

Development and Testing of an Advanced HOM Absorber Design for SRF Accelerators Using Dielectric-Coated Cores

SBIR Phase I-II Grant DE-SC0021487 for DOE Office of Science, Office of Nuclear Physics

> Victor Arrieta (PI) and Shawn McNeal Ultramet Pacoima, CA

2024 SBIR/STTR Exchange PI Meeting

August 14, 2024 Gaithersburg, MD

DOE NP Program Manager: Michelle Shinn

Agenda

Company Overview

• Ultramet SRF-Related Work

- ✤ Thick-film (>50 µm) chemical vapor deposited (CVD) bulk niobium and on copper cavities
- Thin-film CVD (<25 μm) triniobium tin (Nb₃Sn) on copper cavities
- ✤ Advanced HOM absorber design
- Phase I Summary
- Phase II Status, Results to Date, Path Forward, and Schedule
 - HOM absorber core material
 - CVD dielectric and attachment coatings
 - ✤ HOM absorber ring prototype fabrication and testing

Summary

Company Overview

- Privately owned, founded in 1970
 - Manufacturing (aerospace/defense/medical)
 - R&D (government and commercial)
- Research, development, and manufacturing of advanced high temperature materials, primarily by chemical vapor deposition (CVD) technologies
- Quality management system based on ISO 9001:2015

Melting Points of Some Materials Deposited by Ultramet, °C						
TaC	3987	TiN	2930		В	2027
HfC	3947	HfO₂	2897		Si ₃ N ₄	1900
C	3827	TiB₂	2871		T2 0	1073
ZrC	3540	I—			1a ₂ 0 ₅	1072
NbC	3500	SiC	2797		Zr	1852
w	3410	wc	2777		TiO ₂	1840
HfN	3305	ZrO ₂	2715		Dt	1772
Re	3180	W ₂ B	2671			1//2
TiC	3140	Мо	2610		SiO ₂	1723
TaN	3100	Nb	2468		Fe	1535
ZrB ₂	3038		2400		Ni	1455
Та	3014	lr	2443			
BN	3000	B₄C	2350		Si	1410
ZrN	2980	NbN	2327		Cu	1083

Company Overview (cont'd)

CVD Coatings

Open-Cell Foams

Ceramic Matrix Composites (CMC)

Ultramet SRF-Related Work

Ultramet SRF R&D Project Path (2005 to Present)

- CVD fabrication of seamless bulk niobium cavity
- High-RRR CVD niobium process evaluation and development
- Thick-film CVD niobium on copper process development
- CVD Nb₃Sn process development
- Thin-film CVD Nb₃Sn on copper via prealloyed precursors
- Advanced HOM absorber design development

Support

- DOE NP & HEP offices
- SRF Group at Cornell
- Jefferson Lab (JLab)
- Niowave

- > UCLA
- Oak Ridge National Laboratory
- Florida State University MagLab
- Bailey Tool & Manufacturing

Ultramet SRF-Related Projects (cont'd)

CVD Nb₃Sn coating on

CVD niobium interlayer

on welded copper cavity substrate (Niowave)

PROGRESS

CVD Nb₃Sn coating on copper substrate: excellent adhesion

CVD Nb₃Sn on welded copper cavity

Q vs. E at 4.2 K for CVD Nb₃Sn on welded copper cavity (SN-38-39) and on seamless copper cavity (SN-4) (both on CVD niobium interlayer)

The overall focus of the Phase I-Phase II project is on development of beamline HOM absorbers of the type positioned inside superconducting cavity-interconnecting beam tubes meeting the following specifications:

- Strong broadband RF absorption over range from a few hundred MHz to GHz
- Very low material outgassing in ultrahigh vacuum (UHV) operating environment
- High heat transfer capability
- Cryogenic operating capability (typically ~80 K)
- Sufficient DC electrical conductivity to address any charge accumulation effects

Beamline HOM absorbers (left) and Cornell University HOM design for energy recovery LINAC (ERL) (center)

Phase I Goals

The main goal of the Phase I project was to develop CVD-based processing techniques to fabricate robust broadband HOM absorber structures for use in SRF accelerators. Specifically, an advanced HOM absorber design composed of a dielectric-coated high-purity graphite core with a high thermal conductivity tungsten backing surface for bonding purposes was fabricated. In this design:

- The graphite core will dominate the absorption characteristics.
- The dielectric coating will contribute to broadening the frequency range attenuation capabilities while preventing outgassing of latent core materials.
- The tungsten backing surface will facilitate subsequent attachment to a parent component, and during operation will serve to provide an efficient path for removal of heat energy resulting from surface charge accumulation effects.

