Beam polarization increase in the BNL hadron injectors through physics-informed Bayesian Learning

ML / Al proposal supported by DOE-NP Georg Hoffstaetter de Torquat Collider-Accelerator Department, BNL and Cornell University Georg Hoffstaetter@comell.edu

A collaboration of BNL, Cornell, TJNAF, SLAC, RPI 2024 AI/ML PI Exchange Meeting, DOE-NP

f O in @BrookhavenLab

DE-FOA-0002875 : ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR AUTONOMOUS OPTIMIZATION AND CONTROL OF ACCELERATORS AND DETECTORS

Title: Beam polarization increase in the BNL hadron injectors through physics-informed Bayesian Learning

Collaborators: BNL, Cornell, SLAC, JLAB, RPI

Budget: \$1.5M, 09/01/2023 to 8/31/2025

Funding through DOE-NP DE SC-0024287, contr.# 2023-BNL-AD060-FUND

Funding officer Manouchehr Farkhondeh

FOA requested topic:

- Address the challenges of autonomous control and experimentation
- Efficiency of operation of accelerators and scientific instruments
 Brockhaven
 National Laboratory
 <u>Georg.Hoffstaetter@cornell.edu</u>
 2024 AI/ML PI Exchange Meeting, DOE-NP
 December 4, 2024

Desired result: higher proton polarization

- What high-impact operational challenge can be addressed by MI/AI?
 → Polarized protons.
- From the source to high energy RHIC experiments, 20% polarization is lost.
- Polarized luminosity for longitudinal collisions scales with P⁴, i.e., a factor of 2 reduction!
- The proton polarization chain depends on a hose of delicate accelerator settings form Linac to the Booster, the AGS, and the RHIC ramp.
- Even 5% more polarization would be a significant achievement. © Brookhaven Mational Laboratory Georg.Hoffstaetter@cornell.edu 2024 AI/ML PI Exchange Meeting, DOE-NP December 4, 2024

Outline

- Objective of proposed work: higher proton polarization in RHIC and the EIC.
- Polarized-proton acceleration chain.
- Potential avenues toward higher proton polarization.
- (1) Emittance reduction
- (2) More accurate timing of timed elements
- (3) Reduction of resonance driving terms
- Gaussian Process (GP) Bayesian Optimization (BO) and physics informed learning.
- When is ML/AI better for accelerator operations than other feedbacks and optimizers?
- Progress report
- Plans

2024 AI/ML PI Exchange Meeting, DOE-NP

The polarized proton accelerator chain

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

2024 AI/ML PI Exchange Meeting, DOE-NP

December 4, 2024

RHIC Polarized Beam Complex

		Max tot. Energy [GeV]	Pol. At Max Energy [%]	Polarimeter	2 Siberian Snakes/ring
Sourc	ce+Linac	1.1	82-84		Spin flipper
Boos	ter	2.5	~80-84		Absolute Polarimeter (H jet)
AGS		23.8	67-70	p-Carbon	RHIC pC Polarimeters
RHIC	;	255	55-60	Jet, full store avg*	<u>PHENIX</u>
					(longitudinal polarization) Source Source AGS Siberian Snake
		Relative Ramp Polarization Loss (Run 17, full run av		s avg)	AGS Polarimeter
	AGS	17 %	6		
	RHIC	8 %			

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

Topics that can improve polarization

- (1) Emittance reduction
- (2) More accurate timing of tune jumps
- (3) Reduction of resonance driving terms

2024 AI/ML PI Exchange Meeting, DOE-NP

Optimizers for different applications

Characteristics of involved optimizations

- 1. Optimal parameter settings are hard to find, and the optimum is difficult to maintain.
- 2. The data to optimize on has significant uncertainties.
- 3. Models of the accelerator exist.
- 4. A history of much data is available and can be stored.

Is this type of problem suitable for Machine Learning? Why would ML be better suited than other optimizers and feedbacks?

