

Pacific MicroCHIP Pacific MicroCHIP I

An ASIC with a Low Power Multichannel ADC for Energy and Timing Measurements

DoE award number: DE-SC0018566 **PI:** Anton Karnitski **Date of review:** 08/14/2024

- The company, its specialization/expertise
- Specifications for the multichannel ASIC for energy and timing mesurements
- ASIC core architecture with event-driven backend for detector streaming readout
- Phase IIB project objectives
- Modifications done for the 2nd Gen ASIC
- Assembled parts
- Updated PCB design
- ASIC testbench setup for JESD204B interface and multi-channel operation
- ADC testing results
- Phase IIB project schedule

COMPANY

Pacific MicroCHIP Corp. is incorporated in 2006. It is headquartered in Culver City, California. Main focus – providing IC/ASIC design services and turnkey solutions. The office includes the working space and a laboratory for ASIC testing.

Core expertise:

- Analog (ADC/DAC, CTF, VGA, BG, LDO)
- Mixed Signal (PLL, CDR, SerDes, MDrv, TIA)
- RF (LNA, Mixer/Modulator, PA)
- Digital (RTL, Synthesis, P&R, Timing Closure, DFT, Verifications)
- Layout (CMOS/SiGe) down to 7nm

MULTICHANNEL ADC ASIC SPECIFICATION

4

FEATURES:

- 32 independent channels
- Programmable sampling rate of 200/100/50 MS/s
- 1Vpp differential input signal
- ENOB >9-bit
- Programmable input signal bandwidth 0.1-0.3 GHz
- Integrated event-driven digital backend
- JESD204B output data interface
- Extended temperature range
 -40C..+125C
- Low power consumption
- I2C interface for ASIC control

US Patent Pending

ADC CORE ARCHITECTURE

FEATURES:

ADC CORE BLOCK DIAGRAM:

- 12b SAR ADC architecture
- Segmented 3t-9b CDAC
- Optional external/internal ADC reference voltage source
- Fractional reference voltage
- Dual comparator
- Asynchronous logic
- Built-in FSM for comparator offset compensation
- Built-in FSM for CDAC nonlinearity calibration

ADC TIMING DIAGRAM: <u>1ns</u> 4ns Track/ sampling Conversion

Pacific MicroCHIP Corp.

US Patent Pending

ADC SPECIFICATION TABLE

Parameter	Min	Тур	Max	Units	Notes
		ADC			
ADC channels		32			Independent
ADC resolution		12	A	bit	
ENOB	9		9.7	bit	
Sampling rate		200		MHz	
		Data Out	put		
Number of ADC outputs	anna	16	SAR - DVA	Sama	Differential
Readout ADC line rate		6.4	annae im	Gb/s	
Event data output		124		bit	For each event
Output impedance		100		Ω	Differential (LVDS/CML)
		Control Inte	erface		
Interface type		I2C			Two wire interface
		General Speci	fications		-
Technology for implementation		28nm HPC TSMC	+	- N	
Core Power Supply Voltage (VDDD)	0.85	0.9	0.95	V	
Analog Power Supply Voltage (VDDA)	0.85	0.9	0.95	V	
Digital interface Supply Voltage (VDD18)	1.7	1.8	1.9	V	2 Pacific Mile
High-speed output buffers Supply Voltage (VDD12)	1.1	1.2	1.3	V	
Total ASIC power dissipation		1.1	· · · ·	W	h.
Total ASIC power dissipation without raw data output	<u></u>	400	A	mW	
Single ADC power dissipation	1	11.7	<u> </u>	mW	Without JESD204B interface
Temperature range (junction)	-40		110	С	
ESD (HBM)	2	220	ALL STITLE	kV	Low speed I/Os and DC
ESD (HBM)	1			kV	High-speed I/Os
End of life (EoL)	10			Y	@110C
Package		15x15 BGA			Same as for previous ASIC
TID immunity	500			Krad	
SEE immunity		-			SEL is expected to be eliminated by using <1V power supply

Pacific MicroCHIP Corp.