CVD Coating Development

AIN- and SiC-encapsulated graphite (UHP SIC-6) cores and tungsten backing layer

SEM/EDS analysis of ultrahigh-purity graphite core encapsulated with AIN (*left*) and SiC (*center*), with excellent coating/substrate interface boundary layer; SiC-encapsulated graphite tile with tungsten backing layer (*right*)

Outgassing and Thermal Cycle Testing

Thermal cycle testing of graphite core with AIN dielectric coating and tungsten backing layer

Ambient-to-cryogenic thermal cycling tests in an ultrahigh vacuum environment confirmed:

- Survivability and robustness of the dielectric CVD SiC encapsulation coating
- Survivability of CVD dielectric coating-to-CVD tungsten backing interface bond under cryocycling

Outgassing test results for an AIN-encapsulated graphite tile with tungsten backing plate following bakeout under vacuum at 150°C with nitrogen venting for 24 hours. Specimen outgassing rate significantly improved to $\sim 3.2 \times 10^{-7}$ (torr-liter/sec·cm²)/(t/hr) following bakeout.

Cryogenic RF Testing

T1: RF Waveguides

Table I: Nominal Specimen Dimensions Suitable for Thr	ree Waveguide Frequency Ranges
---	--------------------------------

	Frequency range	Length (mm)	Width (mm)	Thickness (mm)
Waveguide 1	WR90 (8.2-12.4 GHz)	22.86	10.16	3
Waveguide 2	WR62 (12.4-18 GHz)	15.79	7.8994	2
Waveguide 3	WR42 (18-26.5 GHz)	10.668	4.318	1

Cornell test setup used for cryogenic RF measurements, including Agilent network analyzer. The waveguide line portion containing the test specimen was immersed in a bath isolated by foam material. This assembly was contained in a transparent plastic bag to prevent condensation of water and cooled using liquid nitrogen (boiling point –320°F). The temperature of the waveguide shim with the specimen was measured by a thermocouple.

Room and cryotemperature RF test results for CVD SiC-encapsulated graphite core material

RF absorption characterization of bare and dielectric-coated graphite core materials was performed to quantify and compare the performance capabilities of each.

S-parameters and losses for SiC-coated graphite specimen at 76°F (*top row*) and at –192°F (*bottom row*)

The test results show low-loss capability for specimen SiC-1-1 (beta-SiC), typical of the highly reflective Ultramet graphite core test specimens due to the highly conductive graphite.

Cornell concluded that within the framework of existing theory, the high electrical conductivity of the graphite core material made it impossible to use the S-parameter measurements for calculation of dielectric permittivity and magnetic permeability as intended due to nearly all RF power being reflected from the specimens, giving an excessively high and unusable value of dielectric permittivity.

Office of

Science

ENERG

Phase I Summary

- RF testing at Cornell determined standalone ultrahigh-purity graphite core materials are too electrically conductive and incompatible with the HOM absorber application.
- RF testing also determined the dielectric coatings were highly reflective.
- Core materials with low conductivity such as Al₂O₃, ZrO₂, SiO₂, SiC, carbide composites, and matrix doping agents such as carbon were identified as potential HOM absorbers.
- Validation of the CVD process for the AIN and SiC dielectric coatings was performed.
- Validation of the CVD process for the tungsten backing layer was performed.

Phase II Goals

The objective of the Phase II project is to test the core materials and CVD dielectric coatings identified in Phase I and fabricate and test a prototype HOM ring assembly. Specifically:

- * Fabricate test specimens of core materials with low electrical conductivity such as AI_2O_3 , ZrO_2 , SiO_2 , SiC_2 , SiC_3 , C_2 , SiC_3 , C_2 , SiC_3 , C_3 , C_2 , SiC_3 , C_3 , C
- * Perform RF absorption characterization and downselect core material.
- Optimize CVD process for BN dielectric encapsulation coating.
- Scale and optimize CVD process to form well-adhered tungsten on dielectric core and encapsulation coating(s) sufficiently thick to enable bonding to a parent component.
- * Bond tungsten-clad dielectric-encapsulated core materials to surrogate component.
- Fabricate prototype HOM absorber ring assembly and perform RF absorption characterization to quantify performance.

