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About Sunrise Technology Inc.
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• Founded in 2017 

• Located in an incubator at Stony Brook University, Long Island, 

NY 

• Team: three full-time employees, a part-time consulting scientist, 

and several graduate interns. 

• Developing advanced AI/machine learning technology for 

autonomous systems, such as scientific experiments decision-

making engines and education platforms.

• Projects 
1) ML-based slow orbit feedback control, deployed at BNL NSLS-II in July 

2023

2) Autonomous driving toolkit for AI education

3) ML-based particle collision triggering system

4) Terabits data transfer toolset for distributed data analysis
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SBIR Phase II Objectives

• SBIR Phase II award
– Title “High Performance FPGA-based Embedded System for Decision Making in Scientific Environments”
– Co-funded by NP and ASCR
– End Year 4

• Ultimate Goal
– Design real-time AI-enabled DAQ trigger algorithms applied to the very high-rate data streams from detectors. 
– Play a central role in sPhenix and future EIC detectors running under trigger systems and in-situ streaming 

analysis for event selections. 

• Phase II Technical Objectives
– Designing Graph Neural Networks for High-Speed Physics Event Triggers.
– Collaborate with sPhenix team to integrate the algorithms to sPhenix experiment and reaches the target of 

15Khz data acquisition rate.

• Phase II Commercialization Objective
– Manufacture smart embedded system to facilitate real-time data collection for experiment and facility control
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Motivation

• The readout challenge

• Raw data Speed and Volume >> Hardware bandwidth/Storage Capacity

Only a small fraction of data will be recorded to tape

• Trigger events are very rare, ~0.1% probability at RHIC

− RHIC collision rate is several MHz, sPHENIX readout 15 kHz 

-Without an effective trigger algorithm, experiments must use random event taking.

- With the same level of recall, AI-based trigger will significantly improve the detector efficiency. 

• Integrate the AI-based trigger system into the sPHENIX experiment for p+p run in 2024

• Potential future deployment on Electron-Ion Collider (EIC)

@Sunrise Technology Inc. All Rights Reserved. 5



sPHENIX experiment 

sPHENIX experiment under construction at RHIC:
- Running period 2023-2025
- ~4m long, ~3m high, 1000 tons
- 15kHz trigger rate
- 3 MVTX layers and 2 INTT layers - detectors 

capable of streamed readout
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Approaches

• There is a trade-off between latency (prediction speed) and accuracy (prediction 
performance)

• Longer pipelines enable more sophisticated data processing and higher accuracy, 
but at the expense of inference speed

• As the details of the hardware implementation remains a moving target, we 
develop several pipelines to cover various points on the latency-accuracy trade-off 
frontier
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Pipeline Stages

• Each of the pipelines developed is composed of one or more of the following 
stages:
– Pixel Clustering: Contiguous clusters of activated pixels are found and collapsed to a single 

point, called a hit. 

– Edge Candidate Selection: A graph is constructed on the set of hits by using geometric 
constraints to select pairs of hits that are likely to come from the same particle.

– Segment Classification: Edge candidates are classified using a Graph Neural Network (GNN) to 
only keep the edges connecting hits that really do come from the same particle.

– Track Construction: Connected hits are grouped together to form the trajectory (track) of the 
particle as it flies outwards from the detector center. This leads to a set of tracks.

– Trigger Detection: The data at this point of the pipeline is processed by a GNN to predict 
whether the event is a trigger event.
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Pipelines

• We have developed the following pipelines:
– Track-Set Pipeline: Pixel Clustering ➔ Edge Candidate Selection ➔ Segment Classification ➔

Track Construction ➔ Trigger Detection

– Hit-Graph Pipeline: Pixel Clustering ➔ Edge Candidate Selection ➔ Trigger Detection

– Hit-Set Pipeline:  Pixel Clustering ➔ Trigger Detection

• Each of these pipelines realize a different point on the latency-accuracy curve.
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Track-Set Pipeline Overview 
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Pixels ↦ Hits



From Pixels to Hits - Clustering

● Clustering is done by solving a 

spanning forest problem

● There is an edge between pixels that 

are adjacent to each other

● Mean of all pixels in a cluster is 

taken as the hit location
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Hits ↦ Tracks



From Hits to Tracks

● Once we have hits, we want to 

group hits that came from the 

same particle into a track

● This will be solved by treating 

the problem as an edge 

classification problem

● Out of the N2 possible edges 

between the hits, we want to 

know the true edges.
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Edge Candidate Selection