US Patent Pending

RAW ADC DATA OUTPUT

Mode	JESD 204B Ianes	ADC per lane	Lane data rate	ADC data rate	
Full speed	16	2	6.4Gbps	200MS/s	
Half speed	8	4	6.4Gbps	100MS/s	
Quarter speed	4	8	6.4Gbps	50MS/s	

- Programmable ADC sampling rate of 200/100/50 MS/s
- Constant JESD204B output data rate 6.4Gbit per second
- Shared JESD204B output data interface between 2/4/8 ADCs reduces the number of interface lines, allowing high system integration density

EVENT-DRIVEN BACKEND

- This ADC output is monitored by a digital comparator with a programmable threshold
- When the ADC input exceeds threshold, a time stamp is assigned, and the peak value of the incoming ADC data is recorded.

Event-driven digital backend was built in collaboration with LBNL. And we want to thank Dr. Carl Grace for his effort.

 When the event is completed, the relevant information is assembled into a packet by the Event Builder block. When the shared FIFO is ready, events stored in the channel FIFO are read out.

OUTPUT DATA FRAME


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Bits	Field Name	Comment
[123]	Parity	Used to monitor integrity of data transmission.
[122]	Event Declaration	0 → test event (see text), 1 → normal
[121:119]	Fixed	Fixed bits - should always read value 3'b011
[118:107]	Window Interval	Determines the number of ADC samples to examine looking for a peak.
[106:102]	Channel ID	5-bit unique identifier.
[101:54]	TOA (Time of Arrival)	The timestamp of where the ADC value passed the threshold. Covers ~16 days at a 200 MHz clock rate.
[53:42]	TOP (Time of peak)	Supports shaper peaking times of up to 20 $\mu s$ at a 200 MHz clock rate.
[41:30]	TOT (Time over Threshold)	Supports shaper pulse widths of up to 40 $\mu$ s at a 200 MHz clock rate.
[29:18]	Peak Value	12-bit peak value recorded in the event.
[17:6]	Channel Threshold	12-bit threshold value used during this event.
[5:0]	Shared FIFO usage	For diagnostics and debugging.



50Mbps / 124+2bit / 32ch

≈ 12.4k events per second per channel

# PHASE IIB PROJECT OBJECTIVE



The performance parameters of the 1st Gen ASIC are required to be improved in order for the device to be used commercially. Several design mistakes were identified during the chip testing and must also be addressed within Phase IIB in the 2nd Gen ASIC and the evaluation PCB.

Phase IIB objective	Status
Fix issues discovered during 1 st Gen ASIC evaluation	Done
Redesign and fabricate the chip (2 nd Gen).	Done
Package the chips.	Done
Update the design and fabricate new PCB.	Done
Test and characterize the 2 nd Gen ADC ASIC.	Done
Prepare updated datasheet and evaluation board for marketing.	Done
Submit deliverables to the DoE.	Done

### ISSUES ADDRESSED WITHIN PHASE IIB PROJECT



#	Issue Description	Comments	Status
1	VREF/VDDIO bumps are swapped on the chip. As a result, these bumps are incorrectly	Significant modification to the PCB is	Fixed
	connected on the PCB.	needed.	
	An offset calibration FSM does not take into account the 3 MSBs of the 12+1bit ADC output code	A modified algorithm was implemented	Fixed
	which uses thermometric encoding to 2 bits, resulting in the 12-bit data. Thus, the 2MSBs of the	in the CPU and tested. It appears to	
2	output data do not behave as the other binary weighed bits. As a result, the calibration algorithm	work as expected. It needs to be	
	leads to overflow. Consequently, resulting codes for offset adjustment are either at the minimum	implemented on the chip.	
	or maximum possible value.		
	An ADC sampling clock frequency divider is built into the clock distribution network of the ASIC.	An equivalent frequency divider has to	Fixed
0	However, the frequency of the clock going to the DSP is not scaled down proportionally with the	be implemented for the digital clock.	
3	divided clock frequency. Thus, using any other than a default clock frequency division option		
	makes the pulse detection to malfunction.		
	An older CPU with a bug was implemented on the ASIC. The bug prevents the CPU from	The CPU needs to be updated to the	Fixed
4	executing the first instruction properly and to read back the program memory through the I2C	most recent version.	
	interface after writing it.	A	
	The two inverted (N) outputs of the offset compensation DAC are shorted together. This causes	After removing the short using FIB, the	Fixed
1	much greater offset compared to what can be compensated. This was confirmed through Monte-	offset compensation showed	
5	Carlo simulations.	performance much closer to what was	
00	ailia Miara(CMID 🛛 Daailia Miara(	expected.	
	It was found that the comparator design has a missing wire between differential offset cancellation	The bug needs to be fixed in the ADC.	Fixed
6	transistors. This causes the offset compensation range to be slightly smaller than expected.	U U	
	A clock duty cycle adjustment is sensitive to the power supply voltage, when, for example, the	The duty cycle generator block's	Fixed
_	UART is injecting noise to the digital power supply. This is verified by observing the noise floor	sensitivity to the power supply voltage	
1	improvement when the UART is switched off. Additionally, if more delay cells are used to lower	should be reduced.	
	the duty cycle, the spur power increases on the ADC output spectrum.		
	When the power supplies of the ASIC are switched off, the VREF voltage has a low-impedance	A circuit is needed to prevent the VREF	Fixed
8	path to ground. This can cause excessive power dissipation from a reference voltage, and	low-impedance path when the ASIC is	
	damage system components. The VREF voltage should be applied after the ASIC is powered on.	off.	
	When the Radj code for the input LPF is set to 0, the termination resistor to the on-chip VCM	The bootstrapped switch VCM circuit	Fixed
9	generator is in the Hi-Z mode. In this mode, the external VCM controls the input to bootstrap the	should be improved for better stability	
	sampling switch, but the VCM for bootstrap switch output is still set from the internal VCM.	and control of the VCM.	
	The UART clock and data outputs operate at 50MHz. Implemented output buffers are not capable	The output buffer driving capacity should	Fixed
10	of driving a significant external load. This requires external buffers to be implemented on the	be improved.	
	PCB.		

