High-Density Glass with Tuned Scintillation/Cherenkov Response to Improve Hadron Energy Resolution in NP-Exp

 \Box Scintilex

□ Dual-Readout Calorimeters

 \triangleright Example: Electron-Ion Collider

□ Experiment Requirements and STTR goals

 \Box Project Overview and results

□ Outlook

Principal Investigator: Tanja Horn Business Official: Ian L. Pegg

Award: DE-SC0021459

Scintilex Overview

□ Main focus: design and construction of instrumentation based on Cherenkov and scintillation light using novel materials

 \triangleright Applications: particle detection in nuclear physics experiments and homeland security; also medical

 \Box Activities and expertise

SCINTILEX

- \triangleright R&D new detector materials
- \triangleright Pilot testing and scale up; hardware
- \triangleright Software development and DAQ systems

 \Box Activities related to scintillator material

- \triangleright Jefferson Lab (JLab): EM calorimeters detectors: TCS@NPS, Hy(F)CAL ...
- Electron-Ion Collider (EIC): EPIC Detector, EIC 2nd detector
- \triangleright Possibly CERN future colliders, e.g., FCC

Dual Readout Calorimetry (DRC)

- \Box Dual readout calorimetry is a principle to resolve the issue of poor hadronic energy resolution caused by the fluctuation of the electromagnetic (EM) shower component and the binding energy loss
- \Box The EM component in the shower can be measured by implementing two different channels with different response (e.g., Cherenkov/Scintillation) in a calorimeter
- \Box Excellent energy resolution for hadrons may then be achieved by correcting the measurement event-by-event
- \triangleright The validity of this principle has been demonstrated with the DREAM fiber calorimeter
- \triangleright Two factors impacting hadronic resolution remain: sampling fluctuations and fluctuations in the Cherenkov light yield.
- **Homogeneous materials such as crystals and glasses in which both S and C light are generated in the same optical volume have the potential to eliminate these two issues.**

Dual Readout Calorimetry with homogeneous materials

- \Box Schematic showing a possible cell (two configurations) for the hadron calorimeter dual readout concept.
- \Box It removes the traditional boundary between EMCal and HCal, and thus eliminates the effect of dead materials in the middle of the hadronic shower development.
- \Box It is similar to typical homogeneous EMCal cell, but has segments with a total length of 1-2 λ _A. Readout devices could be mounted on the side faces.

Requirements on homogeneous DR materials

 \Box Conversion of energy into visible light – Scintillation Light Yield

► Scintillation light output that not too bright

 \Box Scintillation Response – emission intensity, decay kinetics

► Scintillation light slow and at around >500 nm for clear C/S discrimination

Emission spectrum matching between scintillator and photo detector – emission peak

 UV transparent to effectively collect the Cherenkov light – Good UV transmittance with UV cutoff < 350 nm

Chemical stability and radiation resistance – 100 Gy (EM) and 10¹⁵ n/cm²

 \Box High density to reduce volume of large hadron calorimeters – Interaction length and Moliere radius for lateral shower containment

 \Box Temperature stability

NP Examples: Hadron Calorimetry at EIC and Compton Polarimetry Possible design for a Si-PM

Improve hadron energy resolution for forward hadron calorimeter and far forward calorimeters, e.g., zero-degree calorimeter (ZDC)

Auxiliary detectors not shown

SCINTILEX

Another possible application: Compton Photon Detectors for beam polarization measurements – requires excellent timing properties (Cherenkov) and reasonable energy resolution 600 m contracts to the contract of 60

For η > 3, a constant term

energies rapidly increase in

this region while tracking

resolution significantly

 \triangleright energy resolution is

 \triangleright energy resolution

constant term

dominated by the

important

degrades

of ~5% is needed as jet

on tile detector for a ZDC

Scintilex STTR Concept

Demonstrate that the formulation and production techniques developed by Scintilex produce high-density C/S glass with sufficient Scintillation and Cherenkov response as well as optical characteristics suitable for nuclear physics experiments.

 \triangleright C/S glass is based on SciGlass – optimize formulation to meet specifications for DRC \triangleright Establish a measurement setup and algorithm for signal processing to determine the contribution of Cherenkov light. Optical filters can be used to select Cherenkov light with small or no scintillation contamination and vice versa

Develop a simulation to make projections of the contribution of the Cherenkov light of different glass formulations and optimize readout choice

 \square To demonstrate that high-density C/S glass coupled to state-of-the-art light sensors can meet the experimental specifications at GeV scale Scintilex will perform detailed studies of the performance of the high-density C/S glass using particle beams.

