

Novel Cryogenic High Voltage Breaks (CHVB)

PI: Chris Rey Topic: 37c Grant: DE-SC0021608 Energy to Power Solutions 119 Century Park Dr. Tallahassee, FL 32304 www.e2pco.com

- e2P Overview
- Program Motivation
- Phase II Program Overview
- CHVB Schematic, Design, & Analysis
- CHVB Testing
- Commercial Outreach
- Path Forward

Energy to Power Solutions

Energy to Power Solutions (e2P)- performs **early-stage R&D** of both Low Temperature Superconducting (LTS) & High Temperature Superconducting (HTS) devices, their associated cryogenics, and cryogenic High Voltage (HV) components \rightarrow enabling technologies for **military**, **space**, **fusion energy**, **commercial &** *medical application applications*

• Founded 1999

- ~50 % (US Govn't contracts) & ~50 % (commercial)
- Labs Located @ TCC in Tallahassee, FL

Energy to

Power Solutions

- Cryogenic High Voltage Breaks (CHV-*Breaks*) & Bushing (CHV-*Bushings*) electrically isolate cryogenic devices & equipment operating at High Voltages (HV) from grounded components & structures. CHV-Bushings also transmit electrical power into cryogenic space.
- State-of-the-Art (SOA) ceramic CHVB's are <u>notoriously unreliable</u> and prone to frequent micro-cracking & hence leaking.
- CHVB's leaking into cryogenic vacuum spaces can be prohibitively expensive to repair (e.g. ITER, CERN, etc.) or lead to premature failure (e.g. power equipment)
- For $V_{op} > 100$ kV or non-magnetic there is no suitable commercial product
- **Requirements:** Low cost, mechanically robust, HV standoff, radiation resistant, hermetic, repeated thermal cycling, high internal pressure, non-magnetic

Phase II Program Overview

Work Scope A: Thermally Insulating CHVB for ANL w/ R. Vondasek

- V_{op} >150 kV

Energy to

Power Solutions

- Interior medium: flowing LN2, Exterior medium: atmosphere
- Radiation: No
- Mechanical/Structural: NA
- Quantity: 2-3
- Commercial opportunity: Low

Work Scope B: Radiation Tolerant CHVB for Commercial Fusion

- V_{op} ~ 30 kV
- Interior medium: GHe, Exterior medium: vacuum
- Radiation: 10 MGy
- Mechanical/Structural: 500 PSI internal pressure
- Quantity: > 1000
- Commercial Opportunity: Very high

Power Solutions Phase II Program Overview

Work Scope C: General R&D for CHV-<u>Bushing</u> Design & Fabrication

- − $V_{op_{DC}} \sim 1 \rightarrow 5 \text{ kV}$ & $V_{rms_{phase}}$ 1 → 15 k V_{rms}
- − $I_{op_{DC}} \sim 1 \rightarrow 10 \text{ kA } \& I_{rms_{phase}} 1 \rightarrow 5 \text{ kA}_{rms}$
- Interior medium: vacuum or cryogenic liquid
- Radiation: NA
- Mechanical/Structural: 100 PSI internal pressure
- Thermal cycles: > 100
- Quantity: > 20
- Commercial Opportunity: medium

08/15/2023

Energy to Power Solutions CHVB Requirements

Properties		E2P CHVB	SOA Ceramic	PI Testing	PII Testing
Electrical	High Voltage >100kV				Х
	Breakdown			Х	
	Creep			Х	
Mechanical	Thermal Cycling Resilience			Х	Х
	Compressive Strength			Х	
	Tensile Strength				Х
	Torsional Strength				Х
	High Internal Pressure				Х
	Hermetic			Х	
	Accelerated Life*				Х
Other	Non-magnetic			Х	
*4 commercial orders	Radiation Resistance				Х
	Low Cost				Х

e2P Solutions Proprietary and Confidential: SBIR Data Rights

Energy to

Power Solutions

Testing: Thermal Gradient

LN₂ pumped through array over 15-minute period $T_1 = 299K$ $t_1 = 0m$ Thermal imaging used to capture thermal gradient and determine cold points Surfaces remained \geq 295K (reference $T_5 = 296K$ device in background @ ~318K ~45C) $t_{5} = 7m$ Device should not develop exterior surface condensation under expected conditions 2nd Gen unit needed for Grid applications $T_8 = 295K$ $t_8 = 15m$ T_{ref} = ~318K

Mechanical testing of:

Power

- Tensional Strength (ASTM D638)
- Compressive Strength (ASTM E9)
- Torsional Strength (ASTM D4065)
- ASTM compliant procedures include:
 - sample design
 - Fabrication
 - Testing
 - post-processing of data
- Procedures will be used to determine compliance of materials and components

Mechanical Testing:

Power

- Pictured top: Small form factor (SFF)¹ tension samples
- Pictured bottom: Large form factor (LFF) tension samples
- Both small and large samples utilize the same ASTM D638 & E9 "dog-bone" shape and proportions i.e. gauge² length is ~4x the gauge width
 - 1) shape, proportions 2) reduced cross-sectional area section of sample

Energy to

Power Solutions

Testing: Mechanical Data

UTS data for epoxy	Correcto	Ultimate Tensile Strength (MPa)		
PEB-C	Sample	Small FF	Large FF	
Poculta inconsistant:	1	-	14.96	
emphasizing need for	2	29.52	-	
process improvement	3	-	25.65	
	4	-	22.10	
	5	27.66	13.36	
	6	25.32	-	
	7	-	-	
	8	24.05	-	
	9	26.12	-	
	10	28.24	-	
	Average ± Standard Deviation	26.82 ± 2.02 MPa	19.02 ± 5.82 MPa	

e2P Solutions Proprietary and Confidential: SBIR Data Rights

Energy to Power Solutions CHVB Testing @ ANL

Test Conditions: flowing LN2 up to 2 L/min

Time (hh:mm)	Voltage (kV)	Current (mA)
13:40	50	0.26
13:45	75	0.44
13:48	90	0.54
13:50	100	0.60
13:55	100	0.60
13:56	110	0.69
14:00	110	0.69
14:35	120	0.76
14:40	130	0.86
14:47	140	0.95
14:56	150	1.05
15:01	150	1.05

- Work scope A: >100 % complete
 - − Field test @ ANL (R. Vondrasek) \rightarrow 100 %
 - $\Delta T_{OD} < 10$ K w/ LN2 @ 2 liters/min on interior up to 150 kV
- Work scope B: Low Cost, High Throughput Manufacturing 100 % Complete !!
 - Develop low-cost volume manufacturing techniques
 - Develop low-cost/repeatable/reliable high volume LN2 thermal cycle testing techniques
 - Develop low-cost/repeatable/reliable high volume GHe testing techniques
- Work scope C: Component Test Multiple Prototypes
 - Continue characterization
 - > UTS
 - ≻ UCS
 - Torsional
 - Internal pressure to > 2000 PSI
 - Larger diameters up to 16 "
 - Expand into CHV-Bushings
 - DC Magnet Applications
 - AC Power Applications

Power Solutions Acknowledgements

- Funded by DOE under SBIR contract DE-SC0021608
- DOE PM Michelle Shinn, Ph.D.
- ANL Rick Vondrasek
- e2P

Trever Carnes, Ben Andrews, Luke Remillard

Energy to Power Solutions (e2P) 119 Century Park Dr. Tallahassee, FL 32304 <u>www.e2pco.com</u> (865) 850-1327