### **CHIP FLOORPLAN AND LAYOUT**



#### ASIC top level floorplan:



#### 2nd Gen ASIC top level layout:



### 2nd GENERATION CHIP AND ASSEMBLED PART



#### 2nd Gen ASIC label @PMCC20SC640-01A

2nd Gen ASIC bumps



#### **2nd GEN ASIC TESTBENCH SETUP**





### JESD204B INTERFACE VERIFICATION TESTBENCH



VCU1287 FPGA PCB along with the P20640B ASIC evaluation PCB. This FPGA board was used to generate 32 pulse channels and receive 16 JESD204B data lanes.

Only 17 out of the 97 assembled chips have reliable JESD204B data stream at the default 900mV supply voltage. If the supply voltage is increased to 950mV, the JESD204B link operates reliably in 49 ASICs.



#### **AUTOMATED TESTBENCH SETUP**





### EVENT DRIVEN DIGITAL BACKEND TEST RESULTS



The event-driven backend was designed in collaboration with Dr. Carl Grace of LBNL. It is capable of extracting the TOT, TOP, TOA, and the peak amplitude of incoming pulse signals.

200 400





: SNR = -8.26 dB THD = -5.45 dB SFDR = 0.15 dB SINAD = -8.44 dB SW = 2758 AVG = 514.2

Sample #

1600 1800 2000 2200

1000 1200 1400

Pacific MicroCHIP Corp.

#### EVENT DRIVEN BACKEND VERIFICATION



- To test the event driven back-end (EDB) functionality, 32 pulses were supplied to the ASIC input.
- Pulses were generated using a Virtex 7 Ultrascale FPGA on the VCU1287 evaluation platform.
- The EDB data, which is streamed through the UART interface, was captured using a Kintex 7 FPGA on Genesys-2 evaluation board.
- Multiple pulse generator outputs were combined using a power splitter. This allowed different pulse amplitudes to be produced.





Pacific MicroCHIP

acific MicroCHIF

Pacific

### EVENT DRIVEN BACKEND VERIFICATION





The samples for pre/post event represent the two supplied pulses, as expected. The operation mode was configured for 8 pre-event samples before the peak.

### EVENT DRIVEN BACKEND VERIFICATION



A pulse was applied simultaneously to 14 analog input channels. Each pulse occurred at approximately the same time (TOA). The pre-sample setting was set to 11.

