TECHNOLOGIES

Material and Design Advances in Silicon-on-Insulator Substrates to Improve Nuclear Physics Sensors and Circuits

August 13, 2024

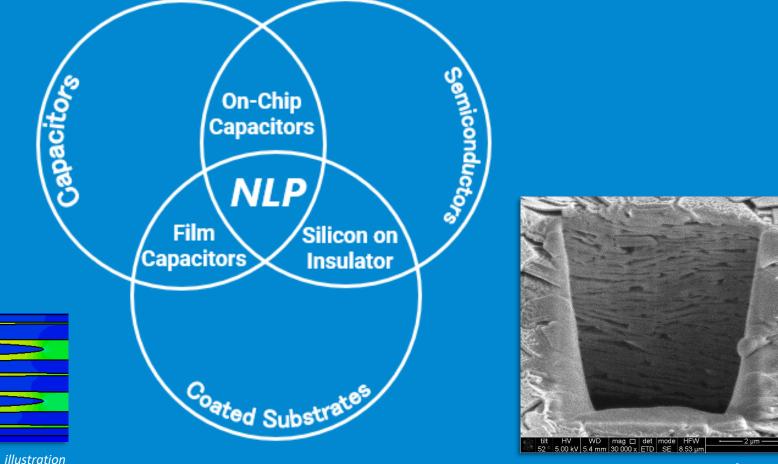
Redacted Copy for Distribution

Caporus Technologies, Inc

Intro to Caporus & NLP™

Silicon on Insulator for NP

Intro to Caporus & NLP™


Silicon on Insulator for NP

Caporus NLPTM

Nanoscale Lamellar Porosity[™] (NLP[™])

Controls the electric field distribution within a porous ceramic structure


FIB image of material

Caporus Technologies, Inc.

10 µm

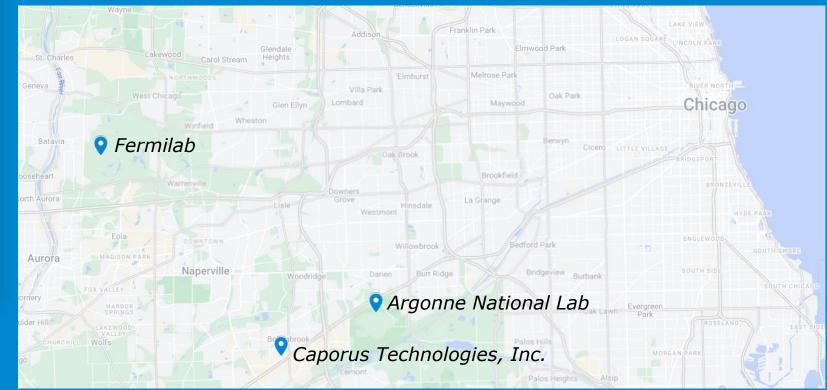
NLP™ Technology | **Production at Scale**

>10 L Slurry Production

Compatible with High-Volume Roll-to-Roll Manufacturing Demonstrated Nanoscale Lamellar Porosity over Large Areas

Slurry-based coating for R2R deposition of ceramic coating - No sintering required

