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CoM energy √se-p ~ (20-140) GeV

High luminosity up to 1034 cm-2s-1, 
a factor ~100-1000 times HERA

Possibility of second detector in addition 
to EIC Project Detector / ePIC.

AI/ML will play a major role in optimizing 
this complex operation

polarized electron - polarized protons/ions

How does the spin of the nucleon arise? 

What are the emergent properties of 
dense systems of gluons? 

A US-led and international effort to build a precision machine to study the “glue” that 
binds us all. This will put the US at the frontier of nuclear physics research for the next 30 
years.
The science phase is set to begin in early 2030.

3 ÿundamental questions
(Nuclear Science Advisory Committee)

How does the mass of the nucleon arise? 

Detector 2?
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  EIC Yellow Report. NIMA 1026 (2022): 122447
                     HERA Coll. , JHEP 1001:109(2010)A Glimpse into EIC Physics

Neutral current
 inclusive DIS

Charged current
 inclusive DIS

Semi-inclusive DIS

Exclusive DIS

Detector requirements and design are tailored to optimize 
physics reach, guided by the EIC Yellow Report:

● Mass and Tomography

● Spin and Flavor Structure of the Nucleons and Nuclei

● Internal Landscape of Nuclei

● QCD at Extreme Parton Densities - Saturation

● etc

Important synergies with HL-LHC science program:

● Precision QCD studies with proton & nuclear targets αS, 
quarkonia, quark exotica, jet physics in e-p collisions, …   

● Precision electroweak and BSM physics Weak mixing angle, 
LFV, … 

● etc For more info in the RAG-based EIC Chatbot

https://rags4eic-ai4eic.streamlit.app/RAG-ChatBot


ePIC Detector
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As of now, 171 institutions, 24 countries and 500+ participants

 

A. Deshpande’s talk

Far Forward

TrackingTracking

https://www.bnl.gov/eic/epic.php

Central

ePIC stands out as an Integrated Detector encompassing Central, Far-Forward, and Far-Backward regions, all crucial to access the EIC 
physics. 

https://indico.cern.ch/event/1358446/contributions/6137383/attachments/2937045/5159104/EIC%20at%20Yerevan%20present.pdf
https://www.bnl.gov/eic/epic.php
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As of now, 171 institutions, 24 countries and 500+ participants

 

https://www.bnl.gov/eic/epic.php

Central

ePIC stands out as an Integrated Detector encompassing Central, Far-Forward, and Far-Backward regions, all crucial to access the EIC 
physics. 

https://indico.cern.ch/event/1358446/contributions/6137383/attachments/2937045/5159104/EIC%20at%20Yerevan%20present.pdf
https://indico.cern.ch/event/1358446/contributions/6137383/attachments/2937045/5159104/EIC%20at%20Yerevan%20present.pdf
https://www.bnl.gov/eic/epic.php
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A. Deshpande’s talkA. Deshpande’s talk

PID

Tracking

Calorimetry

Far ForwardFar Backward

As of now, 171 institutions, 24 countries and 500+ participants

 

https://www.bnl.gov/eic/epic.php

Central

ePIC stands out as an Integrated Detector encompassing Central, Far-Forward, and Far-Backward regions, all crucial to access the EIC 
physics. 

https://indico.cern.ch/event/1358446/contributions/6137383/attachments/2937045/5159104/EIC%20at%20Yerevan%20present.pdf
https://indico.cern.ch/event/1358446/contributions/6137383/attachments/2937045/5159104/EIC%20at%20Yerevan%20present.pdf
https://www.bnl.gov/eic/epic.php
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A. Deshpande’s talkA. Deshpande’s talk

https://www.bnl.gov/eic/epic.php

PID

Tracking

Calorimetry

Far ForwardFar Backward

As of now, 171 institutions, 24 countries and 500+ participants

 

ePIC stands out as an Integrated Detector encompassing Central, Far-Forward, and Far-Backward regions, all crucial to access the EIC 
physics. 

Far Backward Far Forward

Central

ePIC extends across -35m to +35m.

Central

https://indico.cern.ch/event/1358446/contributions/6137383/attachments/2937045/5159104/EIC%20at%20Yerevan%20present.pdf
https://indico.cern.ch/event/1358446/contributions/6137383/attachments/2937045/5159104/EIC%20at%20Yerevan%20present.pdf
https://www.bnl.gov/eic/epic.php


Traditional Approach to Detector Design
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● Sub-detector systems are optimized individually, using single-objective criteria per sub-detector, within the constraints of the overall 
detector design. This approach often leads to suboptimal solutions. 

● Each combination of sub-detector choices creates a new overall detector design. Accurate and reliable full simulation pipelines are 
required to reduce possible bias when exploring new designs. Fast simulations may become unreliable in regions that have not 
been previously explored or validated.