Phase II Results to Date

Core Material Downselection

- > Commercially available: Al_2O_3 , ZrO_2 , SiO_2 , SiC_3 ,
- ➤ Ultramet composites: C_f/ZrC and C_f/SiC; SiC foam
- > Pennsylvania State University, via field assisted sintering technology (FAST):
 - Pure α -SiC
 - Doped SiC (graphene @ 1%, 7%, 25%)
 - Chaotic carbides/cermets: HfNbTiVZrC, HfNbTaTiZrC, MoNbTaVWC, CrMoNbTaWC

(Selected chaotic carbide recipes resulted from modeling performed by Dr. S. Curtarolo of Auro Scientific Consulting/Duke University.)

Core Material Downselection

	U.S. DEPARTMENT OF	Office of
ADVANCED MATERIALS SOLUTIONS	ENERGY	Science

Cornell RF Report #	PN	Material	Source
240715	1%G-SiC-1	1% graphene-doped SiC	PSU - FAST
240715	1%G-SIC-2	1% graphene-doped SiC	PSU - FAST
240312	\$7G1	7% graphene-doped SiC	PSU - FAST
240312	\$7G2	7% graphene-doped SiC	PSU - FAST
240312	S25G1	25% graphene-doped SiC	PSU - FAST
240312	S25G2	25% graphene-doped SiC	PSU - FAST
240312	PS1	Pure SiC	PSU - FAST
240312	PS2	Pure SiC	PSU - FAST
240312	PN1-0	MoNbTaVWC	PSU - FAST
240312	PN1-1	MoNbTaVWC	PSU - FAST
240312	PN1-2	CrMoNbTaWC	PSU - FAST
240312	PN1-3	HfNbTiVZrC	PSU - FAST
240312	PN1-4	HfNbTaTiZrC	PSU - FAST
230614	SiC-7	CVI SiC Foam	Ultramet
220914	ZC-1	ZrC-f CMC	Ultramet
220914	ZC-2	ZrC-f CMC	Ultramet
220914	SiC-1	SiC-f CMC	Ultramet
220914	SiC-2	SiC-f CMC	Ultramet
221007	ZO-1	ZrO2	Commercial OTS
221007	SiC-5	SiC	Commercial OTS
221007	SiC-6	SiC	Commercial OTS
221007	AlO-vd-1	Al2O3	Commercial OTS
221007	AlO-vd-2	Al2O3	Commercial OTS
221007	SIO-vd-1	SiO2	Commercial OTS
221007	SIO-vd-2	SiO2	Commercial OTS
221219	AIN-1	AIN	Commercial OTS
221219	AIN-2	AIN	Commercial OTS
220914	ZO-1	ZrO2	Commercial OTS
220914	ZO-2	ZrO2	Commercial OTS

HOM Core Test Part Types and Sources (2-4 each fabricated)

WG-1 style tiles produced and tested by Cornell

Core Material Downselection (cont'd)

Low losses were determined for the AI_2O_3 and SiO_2 samples. The RF measurement data were used to generate the real (Re) and imaginary (Im) parts of the dielectric permittivity (ϵ), used in turn to determine the losses.

U.S. DEPARTMENT OF

ENERGY

Ŕ

Office of

Science

Core Material Downselection (cont'd)

14.5

13.5

13

12.5

RF measurements and deduced data for a ZrO_2 sample in the frequency range of 8.2–12.4 GHz

Losses 0.5 Im ε 0.4

8.2

12.2 13.0

f, GHz Cryogenic temperature (LN_2 , $-320^{\circ}F$) test data for SiC sample showing high losses, up to 50% of incoming power at 12.4 GHz

f. GHz

12.2 13.0

Ambient temperature test data for SiC sample showing high losses, up to 32% of incoming power at 12.4 GHz

Commercially available α-SiC

12.4

0.25

0.2

0.15

f, GHz

Core Material Downselection (cont'd)

Ultramet materials: Carbide CMCs

C_f/ZrC CMC

C_f/SiC CMC

RF measurement results for C_f/ZrC CMC (*left*) and C_f/SiC CMC (*right*)

Ultramet materials: SiC Foam

Performing RF measurements on the open-cell SiC foam structure posed some challenges:

- When oriented perpendicular to the waveguide window, dielectric permittivity (ε) calculated from the S-parameters yielded non-physical results indicative of high ε (>10 typ.) and gaps at the walls of the waveguide.
- By orienting the sample <u>adjacent</u> to the narrow waveguide wall and using CST Microwave Studio, values for the real and imaginary parts of permittivity were selected that correlated with the measured values as shown below.
- The foam behaved like a lossy conductor rather than a dielectric conductor.