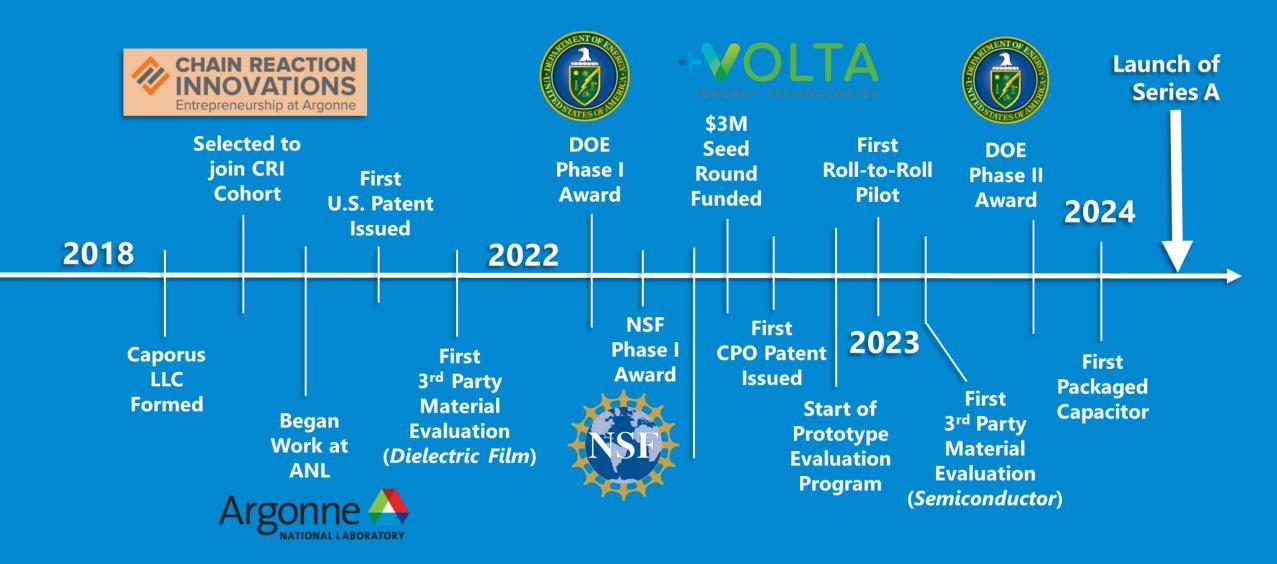
NLP | Issued IP


FIG. 9

C 900

	(19) 国家知识产校	又局 (12)发明专利 JP 7026850 B2 2022.2.28	 (10) 授权公告号 CN 113168932 B (45) 授权公告日 2022. 06. 07 (乳文・安徳舎・奥康纳 	USPTO JPO	issued July 2020 issued March 2022
(12) United States Patent O'Connor (45) Date of D	Patent: Jul. 28, 2020	(11)特許番号 特許第7026850号 (P7026850))登録日 令和4年2月17日(2022.2.17) Z 1 P X 22 (全37頁) 最終頁に続く	 建机构 深圳中一联合知识产权代理 有限公司 44414 注理师 王丽 1. 3/16 (2006.01) 3/56 (2006.01) 17/36 (2006.01) 17/36 (2006.01) 2件 11017494 A1,2011.01.27 D8185728 A1,2008.08.07 D4195693 A1,2004.10.07 	EPO	issued June 2022 pending filings in process
ELECTRICAL INSULATION WITH VACUUM OR GAS U.S. P. (71) Applicant: Kevin Andrew O'Connor, Orland Park, IL (US) 9,870,875 B1* 2004/0195693 A1 2004/0195782 A1 2011/0017494 A1 (72) Inventor: Kevin Andrew O'Connor, Orland Park, IL (US) 0TH (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. International Search Re 151974 dated Dec. 18, * cited by examiner (21) Appl. No.: 16/576,438 Primary Examiner (74) Attorney, Agent US 2020/0090866 A1 Mar. 19, 2020 (57)	10/2004 Kloster et al. 8/2008 Clevenger et al. 1/2011 Asokan et al. ER PUBLICATIONS port and Written Opinion for PCT/US19/ 2019. Eric W Thomas or Firm — Husch Blackwell LLP ABSTRACT		70875 B1,2018.01.16 96589 A,2007.07.11 4 刘平 建业书2页 说明书22页 附图29页		
 (60) Provisional application No. 62/733,174, filed on Sep. 19, 2018. (51) Int. CL (60) Provisional application No. 62/733,174, filed on Sep. 19, 2018. (51) Int. CL (51) Int. CL (61) HOIG 4/20 (2006.01) (70) HOIG 4/20 (2006.01) (71) HOIG 4/20 (2006.01) (72) U.S. CL (72) CP	e including solid dielectric regions diity of regions of vacuum or gas is tric constant of the regions of solid dielectric constant greater than 4. Each gions of vacuum or gas or the regions ay be anisotropic with an aspect ratio nallest average dimension of a plurality or gas and/or solid dielectrics can have I micron. The dielectric structure may ical energy density in the regions of i in the solid matrix. One or more active structure can be coated with a without an interface between a region d electrode. ms, 29 Drawing Sheets)1 つ又は複数の領域であって うちの少なくとも 1 つの領域は ξ (d m i n)を有する、 1 つ		902	904