Glass Scintillator formulations

Phase 1: Process optimization to control C/S light yield

Demonstrated control of relative C/S light yield and identified candidates for scale up

Samples made at CUA/VSL/Scintilex with different relative C/S light yield

SCINTILEX

Scintillation to Cherenkov Ratio Projection

 \Box Developed an optical photon simulation for CSGlass – includes a two step process to mitigate the dramatic increase in CPU cost for a full optical simulation

The Sults shown for lepton/photon energies of 1 GeV, 5 GeV, and

10 GeV

SCINTILEX

Phase 2: Scale-up and larger scale production

Demonstrated a new formulation that further eliminates bubbles in the bulk, which is important for fabricating long or generally larger dimensions blocks

 \Box Produced rectangular shapes (20cm long) and larger lateral dimension blocks (5 x 5 x 5 cm3)

Transparency before

polishing the sides **CSGlass of length 20cm can be produced reliably and 40cm blocks can now be produced routinely – lab size batches (10-25 blocks)**

SciGlass Characterization

Longitudinal transmittance and kinetics

- \Box With the recent optimizations in the glass matrix and the production process, the transmittance peaks around 500nm at 50% transmittance - wavelengths well matched to the photon detection of typical SiPMs.
- \Box Further improvements in transmittance anticipated after new glass production method is implemented
- The scintillation kinetics were studied with the time-correlated single-photon counting method. A rise time with time constant ~1ns was observed – the effective decay time from a fit with a mono-exponential decay function is 46ns.

Separating Scintillation and Cherenkov Signals: Filters

SCINTILEX

Digitized signals are noticeably different – the Cherenkov signal is narrow, while the scintillation signal is broader with a tail on the right

■Setup: testbench with optical filters: UV pass filter UG5 to select Cherenkov and low-pass band filter GG435 to select scintillation light

Light output signals were measured with a cosmic ray trigger: plastic scintillator with SiPM readout featuring a custom designed PCB that includes bias voltage and signal

Cherenkov and scintillation light were measured simultaneously by two fast PMTs (R6427, 28mm, 1.7ns rise time)

Cherenkov and scintillation light can be separated by time of arrival and analysis of the recorded waveform

13

Separating Scintillation and Cherenkov Signals: waveform analysisIncident Particle

- **□Setup: Tektronix oscilloscope MDO4034C with external trigger** using the PyVisa library
- Acquire Cherenkov-only and Cherenkov+Scintillation spectra a few tens of thousand spectra for each
- Use ML techniques to perform classification of "unknown" experimental spectra – CERN ROOT TMVA framework with Binary Decision Trees (BDT) and Deep Neural Networks (DNN)

Separating Scintillation and Cherenkov Signals: AI-assisted

Overview of the ML algorithm used here:

- **Preparation.** Oscilloscope waveforms are processed and converted into a ROOT tree of a certain format to be loaded into the ML algorithm(s).
- **Training.** Known input data that corresponds to each classification group is given to the ML algorithm.
- **Classification (BDT, DNN)**. Unknown spectra are analyzed by the trained algorithm and classified into groups.

ML technique can be used for differentiating between spectra shapes and the algorithm can be deployed in the particle analysis procedure

SCINTILEX

"Good" waveform criteria: amplitude < -0.03 V && peakPosition > -10 ns && peakPosition < 20ns

Planned algorithm upgrades: implement multi-class classification \rightarrow train the algorithm to recognize "baseline" spectra and attribute them to a third class of signals

Prototype Beam Campaign to test performance at scale

Preparations for beam tests

- \triangleright Detector prototypes have been designed and built and are ready for beam test
- Readout chain based on PMT to baseline difficulties with procurement
- \triangleright Readout chain based on SiPM based on our simulations expect ~30% increase in detected light compared to PMT as quantum efficiency fits the emission spectrum
- \triangleright Investigating alternative beam facilities for the test campaigns
	- o Test at GeV scale with clean photon beam similar to the tests carried out for SciGlass
	- o Test at GeV scale with mixed electron/hadron beams
	- o Test at MeV/GeV scale with hadron beams
	- o Different setup at different luminosity, e.g., in the Compton Photon detector setup at JLab
	- \circ Few hundred MeV regime instead of GeV scale to validate fundamental glass properties

There was no opportunity to carry out a beam test campaign at GeV scale in 2023/24

Beam Test Campaign at MeV Scale – electrons

 \triangleright Initial electron beam E = 855 MeV, $I=25$ pA

17

- \triangleright 3 runs: different positions for different electron energy
- \triangleright 4 channels: plastic, CSGlass, Schott, PbF₂

Beam Test Campaign at MeV Scale – protons

- \triangleright Proton beam with 10 kHz count rate
- ≥ 4 runs: 80, 120, 160, 220 MeV proton energy
- \triangleright Beam spots FWHM: 19.6, 13.3, 19.6, 8.1 mm
- 2 channels: plastic, CSGlass (2x2x40cm)
- \triangleright Coincidence scheme: plastic AND CSGlass in 160 ns time window
- \triangleright DAQ time: 5 min per run
- \triangleright Trace length: 3.5 us

 \Box Demonstrated an optimized glass formulation (CSGlass) to meet the general specifications for DRC

 \Box Scaled up CSGlass blocks have been produced in lab size batches (10-20 blocks)

- \Box Established a measurement setup and algorithm for signal processing to determine the contribution of Cherenkov light.
	- o Optical filters were used to select Cherenkov light with small or no scintillation contamination and vice versa
	- o Developed and tested a full waveform analysis algorithm using AI/ML techniques.

 \Box Completed MeV scale beam test campaigns with protons and electrons

 \Box For a complete performance evaluation with a prototype and suitable readout for NP experiments at scale need to carry out a beam test campaign at GeV scale when there is an opportunity