Partiy P1	Parity P1	Parity P2	Parity P2	Packet ID P1	Packet Id P2	Channel Id P1	Channel Id P2	Time of Arrival	FIFO Counter	Sample 0	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10	Sample 11	Sample 12	Sample 13	Sample 14	Sample 15
1	. 1	0	0 0	2	3	10	10	274294741	0	0	0	0	0	0	0	0	0	0	0	0	2832	560	0	0	0
0	0	1	. 1	. 2	3	0	0	274294742	1	0	0	0	0	0	0	0	0	0	3500	4024	4088	561	27	0	0
1	. 1	1	. 1	. 2	3	1	1	274294742	3	0	0	0	0	0	0	0	0	0	0	0	3416	2832	255	0	0
0	0	1	. 1	. 2	3	2	2	274294742	5	16	16	16	16	16	16	16	16	16	16	16	3500	1270	176	48	19
0	0	0	0 0	2	3	3	3	274294743	7	0	0	0	0	0	0	0	0	0	2656	3636	4095	1619	805	0	0
0	0	1	. 1	. 2	3	4	4	274294742	9	0	0	0	0	0	0	0	760	3640	4040	4091	4095	1023	112	10	0
1	. 1	0	0 0	2	3	5	5	274294742	11	0	0	0	0	0	0	3048	3954	4072	4094	4095	4095	2958	375	31	4
0	0	1	. 1	. 2	3	8	8	274294742	13	0	1736	3880	4095	4095	4095	4095	4095	4095	4095	4095	4095	3690	380	0	0
0	0	1	. 1	. 2	3	9	9	274294742	15	0	0	0	0	0	0	0	3056	3544	4095	4095	4095	959	222	0	0
1	. 1	0	0 0	2	3	11	11	274294742	17	0	0	0	0	3468	4006	4074	4090	4094	4094	4095	4095	587	63	19	3
1	. 1	0	0 0	2	3	12	12	274294742	19	0	0	0	3082	3798	3940	4044	4095	4095	4095	4095	4095	3512	727	255	81
1	. 1	1	. 1	. 2	3	14	14	274294741	21	0	0	0	0	2854	4048	4095	4095	4095	4095	4095	4095	819	0	0	0
1	1	1	. 1	. 2	3	15	15	274294742	23	0	0	0	0	0	1616	4060	4095	4095	4095	4095	4095	310	0	0	0

Testing of pulse analysis mode, which provides time of peak (TOP), time over threshold (TOT), and pulse peak values. An example data packet showing a pulse being simultaneously applied to inputs of 14 analog channels

	A B	L L	U	E	٢	6	н	1	J	K	L	IVI	
1	Parity Parity E	vp Event Dec	Fixed Bits	Window interval	Channel Id	TOA	ТОР	TOT	Peak	Channel Threshold	FIFO Counter		
2	0	0 1	L 3	100	0	3.83573E+11	9	12	3856	1024	0		
3	1	1 1	L 3	100	1	3.83573E+11	11	13	3910	1024	0		
4	0	0 1	L 3	100	2	3.83573E+11	12	11	3714	1024	0		
5	1	1 1	L 3	100	3	3.83573E+11	4	13	3784	1024	0		
6	1	1 1	L 3	100	4	3.83573E+11	4	13	3854	1024	0		
7	0	0 1	L 3	100	5	3.83573E+11	10	12	3850	1024	0		
8	1	1 1	L 3	100	8	3.83573E+11	11	12	3939	1024	0		
9	1	1 1	L 3	100	9	3.83573E+11	11	12	3948	1024	0		
10	0	0 1	L 3	100	10	3.83573E+11	10	12	3888	1024	0		
11	1	1 1	L 3	100	11	3.83573E+11	12	10	3822	1024	0		
12	1	1 1	L 3	100	12	3.83573E+11	3	13	3992	1024	0		
13	0	0 1	L 3	100	14	3.83573E+11	10	12	3940	1024	0		
14	1	1 1	L 3	100	15	3.83573E+11	4	12	4095	1024	0		
15	1	1 1	L 3	100	0	3.83573E+11	4	6	3832	1024	12		
16	1	1 1	L 3	100	1	3.83573E+11	6	0	3888	1024	12		
17	1	1 1	L 3	100	2	3.83573E+11	5	6	3688	1024	12		
18	0	0 1	L 3	100	3	3.83573E+11	3	7	3793	1024	12		
19	0	0 1	L 3	100	4	3.83573E+11	3	6	3848	1024	12		
20	1	1 1	L 3	100	5	3.83573E+11	5	0	3840	1024	12		
21	1	1 1	L 3	100	8	3.83573E+11	5	6	3929	1024	12		
22	1	1 1	L 3	100	9	3.83573E+11	4	5	3952	1024	12		
23	1	1 1	L 3	100	10	3.83573E+11	5	6	3865	1024	12		
24	0	0 1	L 3	100	11	3.83573E+11	5	6	3812	1024	12		
25	1	1 1	L 3	100	12	3.83573E+11	3	6	3992	1024	12		
26	1	1 1	L 3	100	14	3.83573E+11	6	5	3920	1024	12		
27	0	0 1	L 3	100	15	3.83573E+11	2	5	4095	1024	12		
20	0	1 0		0	0	0	0	0	0	0	0		