● Not all of the N2 possible edges are 
plausible - we can eliminate a lot of edges 
from the get-go

● We can use some basic geometric 
constraints on the cylindrical coordinates 
of the hits
○ |Δφ/Δr| <= PHI_SLOPE_MAX
○ |z0| <= Z_ORIGIN_MAX
○ z0 = z1 - r·(Δz/Δr)

● The geometric constraints determine the 
number of candidate edges and affects the 
latency and will play a vital role in 
further reducing the FPGA's latency.
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Track Construction

● Once edge classification is performed, a track is constructed by finding the connected 

components
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Track Construction Performance

2022 2023

Accuracy 96.30% 92.07%

Precision 84.55% 92.54%

Recall (efficiency) 83.25% 97.97%

F1 83.89% 95.18%

Latency 17.92μs 3.1725μs
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Software of Year 3 is much more hardware aware than that of Year 2!
• 1 iteration on hits generation instead of 4 iterations 

• Hidden layer of MLP is reduced from 1024 to 8

• Much more constraints on geometry to select edge candidate



Tracks ↦ Trigger Label



From Tracks to Trigger

● After creating the tracks, we have a set 

of tracks

● We want to know whether the event 

that created these tracks was a trigger 

event

● A trigger event is an event in which we 

had a beauty decay event,  (10−5)
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What needs to be modeled?

● We consider the beauty decay event. (produce a 𝑏ത𝑏) (beauty-
antibeauty) quark pair).

● Considering the problem from a high level perspective, we need 

to consider: 
○ Track-to-track Interactions: Do these pair of tracks form a beauty 

decay product pair?

○ Track-to-global Interactions: Where is the origin of this track?

○ Global-to-Track Interactions: Incorporate information about the 

origin of this track into the track embeddings
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Architecture

● Previous considerations motivate the following block.
○ Set Encoder: Track-to-Track interactions

○ Bipartite Aggregation: Track-to-Global and Global-to-Track interactions

SEBA (Set Encoder with Bipartite Graph Affinity)
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Architecture

● Stack multiple SEBA Blocks

● Use Bipartite Aggregation with single aggregator to generate event embedding

● MLP on event embedding to predict Trigger Event
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Physics Knowledge Added

● Track given to trigger classifier has the following features:
○ (x, y, z) location of hit on each layer

○ Length segment between each layer

○ Angle formed by segments

○ Estimated radius of circle fit to hits

○ Estimated center of circle fit to hits

○ Estimated transverse momentum of track

● Estimated radius and center provided ~10% increase in accuracy in the 2022 

triggering problem (charm to pion and kaon)  (D0 ➔πK decay)*. 
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*In 2024 we were provided with the data for a new triggering target (beauty decay). Re-evaluation of performance improvement on new data 

was not done.



Multi-Task Learning to Improve model performance

● Several modifications to standard training process 

in order to improve the performance and robustness 

of our trigger algorithm
○ Data augmentation: We perturb hits off the detector 

layers while keeping it on the particle path

○ Track embeddings used predict whether two tracks 

come from the same parent

ℒ = LCE(triggerpred, triggertrue) + LCE(Apred, Atrue)
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Pile-Up

● MVTX and INTT readout speed differ  (INTT is much faster and have high-res 
timestamps)

● Event data “piles-up” in the MVTX detectors
● Thus, when we read out the data, the MVTX data is the activated pixels from the last 

10 events instead of just from the last event
● No pile-up in INTT data
● We are adapting our algorithms to handle event pile-up robustly
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Pile-Up Strategies

● Pile-up introduces major latency problems by increasing the data by ~10X that our ML 
solutions need to process

● Prediction is also harder as 90% of the data is noise irrelevant to the current problem. 
Model needs to distinguish between signal and noise.

● Need strategies to reduce the amount of data ML algorithms need to process
● Three-pronged approach:

○ Use Hit-Set Pileline: This is our fastest pipeline, with the least number of processing steps. 
○ Drop Inner 2 MVTX layers from data: The first 2 MVTX layers improve the triggering performance 

only marginally while comprising the majority of the data.
○ INTT-based filtering: The hits in the third (outermost) MVTX layer are filtered using geometric 

constraints with the INTT hits.
○ 75% reduction in data quantity with only marginal reduction in trigger performance.

