Multiple signals can be pulled from a 

single waveform trace
• Amplitudes normalized, but no wavelet 

filtering applied
Training data salted with known cross-talk 
events, based on Ge coincidences

Initial results look 
promising! 
Work is underway.

Work by undergraduate 
Mara Mayhew
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Data Cleaning: Status and Next Steps

• AP-SVM data cleaning is in place for upcoming LEGEND-200 data taking
– Primary data cleaning stack is being modified to rely on AP-SVM more heavily

• AP-SVM for SiPMs is showing promise as a new cross-talk tagging method
• Publications:
– Accepted to NeurIPS 2024 Machine Learning in Physical Sciences Workshop
– Full-length manuscript submitted to MLST, arXiv: 2410.14701

Next steps:
• Run SiPM version on larger data set, use results to inform cross-talk analysis
• Implement AP-SVM in near-real-time monitoring software:
– Allow shifters to identify problems during commissioning
– Make “human labeling” step a routine shifter task



ML-Assisted Simulations 
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Background Modeling for LEGEND

Background 
Before Cuts

Material Assays

Experimental 
Geometry

Ge Detector  
Coincidence 
Information

Active Shield 
Coincidence 

Information from 
Optical Simulations

Multi-site 
Rejection 
Heuristic

α and β Rejection 
Probability

Background 
After Full Anti-

Coincidence Veto

Background 
After All Cuts

Background 
After Ge Anti-

Coincidence Veto

Currently from data, 
subject to low statistics

Currently from Geant4 hits 
and simulated detector 
fields, tuned to match 
calibration data at QββUsed for L-200 

background 
model fitting

Used for L-1000 
design optimization
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Improving Background Modeling with Pulse Shape Simulations
• Goal: replace heuristics with accurate pulse shape simulations 

and/or emulators based on pulse shape simulations
• Motivation:

– Reduce background model fit degeneracies by using LAr and PSD 
information 

– Provide a reliable “after cuts” background model for the full 
spectrum: needed for BSM studies beyond 0νββ

– Provide reliable multi-dimensional PDFs for each background source, 
allowing for fully multi-dimensional analysis

• Bonus:
– Allows development of improved PSD classifiers (including ML)
– Needed for studies of PSD systematic uncertainties

• Challenges:
– Imperfect knowledge of electronics response
– Scaling PSS to required statistics
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Electronics Emulation: Motivation
• Pulse-shape simulations based on detector 

response are quite advanced, but are not being 
used regularly for background modeling due to 
difficulties in modeling electronics chain response

• Fitting-based approach for MJD proved unfeasible:
– Requires highly-degenerate detector-dependent 12-

parameter fit
– Instability in electronics causes changes over time, 

requiring repeated fits

• Emulating electronics would allow for:
• Improved modeling of PSD performance and systematics
• Improved L1000 detector and ASIC design
• Position reconstruction inside the detectors

• True electronics deconvolution would improve 
performance of PSD 

LEGEND 200 readout electronics (idealized)

Pulser 
input

10m in LAr and GAr
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Electronics Emulation: Network Design

• Difficulty lies in training: we have 
ensembles of data waveforms and 
simulated waveforms, but not the 1-to-1 
matching between them

• We want the network to convert each 
input into the correct counterpart, not 
just some member of the ensemble

• Cycle-GAN provides a solution

CycleGAN loss:

• GAN loss: 2 discriminators, 2 generators/translators, combined 
into single loss term

• Identity loss: transformers should perform identity 
transformation for target domain waveforms

• Cycle loss: after the full cycle, each event should return to itself
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Electronics Emulation: Network Design
• Generator: 1D U-Net, with added positional encoding 

inspired by Transformer model
• Discriminator: LSTM with Attention Mechanism, 

originally designed as LEGEND Baseline Model
• Results combined into GAN loss term
• Network trained with 2615 keV FEP data & simple 

waveform sims, with no electronics effect applied

Generators:

Discriminators:

Specialized L1 loss used for 
ℒ"#$, ℒ%&'()%)*, and ℒ+*+,' : 
weights applied to waveform 
sections
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Results
Sim-to-Data:

Data-to-Sim:



31

Ju
lie

ta
 G

ru
sz

ko
 | 

M
L 

fo
r 

G
e 

0ν
ββ

 | 
 A

I/
M

L 
PI

 E
ch

an
ge

 2
02

4

Results
Traditional PSD parameter for multi-site ID: Waveform drift time:

• Technical paper published as part of the NeurIPS 2022 Workshop on Machine 
Learning in the Physical Sciences: “Ad-hoc Pulse Shape Simulation using Cyclic 
Positional U-Net” https://ml4physicalsciences.github.io/2022/

• Full manuscript in prep, expect publication early in 2025

https://ml4physicalsciences.github.io/2022/
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IQN for Pulse Shape Emulation
• Motivation: PSS is computationally expensive; ultimately 

what we most care about is PSD parameter vs. Energy 
distribution, not full waveform information

• Implicit Quantile Network-based pulse shape emulation
– Multidimensional Modeling: IQNs learn to predict quantile 

functions across multiple dimensions, offering a more 
detailed probabilistic interpretation of data.

– Versatility: Suitable for complex data types, including pulse 
shape observables (e.g., A/E in LEGEND).

– Quantile Estimation: Instead of predicting a single value, 
IQNs provide predictions for various quantiles, improving 
robustness and model interpretability.

– Non-parametric: No assumption of data distribution, 
making IQNs flexible for diverse data sets.

Emeas, A/E

Etrue

E1, 
E2

ΔT1, 
ΔT2 

Based on:
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Training and Initial Results Initial results: Energy

A/E pulse shape parameter

Network Inputs:

Geometry Drift Time Map

Geant4 Hits

Training Sample:
A/E vs. Energy

Simulated WFs
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Deliverables and Schedule
Project Q4 2023 Q1 2024 Q2 2024 Q3 2024 Q4 2024 Q1 2025 Q2 2025 Q3 2025 Q4 2025
Milestones

Data 
Cleaning

1.1: Complete test on dummy 
channel data

1.2: Deploy in 
Julia software 
stack

1.3: Add to 
monitoring 
dashboard

1.4: Leon PhD 
defense 1.5: Publish paper

1.6: Complete test of 
performance on SiPMs and 
slow controls elements

Electronics 
Response

2.1: Complete 
update to 
simulation 
framework 
and data 
analysis 
process

2.2: Complete 
validation test 
with known 
electronics 
data set

2.3: Complete 
improved test 
with detector 
data 2.4: Publish paper

2.5: Complete 
initial 
validation with 
Compton 
scanner data

2.6: Bhimani 
PhD defense

Emulator 3.1: Complete initial network design

3.2: Conduct 
initial test with 
characterizati
on 
measurement 
calibration 
data

3.3: Complete 
update to 
network 
design

3.4: Publish 
NeurIPS 
Conference 
Paper

3.5: Conduct 
test with 
LEGEND-200 
calibration 
data

BDT

4.1: Update 
network 
structure for 
use with L200 
analysis 
framework

4.2: Complete initial test with 
L200 data

4.3: Report results to collaboration and 
present at conference

Design Complete

Construction In Progress
Operations Not Yet Started

*Timeline 
adjusted based 
on contributed 
effort 
availability
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Budget

Y1: Dec 1 2023-Nov 30 
2024

Y2: Dec 1 2024 – Nov 
30 2025

Totals ($k)

Funds allocated $170,000 $210,000 $380,000
Actual costs to date $156,330 0 $156,330


