

Organic Glass Scintillators for Nuclear Physics Experiments

RMD

A Dynasil Company

Urmila Shirwadkar,¹ Edgar van Loef,¹ Tawan Jamdee,¹ Lakshmi S. Pandian,¹ Patrick L. Feng,² Annabelle Benin,² Ryan Witzke,² Remco G. T. Zegers,³ Jorge Pereira,³ and Cavan Maher 3

> 1Radiation Monitoring Devices Inc., 44 Hunt Street, Watertown, MA 02472, USA ² Sandia National Laboratories, Livermore, CA 94550, USA 3 Michigan State University, East Lansing, MI 48824, USA

This work has been supported by the U.S. Department of Energy contract # DE-SC0021545. This support does not constitute an express or implied endorsement on the part of the Government. Distribution A. Approved for public release, distribution is unlimited.

Radiation Monitoring Devices, Inc. (RMD)

❖ Mission

- Perform world class research
- Develop exceptional commercial products

❖ Overview

- Founded 1974
- R&D and commercial products
- Acquired by Dynasil in 2008
- 65 employees

❖ Research Expertise

- Semiconductors
- Scintillators
- Instruments & Systems
- Imaging
- Coatings

Scintillator Research at RMD

Organic Scintillator Research at RMD

Organic Scintillator Research at RMD

2020-

Research into Organic Glass Scintillators Collaboration with Sandia National Laboratories

⊙

Organic Glass Scintillators for Nuclear Physics Experiments

❖ RMD team

- Urmila Shirwadkar, PI
- Edgar van Loef, co-Pi
- Tawan (Tommy) Jamdee, Chemist
- Lakshmi Soundara Pandian, Characterization

❖ Sandia National Laboratories team

- Patrick L. Feng, co-PI
- Annabelle Benin, Chemistry
- Ryan Witzke, Chemistry

❖ Michigan State University team

- Remco T. Zegers, Professor of Physics
- Jorge Pereira, Staff Physicist
- Cavan Maher, Graduate Assistant

Executive Overview

Organic Glass Scintillators for Nuclear Physics Experiments

❖ Objective

- Develop polymer-blended Organic Glass Scintillators (OGS) with high light yields, fast scintillation decay, and PSD capabilities similar or better than those of Stilbene and liquid scintillators.
- Nuclear physics experiments will benefit due to the higher light yield and better PSD of OGS compared to the currently used plastic scintillators.
- Fabricate several LENDA-sized OGS bars, to be evaluated at MSU.
- Compare OGS bars to plastic LENDA bars.

Organic Glass Scintillators for Nuclear Physics Experiments

❖ Scope

- Phase II: Two-year project with three main goals:
	- 1. Optimization of the polymer content in polymer-blended OGS
	- Scale-up of OGS to LENDA Bar sizes (12" \times 2" \times 1")
	- 3. Evaluation scintillation properties, light attenuation, thermal stability, and accelerated environmental aging of OGS bars

\div Teams

- RMD: Fabrication of OGS bars, characterization of scintillation properties
- Sandia: Fabrication of OGS bars, thermal stability and accelerated aging studies
- MSU: Evaluation of OGS bars in LENDA Array

Neutron detectors at FRIB

❖ Background

- The Low Energy Neutron Detector Array (LENDA)* is a neutron time-of-flight spectrometer developed for inverse kinematics (p,n) charge-exchange experiments in which low energy neutrons (~150 keV to 10 MeV) are detected.
- LENDA consists of 24 BC-408 plastic scintillator bars with, each coupled to a Hamamatsu H6410 PMT.
- The current LENDA array is unable to differentiate between neutrons and gamma rays, complicating background subtraction.

* G. Perdikakis et. al., "*LENDA: A low energy neutron detector array for experiments with radioactive beams in inverse kinematics*", NIMA, Volume 686, 2012, pp. 117-124.