● Large simulation campaigns are required, often leveraging containerized software and distributed computing (e.g., NIM-A: 1047 
(2023): 167859):

○ Each "design point" (a new detector configuration) potentially needs a new simulation campaign.

○ Exploring multiple design points demands significantly more simulations, increasing computational costs and complexity. 

● Current simulation campaigns produce up to 15-20 TB / month 
(T. Britton, Oct 2024)

● Towards a quantitative computing model     
(M. Diefenthaler, Sep 2024) 

Simulating 5M charged particles for the tracker and PID system would require at least 15k CPU core hours. This requirement can grow 
significantly when accounting for additional particle types or extending the scope to include neutrals to design other sub-detector systems.

https://indico.cern.ch/event/1343110/contributions/6114345/attachments/2937914/5160727/7thRucio_wkshop_Britton_Oct24.pdf
https://indico.bnl.gov/event/25036/contributions/97371/attachments/57652/98994/ePIC-SC-Review-Diefenthaler-StreamingComputingModel.pdf
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● 3 Types of Objectives 

○ Intrinsic detector performance (resolutions, 
efficiencies) for each sub-detector — 
Tracking, calorimetry, PID — noisy

○ Physics-performance — Multiple physics 
channels, equally important in the EIC physics 
program 

○ Costs (e.g., material costs, provided a 
reliable parametrization)

● Objectives can be competing with each other 

○ E.g. Better detector response come with 
higher costs; better resolutions may imply 
lower efficiencies; etc.

Multi-Objective Optimization
MOO is needed to optimize a system of sub-detectors

detector design solutions

hypervolume

For illustrative purposes

A generic MOO problem can be formulated as

objectives

constraints

ranges



AI-Assisted Detector Design at EIC 
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The AI-assisted design embraces all the main steps of the sim/reco/analysis pipeline… 

Provide a framework for an holistic optimization of the sub-detector system  
A complex problem with (i) multiple design parameters, driven by (ii) multiple objectives 

(e.g., detector response, physics-driven, costs) subject to (iii) constraints

● Benefits from rapid turnaround time from 
simulations to analysis of high-level 
reconstructed observables

● The ePIC SW stack offers multiple features 
that facilitate AI-assisted design (e.g., 
modularity of simulation, reconstruction, 
analysis, easy access to design parameters, 
automated checks, etc.) 

● Leverages heterogeneous computing

● AI-assisted design started being used since 
proto-collaboration phase (NIM-A 1047 (2023): 
167748)

Those at EIC can be the first large-scale experiments ever realized with the assistance of AI

Accurate simulations of the passage of particles or 
radiation through matter



Bayesian Optimization in a nutshell
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● BO is a sequential strategy 
developed for global 
optimization.

● After gathering evaluations we 
builds a posterior distribution 
used to construct an acquisition 
function.
 

● This cheap function determines 
what is next query point.

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.



Contributions
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(i) Contributing to advance state of the art MOO 
complexity (e.g., Multi-Objective Bayesian 

Optimization) to accommodate a large number of 
objectives. AID2E supports also other methods 

(e.g., MOGA) and explores usage of 
physics-inspired approaches

(ii) Will leverage cutting-edge workload 
management systems capable of operating at 
massive data and handle complex workflows

The AID2E Collaboration, “AI-assisted detector design for the EIC”, 2024 JINST 19 C07001

CF, Z. Papandreou, K. Suresh, et al. NIMA: 1047 (2023): 
167748.  
CF JINST 17.04 (2022): C04038.

Multi-Objective Optimization Distribution and Workload Management 

(iii) Development of suite of data science tools for 
interactive navigation of Pareto front (multi-dim 

design with multiple objectives). Point are 
determined with uncertainties.

https://ai4eicdetopt.pythonanywhere.com/

Human-in-the loop: 
interactive Pareto navigation 

https://wandb.ai/scheduler/AID2E-Closure-1

https://github.com/aid2e

https://iopscience.iop.org/article/10.1088/1748-0221/19/07/C07001
https://ai4eicdetopt.pythonanywhere.com/
https://wandb.ai/scheduler/AID2E-Closure-1_New?nw=nwuserhnayak
https://github.com/aid2e
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Benefits of AID2E

● Integrating holistic, multi-objective optimization into detector design marks a significant paradigm shift, 
with AI-assisted methods poised to profoundly impact large-scale NP projects such as at the EIC. 

○ AI provides quantifiable insights into complex design and objective spaces, enabling a 
comprehensive evaluation of various tradeoff design solutions.

● A fractional improvement in the objectives translates to a more efficient use of beam time which will make 
up a majority of the cost of the EIC over its lifetime.    

● Examining solutions on the Pareto front of EIC detectors at different values of the budget can have great 
cost benefits.   

