

VERTICALLY INTEGRATED TIMING READOUT CHIP (VTROC): An Advanced, Small Pitch, Low Power Solution For Nuclear Physics Applications

Contract # DE-SC0022479 | 2024 SBIR/STTR Exchange Meeting Period of performance: 04/03/2023 - 04/02/2025 TPOC: Dr. Michelle Shinn

- EPIR, Inc. Team: Dr. Sushant Sonde (PI), Dr. Silviu Velicu (PM), Dr. Yong Chang
 - Fermilab Team: Dr. Tiehui Ted Liu

OUTLINE

- Introduction
 - Company overview
- Background
 - DOE's requirements
 - EPIR Inc.'s proposed approach
- Programmatic
 - Program Objectives
 - Updates on technical tasks
 - ASIC design effort
 - Multi-tier integration effort
 - Testing and validation results
- Summary & Outlook

COMPANY OVERVIEW

• Cutting-edge sensor technology development with leading US imaging companies and federal agencies.

COMPANY OVERVIEW

EPIR'S DEVICE INFRASTRUCTURE & TARGET APPLICATIONS

EPIR's technical infrastructure drives innovation in multiple different application spaces

EPIR Inc. Proprietary Information

PRODUCT PORTFOLIO

EPIR, Inc.	Commercial-grade Solutions			Custom Solutions	
Format	320×256 30 μm pitch	640×512 15 μm pitch	1280×720 8 μm pitch	640×512 20 μm pitch	1280×512 20 μm pitch
Relative Die Size	20×11mm	20×11mm	21×10mm	23×14mm	30×18mm
Layout				4 <u>0</u> µm	40 µm

EPIR manufactures both standard and custom devices in the NIR to LWIR range •

eSWIR on SI, 195K MWIR on Si, 110K LWIR on CZT, 85K

SYNERGISTIC ACTIVITIES WITH DOE

▣

ADVANCED R&D SOLUTIONS FOR NP & HEP APPLICATIONS

Advanced Integration Technology

- Integration of ETROC1/ETROC2 with LGAD
 - Die-die integration
 - Die-to-wafer integration
 - Alignment accuracy of 500nm verified on chips down to 8µm-pitch pixel sensors
 - Conventional and thermal stress aware DBI technology

 VTROC: Vertically-Integrated Timing Read Out Chip

Multi-tier, Small-pixel ASIC

- 1. Detector: Small-pixel AC-LGAD
- 2. Front end preamp + discriminator + charge injector
- 3. Circular buffer memory array + readout logic
- 4. PCB: AC-LGAD
- 250µm pixel pitch
- 8×8 pixels
- Multi-tier ASICs
- 4-tier integration scheme

Badiation Tolerant Silicon Sensors

- Advanced LGAD and AC-LGAD designs
 - Multi-layer epitaxial growth
 - In-situ doping allows design flexibility
 - Large area device fabrication

DC-LGADs

AC-LGADs

EPIR Inc. Proprietary Information

Patented technologies for advanced integration and advanced sensors

SYNERGISTIC ACTIVITIES WITH DOE

ADVANCED R&D SOLUTIONS FOR NP & HEP APPLICATIONS

HgCdTe

LN2 cooled Camera head

Stirling cooler camera and MWIR imager

Tested under neutron irradiation $1.5 \times 10^{13} \text{ n} \cdot \text{cm}^{-2}$ neutron exposure under an instant flux of 2×10^9 n $\cdot \text{cm}^{-2} \cdot \text{s}^{-1}$

-3

🗫 Radiation Hardened Camera 🗫

After $1.5 \times 10^{13} \text{ n} \cdot \text{cm}^{-2}$ fluence neutron exposure under an instant flux of 2×10^9 n $\cdot \text{cm}^{-2} \cdot \text{s}^{-1}$

After 10¹² n ⋅cm⁻² fluence neutron exposure

After an extra temperature cycling from 100K to room temperature. The circled area shows the defective pixels recovered after temperature circling.