Gaussian Process

- GP model built with scikit-learn library
- A probability distribution over possible functions
 that fit a set of points
- Mean function + Covariance function

 $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x'}))$

- Kernel: covariance function $k(x_i, x_j)$ of the input variables
- Covariance matrix $K = k(X, X) = \begin{bmatrix} k(x_1, x_1) & \cdots & k(x_1, x_t) \\ \vdots & \ddots & \vdots \\ k(x_t, x_1) & \cdots & k(x_t, x_t) \end{bmatrix}$
- At a sample point x_i , Gaussian process returns mean $\mu(x_i|X) = m(x_i) + k(x_i, X)K^{-1}(f(X) m(X))$ and variance $\sigma^2(x_i|X) = k(x_i, x_i) k(x_i, X)K^{-1}k(X, x_i)$

2024 AI/ML PI Exchange Meeting, DOE-NPDecember 4, 2024

Merit of physics-informed optimization

Neural Network System Models + Bayesian Optimization

Combining more expressive models with BO \rightarrow important for scaling up to higher-dimensional tuning problems (more variables)

Good first step from previous work: use neural network system model to provide a prior mean for a GP

Used the LCLS injector surrogate model for prototyping **variables:** solenoid, 2 corrector quads, 6 matching quads **objective:** minimize emittance and matching parameter

Summer '22 undergrad intern Connie Xu

Advantages of Bayesian Optimization

Summary of optimization methods

	Nelder- Mead	Gradient descent	Powell / RCDS	L-BFGS	Genetic algorithm	Bayesian optimization
Sample efficiency	Medium	Medium	Medium/high	Medium/high	Low	High
Computational cost of picking the next point	Low/Mediu m	Low	Low	Low	Medium (e.g. sorting)	High (esp. in high dimensions)
Multi-objective	No	No	No	No	Yes	Yes
		(but can ι	use scalarizatio	n)		
Sensitivity to local minima	High	High	High	High	Low	Low (builds a global
		(but can	use multi-start	:)		model of f)
Sensitivity to noise	High	High	High (Powell) Low (RCDS)	High	Medium	Low (can model noise itself)

Summary of optimization methods										
	Nelder -Mead	Gradient descent	Powell / RCDS	L-BFGS	Genetic algorithm	Bayesian optimization				
Requires to compute or estimate derivatives of <i>f</i>	No	Yes	No	Yes	No	No				
Evaluations of <i>f</i> <i>inherently</i> done in parallel	Νο	No	No	No	Yes	No				
Hyper- parameters	Initial simplex	Step size: α (+momentum: β)	# fit points Noise level	Accuracy of hessian estimate	 Population size Mutation rate Cross-over rate Number of generations 	 Kernel function Kernel length scales, amplitude Noise level Acquisition function 				

2024 AI/ML PI Exchange Meeting, DOE-NP

Why is Bayesian Optimization suitable?

- 1. The data to optimize on has significant uncertainties
- → Derivatives of measured functions are not required.
- 2. Models of the accelerator exist
- ➔ the expected functional form can be included in the function search (Physics-informed learning)
- 3. A history of much data is available and can be stored
- \rightarrow All past data are included to model the function to be optimized.

Note: Reinforcement Learning (RL) can be promising because (a) accelerators have many state variables beyond the optimization objectives, (b) accurate models can reduce the require measurement points of data hungry RL.

➔ Ongoing analysis of BO vs. RL for accelerator control, which will be part of our follow-up proposal.

2024 AI/ML PI Exchange Meeting, DOE-NP

December 4, 2024

Topics that can improve polarization

- (1) Emittance reduction
- (2) More accurate timing of tune jumps
- (3) Reduction of resonance driving terms

2024 AI/ML PI Exchange Meeting, DOE-NP

Emittance reduction → less depolarization

- Optimized Linac to Booster transfer
- Optimized Booster to AGS transfer
- Optics and orbit correction in Booster and AGS
- Beam-based model calibration from orbit responses in Booster and AGS.
- Bunch splitting in the Booster for space charge reduction and bunch re-coalescing at AGS top energy.