● Implementing AI-assisted, multi-objective optimization accelerates the design process, quantifies 
trade-offs between design points, and produces designs that optimize both performance and cost. This 
approach will also be valuable during construction, accommodating new constraints as they arise. 

● Possibility of extending this framework to other computational intensive tasks such as calibrations and 
alignment of detectors. 
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Deliverables and Staffing 
(estimated at start of project)

● All deliverables for FY24 met. 

● In the following I will provide more details on the accomplished work.



AID2E Closure Tests and Workflow
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Simulations

AI-assisted

Distributed

ePIC-SW

AI-assisted

Distributed

(Rationale)



✅ Closure Test 1
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W&B dashboard for monitoring

Goals:

● Utilize test functions to evaluate 
proximity to known Pareto front

○ Accuracy of optimization, 
convergence properties, compute 
resources 

● Characterization of Complexity

○ Stress-testing for problems with 
increased complexity

Shown here:
● Test function: DTLZ
● Technique: MOBO

https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495
https://pymoo.org/problems/many/dtlz.html
https://botorch.org/docs/multi_objective


✅ Closure Test 1: MOBO Complexity
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n: number of design points
d: design dimensionality (each point)

M: objectives

Complexity Studies

● Benefitting from GPU acceleration

● With sufficient parallelization, if possible, the time associated to the 
MOBO part at some point becomes dominant (bottom plot shown at 15th 
iteration with number of points between ~70-160)

q: batch size



✅ Closure Test 2: PaNDA/iDDS
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Goals:

● Enhance Workflow Management for Design 
Optimization: Adapt PanDA/iDDS AI/ML services to 
support a Function-as-a-Task workflow management 
for design optimization with MOO      

● Ensure System Scalability and Robustness: 
Stress-testing scalability, robustness across 
distributed resources 

● Assessing Consistency:  Compare results against the 
closure test to evaluate consistency.

PanDA: Production and Distributed Analysis System. Comput Softw Big Sci 8, 4 (2024)

PanDA (Production and Distributed Analysis system):

● Distributed Workload Management
○ General interface for users, one authentication for all sites
○ Integrate different resource providers(Grid, Cloud, k8s, HPC and 

so on), hide the diversities from users, large scale

iDDS (intelligent Data Delivery Service): 

● Workflow Management Orchestration
CHEP2023 Talk: T. Maeno, et al. Utilizing Distributed 
Heterogeneous Computing with PanDA in ATLAS

CHEP2023 Talk: W.Christian, et al. Distributed Machine Learning 
with PanDA and iDDS  in ATLAS

https://panda-wms.readthedocs.io/en/latest/advanced/idds.html
https://link.springer.com/article/10.1007/s41781-024-00114-3
https://indico.jlab.org/event/459/contributions/11482/
https://indico.jlab.org/event/459/contributions/11482/
https://indico.jlab.org/event/459/contributions/11472/
https://indico.jlab.org/event/459/contributions/11472/
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PanDA/iDDS supported complex workflow 
managements; different use cases in production:

● Fine-grained Data Carousel for LHC ATLAS 
● DAG management for Rubin Observatory to sequence data  

processing
● Distributed HyperParameter Optimization (HPO)
● Monte Carlo Toy based Confidence Limits
● Active Learning assisted technique to boost the parameter search 

in New Physics search space

Bayesian optimisation based active learning with Panda/iDDS 

Schema of how a workflow executes a function at 
remote distributed resources

✅ Closure Test 2: PaNDA/iDDS

Closure Test 2: 
obtaining convergence on Pareto fronts using 

test functions and distributed computing
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✅ Closure Test 2: Results

● Relative HyperVolume Difference = (HVol_pareto - HVol)/HVol_pareto 
When reaches the tolerance (0.1 here), stops the training 

● HVol_pareto: HyperVolume of Pareto Front

Examples of optimization pipelines run using PanDA 

Recent tests covered:
● d=50 and M=3
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C.Fanelli et al, NIM A, 2023, 167748

✅ Interactive Pareto Front Navigation
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✅ Integration with ePIC SW: ePIC dRICH
Considering all the constraints as ePIC is in the process of finalizing engineering 
designs, we can select those sub-detectors that still have tunable parameters 

dual-RICH

● dual-RICH: two radiators for wide momentum coverage (~ 3GeV/c 
- 60GeV/c), 1.5 < η < 3.5

● Simultaneously focus all η regions, gas and aerogel rings

● Mirror, sensor placement and radii, gas, mirror material (lower cost 
material)...  