Patented technology for radiation hard sensor

- NUCLEAR PHYSICS ELECTRONICS DESIGN AND FABRICATION
 - Front-End Application-Specific Integrated Circuits (ASICs)
 - Solicitation requirements:
 - Very low power and very low noise charge amplifiers and filters, very high-rate photoncounting circuits, high-precision charge and timing measurement circuits, low-power and small-area ADCs and TDCs, efficient sparsifying and multiplexing circuits.
 - Two-dimensional high-channel-count circuits for small pixels combined with high-density, high-yield, and low-capacitance interconnection techniques. Layering these 2D ASICS via interconnects to increase functionality is also of interest.
 - Microelectronics for extreme environments such as high-radiation (both neutron and ionizing) and low temperature, depending on the application. Specifications for the former are: high channel count (64 channels) ASIC with fast timing (< 10 ps), high radiation hardness (10 Mrad with 10¹⁵ n/cm²), fast waveform sampling (> 4GHz) and bandwidth (> 2GHz)
 - Participating teams:
 - Fermilab:
 - EPIR, Inc.

VERTICALLY INTEGRATED TIMING READOUT CHIP (VTROC)

1300µm× 1300µm pixel footprint

Multi-tier ASIC

- Small pixel ASIC: 250µm pixel pitch, 8×8-pixel array
- Tier 1: Charge injection + Preamplifier + Discriminator, analog front-end
- Tier 2: Low power Time-to-Digital Converter (TDC)
- Tier 3: Read out circuit
- Modified Direct Bond Interconnect based multitier integration
 - Thermo-mechanical model considering effect of:
 - Bonding geometry
 - **Bonding material**
 - Detector/Read-out thickness
 - Interconnect metal
 - Al guided optimization
- Prototype demonstration on LGAD-VTROC integration

Expected improvements

Challenges

- Optimizing circuit blocks to fit reduced footprint (80% of the state-of-the-art)
- Manage power density with reduced pixel footprint
- High-yield multi-tier integration

Separation of low noise analog circuitry from digital blocks

- Improved spatial resolution (260%)
- Improved timing resolution (100%)
- Towards 4D detectors

EPIR Inc. Proprietary Information

ASIC DESIGN: TIER 1 – FRONT END PREAMP + DISCRIMINATOR + CHARGE INJECTOR

- Tier 1 has an 8×8 pixel array (2mm×2mm), a DAC and two I2C modules with different device addresses. Each pixel has a Qinj, a preamp (PA) including bias, a discriminator, and TSVs. The center TSV is used to deliver Disc output (Tier 1) to TDC pulse input (Tier 2).
- Charge injection signal comes from the external generator through differential-to-single ended eRx. The charge injection signal is delivered by H tree.
- The matrix is split into two sections. The left half has the PA from ETROC project. The right half includes the PA with higher current.
- The outputs of three pixels at the bottom row (0, 24, 32, 56) will be exported to pads for Tier1 testing purposes.
- All the blocks in Tier 1 are in place. Final integration is ongoing.

ASIC DESIGN: TIER 2 – LOW POWER TDC

- Tier 2 has an 8×8 pixel array, a divider, a strobe generator, and a I2C. This TSV is used to transmit the serial data from Tier 2 to Tier 3.
- Tier 2 receives external differential 320 MHz clock. The 320 MHz clock is divided into 40 MHz. The strobe generator produces a strobe signal.
- The strobe signal and 40 MHz clock are delivered to each pixel via two paralleled H tree.
- The delay line, divider, strobe generator, H trees and I2C are in place.
- The encoder and the serializer need to be verified and optimized.

ASIC DESIGN: TIER 3 – READOUT CIRCUITRY + TEST BLOCKS

- Tier 3 has an 8×8 pixel matrix, a clock generator (PLL + phase shifter) a I2C module, TSVs and 20 wire bonding pads for analog /digital powers, I2C controls, clock input and data output.
- The data is scrambled before output.
- A Fast command decoder receives the fast commands via eRx and decodes into the control signal to broadcast.
- The MUX, reference generator, PLL, phase shifter, I2C are in place.
- 2000µm×350µm area at the top of Tier 3 is reserved for 4 test blocks.
- The 4 test blocks are being optimized.

ASIC DESIGN: POWER CONSUMPTION

- In pixelized detectors, power consumptions of the front-end preamplifiers and discriminators become a concern. As the number of detector elements or pixels continues to increase, front-end circuits of much lower power consumption are required.
- A new circuit, pseudo thyristor is designed as a discriminator with power consumption 10-20 times lower than existing discriminator (below 100µW per channel).

TSV DESIGN: KEEP OUT ZONE

- Thermo-mechanical modeling
 - Automated thermal stress evaluation and geometry optimization workflow

- Higher TSV/interconnect density increases the average thermo-mechanical stress
- This will affect 'Keep Out Zone' considerations
- Use of alternate interconnect metal(s) can be considered

TSV DESIGN: KEEP OUT ZONE

- Mechanical stress can affect MOSFET devices.
- Compressive stress enhances the mobility of pFETs whereas tensile stress enhances the mobility of nFETs.
- TSVs create stress in Si that can extend up to 20µm away from the edge of the TSV.
- Most of the thermomechanical stress is concentrated at the surface.
- This affects positioning of the TSVs.