#### ADC PERFORMANCE FOR ALL CHANNELS



When the JESD204B interface is enabled, and 950mV is used to power the digital core to avoid the JESD204B interface issues, the typical power consumption of the ASIC is 780mW. This number averages to approximately **24.5mW per ADC channel**.



21

#### ADC PERFORMANCE FOR ALL CHANNELS



Measured ENOB value for all 32 ADC channels of 20 chips. Impact of the ADC switching cross-talk: ADC channel #20 has a minimum ENOB value of 9.4 bits in all chips. However, the channel #30 has a maximum ENOB of 9.2 bits. If the channels were desynchronized, the channel #20 can show less than 9 bits of ENOB, while the channel #30 can show up to 9.7 bits of ENOB.



22

### TESTING RESULTS: ADC OUTPUT SPECTRUM CH 31



#### Channel 31 after calibration: SFDR 65.8dB / ENOB 9.52 / SNR 60.2dB



: SNR=60.2dB THD=-65.5dB SFDR=65.8 dB SINAD=59.1dB ENOB=9.52 SW=3744 AVG=2049.3

# TESTING RESULTS: ADC PERFORNACE SUMMARY



CHANNEL			CALIBRATION CODES					ADC PER	FORMANCE	
NUMBER	CMP 1 ofs	CMP 2 ofs	CDAC C14	CDAC C15	CDAC C16	CDAC C17	SNR (dB)	SFDR (dB)	SINAD (dB)	ENOB (Bit)
0	144	20E	2E	2C	32	2F	59.5	67.5	58.7	9.45
1	164	1D3	2D	2D	35	33	58.7	70.7	58.4	9.41
2	1B7	1DB	2F	2D	35	35	60	67.3	58.9	9.5
3	19B	1D0	2B	27	2F	2D	57.9	72.4	57.6	9.28
4	15B	20A	2D	2B	37	37	59.7	67.7	59	9.51
5	144	22D	2F	2D	31	35	60.2	66.2	59.2	9.54
6	195	23C	30	2F	43	43	59.8	66.8	58.6	9.44
7	15A	201	2D	2D	35	31	59.4	65.5	58.4	9.4
8	14A	1BA	2F	2F	35	31	59.5	68.3	58.9	9.49
9	1B8	218	36	34	38	40	56.4	74.2	56.2	9.04
10	161	1B2	2B	27	2B	2D	59.7	67	58.4	9.42
11	15D	22C	2B	23	2B	2B	57.8	68.1	57.2	9.21
12	155	23B	2D	2B	37	33	60.4	67.7	59.5	9.59
13	1C6	236	2F	35	47	45	57.2	66.7	56.6	9.1
14	181	203	2B	25	2F	2F	59.1	67.8	58.4	9.41
15	1A0	1F3	30	31	37	33	56.9	71.1	56.6	9.12
16	192	1D3	30	34	45	43	58.8	62.7	57.3	9.22
17	142	205	2D	2B	33	33	59	70.3	58.6	9.44
18	162	216	2F	2F	35	35	60.4	66.9	59.2	9.54
19	145	203	2D	25	2D	2D	59.9	67.6	59.1	9.52
20	191	1B5	2D	2F	43	41	59.5	67.4	58.7	9.46
21	1A6	1E4'	2D	25	33	31	59	70.9	58.5	9.43
22	204	20E	31	37	45	47	60.7	67	59.3	9.55
23	147	20B	2D	25	2F	2F	58.8	67	58	9.35
24	1B8	205	2F	2F	41	35	59	66.2	58.2	9.37
25	1A5	202	2E	2E	35	33	61.1	66.6	59.9	9.67
26	182	203	32	33	43	43	59.9	66	58.9	9.5
27	192	1E1'	2B	27	2F	2D	59.6	67.5	58.9	9.49
28	186	1C3	2D	27	2B	2B	60.8	67	59.7	9.62
29	183	21E	2D	27	2D	2B	60.5	66.5	59.3	9.55
30	183	205	33	37	49	49	60.3	65.9	58.6	9.44
31	153	1E3'	2F	31	37	37	61.3	66.9	60.1	9.7