● PID performance, costs, …

 E. Cisbani et al 2020 JINST 15 P05009
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Rsensor = 131cm
R1 = 178cm

R2 = 231cm

● Three-objective optimization: π-K separation at 15 GeV/c, 40 GeV/c, and fraction of tracks 
with > 5 photons

● Work ongoing with ePIC to refine two-mirror reconstruction algorithm, finalize optimization

✅ Integration with ePIC SW: ePIC dRICH
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✅ Integration with ePIC SW: Far-Forward

Far-Forward detectors

Ongoing discussion with the ePIC working group to consolidate optimization

● B0 subsystem
○ Tracker (AC-LGAD) 
○ Crystal Calorimeter 
○ Proton tagging critical for Forward Physics

● Magnetic Field is inhomogeneous & Mechanical 
constraints restrict detector real estate (entire 
length of B0 fixed)

● Tracking layers, ECAL crystals & tiling of crystals

● Objectives: Tracking resolution and detector 
acceptance.
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Spin-off: Detector2 𝝁Id/HCAL 
● Physics Motivation: Muon channels (J/Psi DDVCS), cost effective HCAL  

● Iron/Scintillator sandwich integrated in flux return 

○ Longitudinal segmentation for better h/𝜇 ID, energy reconstruction with ML 

○ R&D on fast scintillator (readout) (𝒪(50𝑝𝑠)) for ToF ongoing

○ Possible solution for endcap HCAL of ePIC   

● Pilot project: 

○ Optimize 𝝁ID performance @1 & 5 GeV 

○ Parameters: number of layers, thickness of passive iron layers

● Activities to pursue in the future:

○ Optimize 𝝁ID and ToF/𝞂E concurrently →competing requirements 
Active/passive detector ratio

○ Explore complex configurations (e.g. nonlinear layer thickness), parameters

○ Holistic optimization of magnet/detector geometry
→explore physics impact and complementarity to project detector
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Spin-off: Material Design

Aerogel tile with random fiber 
orientation

Simple Ring Imaging CHerenkov Geant4 based simulation 
Aerogel + Optical Fibers

 Gmsh - define geometry and produce mesh 
ElmerGrid - convert the gmsh mesh to elmer compatible mesh 

ElmerSolver - do modeling (solve linear and nonlinear equation) 
Paraview - visualize Elmer Solver and provide a python interface to automateS

of
tw

ar
e 

S
ta

ck
Reinforced novel aerogel material with fibers

Publication in preparation 



Documentation and Outreach 
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● GitBook and/or other knowledge sharing platforms will be part of the initiatives related to 
documentation and outreach  

● Offering opportunities for experiential learning with easy access for beginners

○ 1 week summer bootcamp

○ Final Projects

● The first AID2E bootcamp took place in July 2024

○ https://aid2e.github.io/boot-camp-2024/intro.html

 

https://aid2e.github.io/boot-camp-2024/intro.html


Conclusions
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The EIC could ÿeature the first larĀe-scale experiments desiĀned and optimized with the aid oÿ 
Artificial IntelliĀence. 

● We completed coupling of different MOO techniques to the ePIC SW, closure tests and other FY24 
deliverables that demonstrated effective distribution and expected scalability. 

● We are on track to deliver a framework that can optimize holistically a large-scale detector:

○ Shown ongoing activities with detector subsystems (dRICH, far-forward) in ePIC. 

○ The ePIC design is in progress with CD-2 not before end of 2025.

○ Optimization studies of Detector II subsystems and magnet could provide valuable insights on 
complementarity with ePIC.

● In detector projects, most changes happen during the construction phases (e.g., changes in the 
available material or budget). AID2E will be an ideal tool to optimize design changes with objectives 
(e.g., reduce cost).

● This framework inherently offers broader impacts, as it can be adapted for use in various experiments 
and is suitable for a wide range of compute-intensive applications that necessitate MOO (e.g., 
calibrations, alignments, novel material design, etc)
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Vehicle Design Optimization: 

222 parameters + 2 objectives + 54 constraints

T. Kohira et al. Proposal of benchmark problem based on 
real-world car structure design optimization. GECCO 2018

Objectives: 

● minimize total vehicle 
mass of three vehicles 
(Mazda 3, 6, CX-5) 

● maximize number of 
parts shared across 
vehicles

Multi-Objective Optimization: Example



MOGA Pipeline
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Non-Dominated Sorting
Genetic Algorithm
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Population
@(t)

Offspring

Front

[1] Deb, K., et al. "A fast and elitist 
multiobjective genetic algorithm" IEEE 
transactions on evolutionary computation 6.2 
(2002): 182-197. 

The crowding distance di of 
point i is a measure of the 

objective space around i which 
is not occupied by any other 

solution in the population. 

This is one of the most popular approach 
(>35k citations on google scholar), characterized by:

● Use of an elitist principle
● Explicit diversity preserving mechanism
● Emphasis in non-dominated solutions

The population Rt is classified in non-dominated fronts. 
Not all fronts can be accommodated in the N slots of available in the new 

population Pt+1. We use crowding distance to keep those points in the last front 
that contribute to the highest diversity. 

This is to illustrate 
Binary Crossover 