Caporus is located near Fermilab and Argonne in Southwest Chicagoland


Caporus was previously embedded at Argonne through the Chain Reaction Innovations program

CHAIN REACTION

Entrepreneurship at Argonne

Timeline and Milestones

Caporus | Team

TECHNOLOGIES

BOARD OF DIRECTORS

Kevin O'Connor, PhD Founder and CEO

David Schroeder Chief Technology Officer Volta Energy Technologies

Jim Cable Former CEO Peregrine Semiconductor

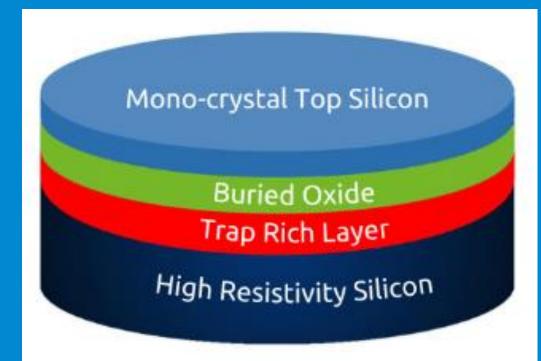
Caporus Technologies, Inc

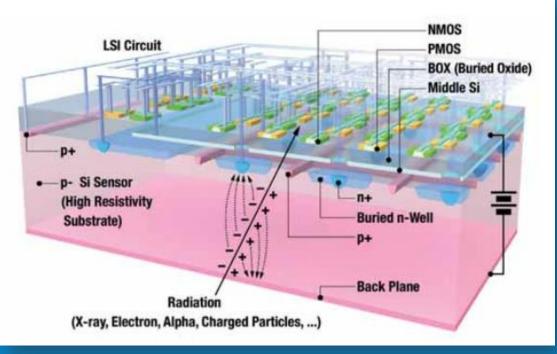
Intro to Caporus & NLP™

Silicon on Insulator for NP

Silicon on Insulator (SOI)

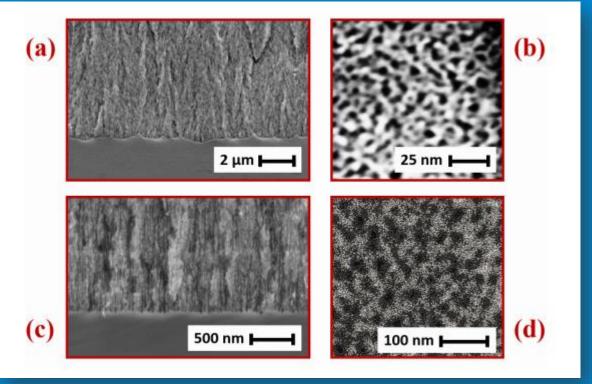
Commercial RF-SOI Substrate Structure




Image from SOITEC

SOI Advantages	SOI Disadvantages		
Superior Single Event	Total Ionizing Dose Issues		
Upset Tolerance	(Charge Effects)		
Better Noise Isolation	Radiation Damage to BOX		
Speed	Back-gate Effect due to Field Applied in Sensor		
Density	Coupling of Charges in BOX and sensor		

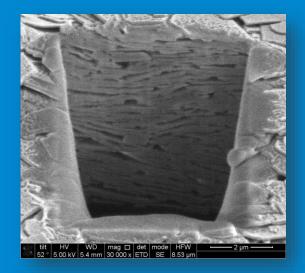
Improved SOI for MAPS

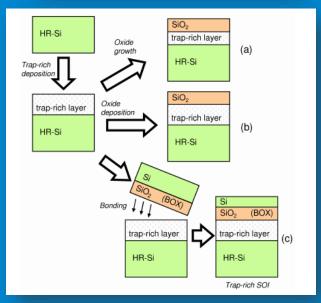

- Reduce unwanted coupling between substrate and front-end electronics
 - Reduced back-gate effect
 - Improve sensitivity
 - Reduce noise
- Improved radiation hardness
 - Lower radiation cross-section
 - Reduced coupling decreases effects of trapped charges
- Elimination of inversion layer effects
 - Enable depletion with applied electric field
 - Improve sensitivity