## PHASE IIB PROJECT SCHEDULE



		00	100	Inclusion			A COLUMN TO A COLUMN			100				1.16	112 .		
Task Name	22	Otr 2, 2022	0	tr 3 202	2	Otr 4 2022	Otr 1 2023	Otr 1 2023 Otr 3 2023 Otr 3 2023 Otr 4 2023						Otr 1 2024 O			
	Mar	Apr May Jun	Jul	Aug	Sen	Oct Nov Dec	Jan Feb M	lar	Apr May Jun	, lu	L Aug Sen	Oct Nov Dec	Jan	Feb	Mar	Apr	
Milestones for the Project Year 1	4/4	/22		1, 19	Miles	tones for the Pro	ject Year 1		- p. may built		, rug oop				4/3/	/24	
innestones for the ridjest rear r			•					-	-								
1. Circuits are designed and				7/00													
simulated			<b>•</b>	(122													
O have do and de cland and										•••••							
2. Layouts are designed and						at 10/7											
verified						•											
3 Parasitics extracted layout and					••••••		• •	••••••		••••							
circuits are optimized						*	12/16										
4. Chip level layout is designed																	
and verified							4	≥ 3/1	13								
5. Design is submitted for									4/3								
fabrication								Ť	ş 413								
- Milestones for the Broject Vear 2			•••••							•••••	Milesto	nes for the Proiect	Year 2				
-Milestolles for the Project real 2												,		r			
6. ASIC chip is fabricated																	
										4	7/10						
<ol><li>Chips are packaged</li></ol>												0/25					
											*	JIZJ					
8. Now testing PCP is designed	·····														·····		
and assembled									4	6/2	26						
and assembled									•								
9. 2nd ASIC prototype is																	
characterized												•	s 1/1				
10. Charcterization data is														1/20			
analyzed													•	1/29			
11 ASIC detection proversi					••••••			····-		•••••				•••••			
TT. ASIC datasneet is prepared		A 1	l n	nilea	sta	nes hav	e heen	re	ached					è	3/6		
					310		C DUUI	10	aciicu.					•			
12. Final report submitted to the					••••••			•••••								1	
DoE															- 4 <b>4</b>	<b>4/3</b>	

# PHASE IIB PROJECT SCHEDULE



Fask Name		20	22							
•	22	Qtr 2, 2022	Qtr 3, 2022	Qtr 4, 2022	Qtr 1, 2023	Qtr 2, 2023	Qtr 3, 2023	Qtr 4, 2023	Qtr 1, 2024	Qt
Phase IIB Project		Apr   Iviay   Jun	Jui   Aug   Sep	Oct Nov Dec	Jan Feb Iviar Phase	Apr   May   Jun	Jui   Aug   Sep	Oct Nov Dec	Jan Feb Iviar	Apr
										•
Project Year 1										<b>4/3</b>
1. Marketing	4/4				1. Ma	arketing				4/3
2. Circuit design, simulation and verification		100%	7/22		•	00%				
3. Layout design and verification			100%	<b>=</b> 10/7						
4. Parasitic RLC extraction, layout and circuit optimization			Ļ	100%	2/16					
5. Chip level layout design verification				4	3/	/13				
6. Design submission for fabrication					100	<b>4/3</b>				
Project Year 2							Proje	t Year 2		<b>#</b> 4/3
7. Chip fabrication						100%	7/10			-
8. ASIC assembly on the chip carrier (packaging)							100%	9/25		
9. Design, fabricate and assembly of a new test board						100%	6/26			
10. 2nd ASIC prototype characterization								100%	1/1	
11. Data analysis		A	ll planne	d projec	t tasks a	are		, ,	1/29 100%	
12. ASIC datasheet preparation		COI	npleted	100% by	04/03/2	024.			3/6	
13. Final project's report preparation									100%	▶ 4/3



#### Pacific MicroCHIP

Pacific MicroCHII

# THANK YOU!

acific MicroCHIP

Application Ideas for the ADC ASIC are appreciated!

Pacific