Neutron detectors at FRIB

❖ Ideal detector requirements

- Separation between neutrons and photons by pulse-shape discrimination (PSD)
- Low neutron-detection threshold (<200 keV)
- Good timing resolution (< 1 ns)
- Position resolution (\leq 5 cm)
- Cover large are cost-effectively

Limited number of options available, development of new detector materials warranted

Neutron detector solutions

❖ Organic Glass Scintillators (OGS)

- Ability to set low energy thresholds due to high light yield of OGS
- Ability to provide PSD between gamma-rays and neutrons
- Ability to scale up to large sizes, near net shapes
- Ability to provide fast timing due to fast response of OGS

Premium option: Gamma spectroscopy

❖ Tin-loaded Organic Glass Scintillators

- Increased gamma-ray sensitivity, spectroscopic capabilities
- Several reaction channels in one experiment, optimization of scientific output of complex and high-cost FRIB runs (Facility for Rare Isotope Beams)
- No compromise on the neutron detector solid angle to measure simultaneous gamma rays

R&D of Organic Glass Scintillators at RMD

Polymer-blended OGS

- Standard OGS too brittle for high aspect ratio detectors $(30 \times 4.5 \times 2.5 \text{ cm}^3)$
- Polymer blending of OGS can significantly enhance the mechanical properties of OGS *
- The core technology is an OGS-polymer mixture that comprises OGS and a small amount of polystyrene (PS), polyvinyltoluene (PVT), or polycarbonate (PC)
- This polymer-blended OGS composition can be scaled-up while maintaining the high-performance of standard OGS

* Nicholas R. Myllenbeck et. al. "Nano-segmented optical fibers containing molecular organic glass scintillator for fast neutron imaging", Proc. SPIE 11838, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXIII, 118380 *https://doi.org/10.1117/12.2596532*

❖ Starting Materials

- OGS base material: *Bis(9,9'-dimethylfluoren-2-yl)diphenylsilane* (aka "P2")
- Polymer: PS or PVT
- Wavelength shifter: bis-MSB

* Nicholas R. Myllenbeck et. al. "Nano-segmented optical fibers containing molecular organic glass scintillator for fast neutron imaging", Proc. SPIE 11838, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXIII, 118380 *https://doi.org/10.1117/12.2596532*

❖ Fabrication of OGS

- Purify starting materials as necessary
- Melt mixture of P2, polymer, and wavelength shifter
- Cast melt into mold and cool down to room temperature
- Remove mold and cut/polish OGS

❖ LENDA Bar module

- OGS bar $(12'' \times 2'' \times 1'')$
- Two PMTs
- Electronics

700

600

500 400

 300

200

100 \Box

2000

4000

3000

❖ Measurements at MSU

- Minimum measurable energy-loss signal (threshold)
- Pulse-shape discrimination capabilities
- Timing resolution
- Neutron efficiency

241Am source (singles measurement)

1500

Energy (channel number)

• Compare results with plastic LENDA bars

2000

2500

500

1000

 30000

 25000

 20000

10000F

 5000

 $\frac{1}{5}$ 15000

6000

8000

Energy (channel number)

10000

22Na Gamma Spectrum

Coincidences with LENDA detector

❖ Results

- Neutron energy threshold: < 20 keV
- Pulse-shape discrimination capabilities: Yes
- Energy resolution at 59.6 keV (241Am): 20 keV
- Timing resolution: 500 ps

Examples of successful commercial products originating from research

Commercialization of Organic Glass Scintillators

❖ Potential Applications

- Neutron scattering
- RPMs
- Fusion energy
- Space, etc.

❖ Recent OGS sales

- Atomic Weapons Establishment, UK
- Georgia Tech
- Michigan State University
- NASA
- Navy Research Laboratory
- University of Michigan

Commercialization of Organic Glass Scintillators

❖ For more information

- Technical exhibitor talk at IEEE (Tampa, FL) on OGS products
- RMD/Hilger booth at the IEEE

Acknowledgement

This work has been supported by the US Department of Energy under contract # DE-SC0021545. This support does not constitute an express or implied endorsement on the part of the Government.

Thank you for your

