

LARGE VOLUME RING-CONTACT HPGE DETECTORS (RCD)

NP SBIR Phase II Year 2 No Cost Extension

20240814 NP SBIR Exchange Meeting

Ethan Hull (PI) CEO and Technical Director, PHDS Co.

PHDS Co. Background

- Est. Fall 2004 Nuclear and Solid-State Physics Origin DOE Labs (LLNL, LBNL)
 - History: Custom Nuclear-Physics Detectors (Lab)
 - Recently: Modular HPGe Systems (Lab and Field)
- Complete Germanium Manufacturing + R&D at PHDS Co.
 - **Concept Design**
 - **Crystal Growth**
 - **Detector Fabrication**
 - System Integration
 - Software application
 - Sales & Service

NPX (150 lbs.) 2008 Laboratory

Enabling Capabilities

Connecial

Product

GeGI (15 lbs.) **2016 Hand Portable Imager** + Spectrometer 10x less size and weight

NP Imager

Fulcrum (8-9 lbs.) **2018 Hand Portable Spectrometer**

LoPro (8-11 lbs.) 2020 Specialty **Spectrometer**

All PHDS Co. HPGe detector systems are mechanically cooled.

VersatileGobal

Connercial

Product

specialty Operations

Products

Fulcrum-40h (13 lbs.)

2023 Hand Portable

Spectrometer

Frontiers of Nuclear Physics

Front lines of Nuclear Security

Front row of NDA

Front Page of Isotope Production

PHDS Co. now manufactures and sells 5 HPGe products

Applications Served by these Products

Ring Contact Detector RCD Features

Largest Mass

Fewest Detectors per kg of Ge Lowest background (connections, mounting etc.) Majorana + LEGEND

High efficiency – R&D and Counting Labs

Counting lab feature: Hole can be used as a counting well. The hole diameter can be made larger without affecting detector capacitance (noise).

35 mm diameter hole costs only 7-8% of mass No significant increase in capacitance (noise)

Ring Contact Detector (RCD) Concept – David Radford

scalability up to <u>8 kg of depleted HPGe</u>

Ring Contact Detector (RCD) Concept – David Radford

RCD Phase II Experimental Plan – 3 parts Develop the 3 key enablers to demonstrate RCD

Significant loss of efficiency vs. bias voltage for V > V_{depletion}

PHDS Gamma Ray Detectors

Any holes reaching the p-type intrinsic surface are effectively stopped and contribute little (if any signal)

A p-type surface channel affects a significant volume of the RCD detector

Slow charge-carrier movement on surface

Unfortunately, this behavior repeated. The semifab process could not provide a sufficiently neutral intrinsic surface to suppress the issue. Always a p-type surface. V-groove is a lot of surface \rightarrow Consider changing the geometry.

Alternative RCD geometry: A groove design

Core out 60-mm cylinder

Bore 10-mm diameter hole

Polish

OD Grind 3 Grooves

Finished

Acid Etch rinse and Semifab process

RCD Detector Results

Test of Detector RCD Groove Design on 20240527 <20230906> s2 c1

Groove Detectors did not take any volts. This repeated 12 times. No luck so far.

This was as far as we got with the RCD Semi-fab Detector work

RCD Crystal Results

RCD Crystal Progress

RCD Commercial Progress

Fulcrum-RCD – Portable, Shielded Counting System

+ RCD Crystal Development

+ RCD Semi-fab process work to neutralize p-type SC

RCD Commercial Development

Fulcrum

Fulcrum-40h September 2022

RCD Commercial Development Application

System is being used as "portable" or "modular" shielded counting system.

Fulcrum-40h inside 2" (5 cm) Pb-Shield with sample counting chamber

Thank you to DOE NP SBIR for the support