SEM image of typical SiC foam structure embedded in image of actual SiC foam sample (*left*) and CST Microwave Studio S-parameters generated from the measured values from waveguide wall-adjacent sample orientation (*right*) 20

α-SiC via Field Assisted Sintering Technology (FAST) at Penn State

The most encouraging results were obtained from the pure α -SiC produced by Penn State via the FAST process, which has since been selected as the preferred core material for use in the Ultramet HOM absorber design. Cornell reported that "this material has a very high ability to absorb RF power."

SEM image (*left*) and EDS elemental mapping (*center*) of pure (undoped) α-SiC produced via FAST at Penn State using α-SiC starting material, and photograph of α-SiC test tile produced by PSU

Chaotic Carbides via FAST

Structure/polytype uniformity is key to predictable electrical and RF absorption performance characteristics. The FAST system consistently demonstrated uniform distribution and composition in the substrate materials (especially chaotic carbides) produced.

SEM image (left) and EDS elemental mapping of HfNbTaTiZrC chaotic carbide produced via FAST at Penn State 22

RF Test Results

RF testing at Cornell concluded that the graphene-doped SiC materials and the chaotic carbides produced by Penn State are highly reflective and have an electrical conductivity comparable with that of metals, making them unsuitable for the HOM absorber application.

SEM images of, respectively, the three chaotic carbide materials (HfNbTaTiZrC, CrMoNbTaW, and HfNbTiVZrC) and the 7% graphene-doped SiC material produced via FAST at Penn State

Final downselected core material: Pure α-SiC produced via FAST

RF measurement data for α -SiC produced via FAST at Penn State, used to generate the real and imaginary parts of the dielectric permittivity (ϵ) and the permeability (μ), used in turn to determine the losses and the loss tangent (tan δ)

Dielectric Material CVD Processing

CVD boron nitride (BN) dielectric coating

XRD analysis of Ultramet CVD BN coating (*left*), SEM images with EDS compositional analysis of Ultramet CVD BN coating on graphite substrate (*right*), and HOM absorber ring prototype sketch (*center*)

Attachment Material CVD Processing

CVD tungsten band (~700 µm thick) formed on sintered SiC disk

Phase II Path Forward

- Ultramet will continue with CVD BN coating process optimization to achieve deposition on α-SiC and/or hexagonal β-SiC.
- Ultramet will continue with CVD tungsten process scaling and masking technique optimization needed for attachment demonstration.
- Penn State is now producing the remaining pure SiC RF test bricks at full scale (i.e., bare) and at slightly reduced size to accommodate a 0.004" thick CVD BN dielectric coating.
- Penn State will then produce the small tiles for the planned cryocycling, outgassing, and DC surface charge studies, followed by fabrication of the prototype HOM absorber rings.
- Cornell has requested the following ring prototype configurations to accommodate specific testing requirements that will provide the most relevant performance data for the intended HOM absorber application:
 - One pure SiC ring with no dielectric coating
 - One pure SiC ring with CVD BN coating on inner diameter
 - One pure SiC ring with CVD tungsten mounting band on outer diameter and no dielectric coating
 - Size: 50 mm long \times 49 mm ID \times 10 mm thick

- Dr. Michelle Shinn (DOE Office of Nuclear Physics)
- Dr. Matthias Liepe (Cornell University)
- Dr. Valery Shemelin (Cornell University)
- Dr. Stefano Curtarolo (Auro Scientific Consulting/Duke University)
- Dr. Douglas Wolfe (Pennsylvania State University)
- Caillin Ryan (Ph.D. candidate, Pennsylvania State University)

Ultramet points of contact: Victor Arrieta (PI), victor.arrieta@ultramet.com Shawn McNeal, shawn.mcneal@ultramet.com