SOIPIX – 2016 KEK Annual Report

NLP | Porous Si SOI

- Porous Si SOI
 - State-of-the-art in research
 - Porous Si layer between silica and silicon
 - Electrochemical etching of Si
 - Columnar porosity
- Advantages
 - Trap-rich and low dielectric constant
 - Record-high linearity (RF)
 - Reduced substrate noise, coupling and parasitics
- Disadvantages
 - Poor mechanical stability (>50% porosity)
 - Sometimes requires doped substrates to increase conductivity for electrochemical etching (\$)


M. Rack, UCL Dissertation, 2021



NLP Porous Si SOI

- Advantages over Standard Si
 - High effective resistivity due to trap layers at pore interfaces
- Advantages over Trap-Rich SOI
 - Potential for record-high linearity
 - Reduced substrate noise coupling levels and associated parasitics
- Advantages over Porous Si
 - Equal or potentially lower effective permittivity
 - Lower porosity required for given effective permittivity higher mechanical strength due to higher solid content
 - Higher mechanical strength due to pore structure highly resistant to crushing/breaking from compaction
 - Compatible with any substrate resistivity (e.g. compatible with HR or std Si) – no need for low resistivity for electrochemical porosification
 - No need for post-processing to implement porosity (e.g. no etch-stop layers, patterning, etc.)

Intro to Caporus & NLPTM

Silicon on Insulator for NP

Phase II Project Summary

- Priorities from Solicitation
 - Next generation of monolithic active pixel sensors (MAPS)
 - Radiation hardness (EIC luminosity of $10^{33} 10^{34}$ cm⁻²s⁻¹)
 - Apply E-field to substrate to fully deplete detection volume
- Proposed Technology
 - Implement MAPS on SOI
 - Improved single-event upset, better noise isolation, speed, and density compared to bulk process
 - Modified SOI with porous Si below BOX
 - Reduce capacitive coupling between Si layers (Lower ε_{eff} and greater non-BOX thickness of porous Si)
 - Reduce radiation cross-section of BOX and total ionizing dose effects
 - Eliminate parasitic conduction layer at interface of BOX and bulk Si (Trap-rich)
- Phase II Demonstration
 - 1. Scale processes for radiation testing
 - 2. Etching processes for porous layer
 - 3. Design CMOS and test structures
 - 4. Fabricate test devices
 - 5. Test for radiation hardness
 - With and without porous layer
 - As-received and after irradiation

Phase II Resources

Phase II Team

- Caporus Technologies
 - Kevin O'Connor (PI)
 - Nikki Chang
 - Karabi Mondal
 - Eric Acosta
 - Bill Fortino
 - Michael Boehme
 - Jim Cable (Consultant SOI Development and Commercialization)
 - Francis Chapman (Consultant Materials Development)
- Subaward
 - Fermi National Accelerator Laboratory
 - Farah Fahim, Davide Braga, and Xiaoran Wang (SOI – MAPS Design, Irradiation, Device Testing)

Additional Resources

- SkyWater (Vendor)
 - Device fabrication
- Foley and Lardner (TABA)
 - IP: USPTO and PCT applications
 - Contracts: Commercial engagement pilot and license
- External Facilities
 - Center for Nanoscale Materials (CNM)
 - Liliana Stan and Ralu Divan (SciCon)
 - UChicago Pritzker Nanofabrication Facility
 - Northwestern NUFAB
- Carl Traynor (Consultant Commercialization)

Caporus Technologies, Inc.

Asks from NP Community

- Addressing Vendor Schedule Risk
 - Availability of SkyWater RH90 process is delayed
 - Investigating alternatives for fabrication of test structures
 - CMOS processing on SOI substrates preferred
- Connections within DOE Community
 - End users of MAPS detectors
 - Detector development community

<u>Contact</u> PI: Kevin O'Connor oconnorka@caporus.com