2024 AI/ML PI Exchange Meeting, DOE-NP

Polarized collider performance

Collider luminosity, L

 $\mathcal{L} \propto \frac{N^2}{c}$ N = intensity/ bunch ε = tran. emittance

Polarized collider figure of merit (for polarization P):

 $FoM = \begin{cases} \mathcal{L} P^2 \\ \mathcal{L} P^4 \end{cases}$ transverse spin longitudinal spin

Since both emittance and polarization degrade with intensity figure of merit decreases rapidly

FoM dependence on intensity closer to linear in N than quadratic.

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

December 4, 2024

AGS Performance

Highest AGS performance is difficult to achieve *and maintain*

Value in just holding a known optimum

A combination of maintaining emittances and direct polarization interventions

AGS Polarization vs intensity for RHIC fills (Run 24)

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

Booster injection

Booster injection/early acceleration process sets maximum beam brightness for rest of acceleration though RHIC

- Many "knobs"
 - · Linac to Booster trajectory/optics matching
 - Optimization of time on foil (Linac pulse length vs height)
 - Linac RF phases affect capture and acceleration efficiencies
 - Booster RF capture rate affects longitudinal emittance (and transverse, via space charge)
 - Booster orbit and optics affect foil scattering, matching and intensity transmission.
 - Betatron 'stop band' correctors for intensity, emittance preservation.
- Difficult instrumentation
 - WCM, BPMs don't work until after capture
 - No transverse profile monitor in Booster
 - Scraping efficiency as proxy
 - Measurable in the extraction line via multiwire
- Difficult model
 - Linac to Booster longitudinal effects
 - Space charge
 - Stripping foil

2024 AI/ML PI Excha

Booter injection

- Booster injection process sets maximum beam brightness for rest of acceleration through RHIC
- Known emittance effect on polarization loss
- Intentional horizontal and vertical scraping reduce emittance to RHIC requirements
- Goal: minimize emittance / maximize beam intensity after scraping
- Controls: Linac to Booster (LtB) transfer line optics
- Method: Bayesian optimization (BO)

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

December 4, 2024

Motivation: Digital twin at CBETA

- Had success in building digital-twins for CBETA: combine custom version of Bmad/Tao with EPICS
- CBETA-V: measure beam trajectories and compare to the digital twin in real time on control-system screens
- Neural network can be trained to predict orbit response using Bmad simulation data
- NN model can predict beam behavior due to both linear (correctors) and non-linear (cavity) relationships

Beam in the Linac to Booster Transfer line

- To model injection into the booster, the beam's phase space distribution in the LtB line needs to be known. α²_x [mm²]
- While a NN can be trained to determine the • beam's phase space distribution from tomography, the current diagnostics does not permit to resolve x-y coupling.
- Polarized proton beam has such coupling • because it is created in a solenoid field.
- X and Y multi wires are not sufficient input for 4-٠ D phase space tomography
- → We will use skew guads in the booster and tilted multi wire detectors to resolve x-y coupling.
- → Then our BO can be extended by a physics informed model. Georg.Hoffstaetter@cornell.edu

100

40

20

 $\sigma_{\rm x}^2 \, [{\rm mm}^2]$ 60 MW099 emittance: 1.962 mm-mrad

MW107 emittance: 1.968 mm-mrad

MW099 emittance: 0.689 mm-mrad

20

15

MW107 emittance: 1.930 mm-mrad

 \rightarrow The x/y projected emittances change along the transfer line, i.e., coupling needs to be considered.

Booster injection: 2 correctors + 2 quadrupoles

- Controls: Power supply currents of two correctors and two quadrupoles at the end of the LtB line
- Beam size decrease in both planes in the BtA line in correspondence with intensity increase

Bayesian optimization of the Booster injection process.

Top: power supply currents of two correctors (tv95, th115) and two guadrupoles (gf12, gd13) in the LtB line.

Middle: beam intensity after Booster injection, scaping, and acceleration.

Bottom: Beam size measurements in the BtA line during Bayesian optimization.