TSV DESIGN: OPTIMIZED NUMBER & LOCATIONS

MILTI-TIER DESIGN & TSV TEST SCHEME

Daisy-chain structures to validate multi-tier integration

- 1

TASK 2: DEMONSTRATION OF MULTI-TIER INTEGRATION SCHEME

EPIR Inc. Proprietary Information

Fermilab

MULTI-TIER INTEGRATION PROCESS DEVELOPMENT

- Optimized lithography process
- Wafer-scale TSV development

TASK 2: DEMONSTRATION OF MULTI-TIER INTEGRATION SCHEME

MULTI-TIER INTEGRATION PROCESS DEVELOPMENT

a)

b)

Optimized deep silicon etch process

• Wafer-scale TSV development

min

WAFER-SCALE BONDING PROCESS DEMONSTRATION

Die-to-die integration scheme

Die-to-wafer integration scheme

Conventional and DBI integration

- Excellent alignment accuracy: within 500nm
- Excellent vertical etch
- Void-free metal pillars
- Void-free interface: Metal interconnect and oxide are in very good contact
- Integration process for detectors down to 8μm pixel pitch

EPIR Inc. Proprietary Information

TASK 4: TECHNOLOGY VALIDATION

EARLY DEMONSTRATION OF VTROC (2D)

Representative device and characterization data follows.

EPIR Inc. Proprietary Information

EARLY DEMONSTRATION OF VTROC (2D) – BASIC FUNCTIONALITY TEST

Integrated assembly

- Baseline and noise width
 - Center: Preamp output baseline calibration for all 256 pixels, with sensor biased at 250V.
 - Right: Noise width for each pixels with sensor biased at 250V.

EARLY DEMONSTRATION OF VTROC (2D) – COSMIC RAY

- Cosmic ray run
 - The chip is configured to be able to self-trigger on any pixel hit to capture cosmic rays.
 - Run overnight for 15 hours, expect about ~ 10 hits per pixel.
 - All 256 pixels are connected with sensor properly based on the hit map after 15 hours exposure.

TASK 4: TECHNOLOGY VALIDATION

EARLY DEMONSTRATION OF VTROC (2D) – BEAM TEST CERN

• 120 GeV hadron beam (proton and pion)

• Three layers of ETROC2 + sensor telescope

• Beam spot seen by EPIR bump bonded chip (as trigger board)

- This is the beam spot observed by EPIR bump bonded board.
- CERN hadron beam spot core size is 1cm × 1cm.
- Worked well on the first try, self triggered.

EPIR Inc. Proprietary Information

TASK 4: TECHNOLOGY VALIDATION

EARLY DEMONSTRATION OF VTROC (2D) – BEAM TEST DESY

The first beam test at DESY for ETROC2 with electron beam (with two independent setups)

• Four layer of ETROC2+sensors in the Beam telescope (event display)

- DESY electron beam spot size is about 2 cm × 2 cm.
- The four-layer ETROC telescope is triggered by EPIR pair 1 chip.

• EPIR Pair 4 integrated with AIDA telescope, triggered by AIDA scintillators (smaller size)

EARLY DEMONSTRATION OF VTROC (2D) – TIMING RESOLUTION

EPIR Inc. Proprietary Information

• Timing resolution is limited by sensor performance

- ASIC design
 - Completed 3-tier reduced footprint designs
 - TSV scheme optimized
- Integration scheme development
 - Demonstrated die-to-die and die-towafer integration scheme
 - DBI 50µm, conventional high-density bumps – 8µm pitch
 - Alignment accuracy 500nm
- Testing and validation
 - 100% pixel bonding yield verified
 - Verified timing resolution ~45ps
- Outlook
 - Validate integrated 3-tier circuit design
 - Tape out to foundry
 - Integrate, test and validate VTROC

Thank you.

Contact Us

586 Territorial Dr Ste A, Bolingbrook, IL 60440

- ø ssonde@epirinc.com
- **(**³) (512) 905-9885
- https://www.linkedin.com/company/epir

Acknowledgement:

- Dr. Michelle Shinn
- Dr. Manouchehr Farkhondeh
- Fermilab team
- EPIR, Inc. team