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

BtA Transfer Line Structure in Bmad

- Lattice can be divided into branches connected with forks to simulate connection to a transfer line
- Require documented coordinates for elements to construct correct geometry
- Beam parameters from the end of one branch is automatically inherited by the start of downstream branch → continuous tracking
- BtA universe with three branches
 - 1st branch: Booster ring with extraction bumps
 - 2nd branch: Extraction line from F2 to F6 septum with F3 kicker on
 - 3rd branch: BtA transfer line

2024 AI/ML PI Exchange Meeting, DOE-NP

24

Georg.Hoffstaetter@cornell.edu

BtA modeling and data comparison

- · Bmad tracking leads to horizontal dispersion matching measurements
- Beam size values from bunch tracking show agreements for upstream multi-wire measurements, disagreement downstream needs further investigation

Bayesian Optimized Injection into the AGS

Algorithm efficiently found settings that were different, but at least as good as the previously optimized ones, automatically maintain the AGS injection at optimal performance without human intervention.

AGS, Polarization and Snakes

- Proton energy range 2.5 GeV -> 23 GeV ٠
- Polarization preserved using ٠
 - helical dipole snakes
 - + horizontal tune jump
 - Resonance correction in development (would replace tune jump)
- Requires "near integer" tune •
 - · Orbit, optics unusually sensitive to errors
- Helical dipoles are complicated ٠ magnets
 - Large optical effects at low • energy
 - Many related magnetic elements ٠ for compensation orbit/optics
- The complex fields and lattice + high tune requirements are a challenge to modeling (Eiad's talk)

AGS Warm snake

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

AGS Siberian Snakes modeling

- AGS Siberian snake field maps violates symplecticity, especially at AGS injection energy
- Symplectic tracking (green) is stable for over 10,000 turns

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

December 4, 2024

Response Error model for the ORM

- Scan through some common sources of error to see how much ORM changes
- Find relevant parameters to include for building error-detecting model
- **Goal**: establish a neural network that identify error source given a measured ORM

2024 AI/ML PI Exchange Meeting, DOE-NP

Orbit response data in AGS Booster

- Orbit response data can be used to find and quantify unknown parameters (e.g., power supply scaling factors, magnet misalignment etc.) in real accelerators
- Good agreements between AGS Booster data and Bmad model are reached, despite some faulty BPMs (i.e., PUEHC8)
- Small discrepancies (within 1 mm) beyond error bars is being investigated
- chi-squared/DF = 1.4 physics reasons for discrepancy are being sought by Uncertainty Quantification.
- ➔ The main power supply transfer functions are not an explanation. Error sources are being analyzed.

2024 AI/ML PI Exchange Meeting, DOE-NP

Space-charge emittance increase

Figure 3.168: Normalized transverse emittances of polarized proton beam at AGS extraction energy ($\gamma = 25.5$) as a function of intensity.

Brookhaven National Laboratory Georg.Hoffstaetter@cornell.edu → Splitting bunches before AGS acceleration can reduce the emittance. 2024 AI/ML PI Exchange Meeting, DOE-NP

Bunch splitting in Booster / merging in AGS

Splitting in the booster and coalescing after AGS accelerator reduces space charge and emittance growth \rightarrow more polarization

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

Reinforcement Learning Tuning test - varying 6 voltage points for each RF system

Goal: minimize the longitudinal emittance after bunch merging

- RF amplitudes as function of time have been optimized in experiments.
- Automatic readout of longitudinal emittance not yet available, therefore experimental setup uses simulated bunch lengths as reward.
- Plan: check whether Reinforcement Learning has advantages over BO.
- Plan: Include also RF phases as actors
- Determine useful state variables
 - measurable
 - related to the reward

Timing of tune jumps

The G-gamma meter and accurate energy vs. time

- (1) Measure the energy by orbit + revolution frequency measurement
- (2) Measure of energy by field + revolution frequency measurement

(3) Measure energy by spin flip at every integer spin tune

Combined optimization

- → better timing
- ➔ higher polarization

Improved energy timing

Parameters to vary:

Time profile of the time-jump quadrupoles

Observables to optimize:

Revolution frequency (1.E-6)

Radial offset from BPM readings (20mu average)

Main dipole fields Hall-probe at injection (0.1%) + integrating coil (2%)

E(t) by measure f(t), x(t), B(t)

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

Measuring Energy (¥)

Calibration of the Ggamma meter consists of measuring Gg(B) and Gg(f) at the same times in the cycle and fitting parameters until they agree to sufficient precision

Dedicated calibration ~2 weeks

Essentially an inverse problem with data assimilation, good candidate for uncertainty quantification (how well can we determine these parameters, which is responsible for most variation?

Reduction of AGS resonance driving terms

Partial snakes drive horizontal depolarizing resonances

→ Compensate by other coupling elements, e.g., skew quads 2024 AI/ML PI Exchange Meeting, DOE-NP December 4, 2024 37

Reduction of AGS resonance driving terms

- Two snakes, separated by 1/3 circumference
 - Modulated resonance amplitude highest near Gy = 3N (when snakes add constructively)
- Horizontal resonances occur every 4-5 ms at the standard AGS acceleration rate

ML/AI:

Physics informed Learning of the optimal skew quad strength + optimal timing.

AGS Spin Resonance Correction Skew Quadrupoles

- A set of 15 pulsed skew quadrupoles, each with an individual power supply
- Designed to excite coupling resonance to compensate the 82 depolarizing resonances associated with horizontal betatron motion in the AGS partial snakes
- 15 knobs, 82 different resonances
 - Expected effect is 10-15% gain in polarization
 - A +/-2% measurement takes 5-10 minutes
- Run 24: Observation of polarization gain factor (+10%) during acceleration (similar to existing tune jump), with ~half the pulses enabled)

- Further improvements (enabling more pulses, +5-10% gain):
 - Addressing model inaccuracies at low energy
 - Iteration on orbit centering
 - Possible optimizations based on ML methods
 - No solid plan for how to approach this

Georg.Hoffstaetter@cornell.edu

2024 AI/ML PI Exchange Meeting, DOE-NP

50

-0.50 -0.25

Scale factor (1=full correction)

0.25 0.50 0.75 1.00

1.25

1.50

Measured

0.00

AGS skew quads

- Partial snakes in the AGS helps avoiding vertical resonances
- Goal: compensate 82 horizontal resonances with 15 pulsed skew quadrupoles
- Satisfactory results for above-transition resonances

2024 AI/ML PI Exchange Meeting, DOE-NP

SciBmad a ML-oriented Toolkits (Libraries)

Summary

- DOE-NP funded project for the enhancement of proton polarization using ML/AI. Goal: 5%.
- Several accelerator optimizations can impact polarization.
- These topics are of the type suitable for physics- informed Bayesian Optimization and we are evaluating suitability for Reinforcement Learning.
- Excellent team has formed, items being addressed:
- Emittance reduction (orbit, optics, bunch splitting) already works in the Booster
- Improved model building and programing of digital twins of all parts
- Reduction of resonance driving terms already works above transition energy

Dominant Participants

BNL: Kevin Brown, Weinin Dai, Bhawin Dhital, Yuan Gao, Levente Hajdu, Kiel Hock, Bohong Huang, Natalie Isenberg, Nguyen Linh, Chuyu Liu, Vincent Schoefer, Nathan Urban

Cornell: Georg Hoffstaetter de Torquat (also BNL), Lucy Lin, Eiad Hamwi, David Sagan, Matt Signorelli

SLAC: Auralee Edelen

JLAB: Malachi Schram, Aarmen Kasparian

RPI: Yinan Wang

Radiasoft: Nathan Cook, Jon Edelen, Chris Hall

2024 AI/ML PI Exchange Meeting, DOE-NP

December 4, 2024

Thank you and Questions?

2024 AI/ML PI Exchange Meeting, DOE-NP

December 4, 2024