● We refer to this pipeline as fast hits-set.
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Trigger Prediction Performance (Beauty Decay)

Pipeline Pileup Accuracy

Track-Set No 95.4%*

Hits-Graph No 91.5%

Hits-Set No 90.6%

Hits-Set Yes 88.5%

Fast Hits-Set Yes 86.5%
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*Trained on ground-truth tracks, not predicted tracks. Performance on predicted tracks should be similar due to high performance of tracking 

stage.



Trigger Prediction Performance (Old Trigger Definition on Charm)

Data Year Metric Result

Predicted Tracks 2023 Accuracy 85.6%

GT Tracks 2023 Accuracy 90.22%

GT Tracks 2023 Precision 86.35%

GT Tracks 2023 Recall 95.41%

Predicted Tracks 2022 Accuracy 84.01%

GT Tracks 2022 Accuracy 87.5%
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1. Triggering on 𝐷 𝜋𝐾 (0.1% events)

Model accuracy studies

With 𝑝𝑇 prediction Without 𝑝𝑇 prediction
0.1% signal/background ratio

BG Rejection Efficiency Purity

90% 76% 0.75%

99% 23.2% 2.3%

−  Trigger detection on tracks vs hits

▪ Accuracy: 90.22% (BGN-ST, track construction, model v2) vs 85% (GCN, hit-based)

3. Triggering on Beauty decays, (0.05% events)

−  No pileup

▪ Accuracy: 97.38% (BGN-ST, track construction, model v2)

▪ Clusters -> Edge Candidate Generation -> Trigger prediction: Accuracy 91.53% (Graph Attention Network, hit-based)

▪ Clusters -> Trigger prediction: Accuracy 90.57% (GarNet, hit-based)

−  Pileup (~350 hits + 65 noise)

▪ Clusters -> Trigger Prediction: Accuracy 88.52% (GarNet, hit-based)

Set Transformer: arXiv:1810.00825 

GarNet: arXiv:1902.07987

PN: arXiv:1902.08570 

SAGPool: arXiv:1904.08082 

GCN: arXiv:1609.02907

Note: all Accuracies are calculated on 50% signal/background samples

Estimating 𝒑𝑻 from vertex detectors resulted in 14% accuracy increase! 23x rate increase comparing to random selection!

Pileup has a small effect!

Attention provides slight improvement for clusters

Large accuracy increase reconstructing tracks!

• 3 MHz collision rate

• 10% HF efficiency (ext. 

readout)

• 1 kHz available for

additional triggers

• 3000 MB rejection needed



1. Team lead by the Georgia Institute of Technology (GIT)

− Direct translation using FlowGNN (ArXiv:2204.13103)

− Goal: 100-200 nodes, 200-500 edges

− Implementation of edge classification

▪ 92 nodes, 142 edges

▪ Measured Start-to-end latency

− 150 us @ 130 MHz, edge classification v1

− 8.82 us @ 285 MHz, edge classification v2

− Implementation of hit-based model

▪ Measured Start-to-end latency

− 9.2 us @ 180 MHz

− Detailed latency breakdown and parallelism exploration ongoing

▪ The effects of FlowGNN parameters

Close discussion between model developers and FPGA engineers

Generation of the FPGA IP core – two parallel efforts

Utilization (Alveo U280)

LUT 194K (14.9%)

FF 214K (8.2%)

BRAM 406 (20.2%)

DSP 488 (5.4%)

Latency
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Experiment Integration

• The hits-based algorithm was validated end-to-end (data readout, clustering, 
trigger prediction) in FPGA.

• sPhenix experiment experiences delays in streaming INTT hits (INTT readout needs 
to be commissioned in the current year. 

• We can not use INTT to down-select pile-up event data.

• We have to train new models for MVTX only events. 

• Hits based model works with FPGA. 

• The model will be deployed into sPhenix Felix FPGA in August 2024.                                                                                                   
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Conclusion, Accomplishments and Milestone

● ML models have shown steady increases in performance on the triggering problem

● Incorporating physics knowledge has contributed to large performance improvement 

in trigger prediction

● New strategies developed to effectively handle event pile-up while maintaing latency 

and accuracy targets.

● Challenges remain in adapting the ML algorithm to the real-world latency and data 

availability constraints
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Future Work

● Futher Work on simplifying algorithms and reducing data quantity to meet latency challenges
○ Improve Fast Hit-Set pipeline to bring performance closer to Hit-Set pipeline while further reducing the data 

quantity

● Ensure trigger algorithm works in explainable and robust way
○ Initial study has shown model prefers to drop non-trigger tracks without affecting event label and prefers to 

perturb hits as to not affect the track radius

Test model with real sPhenix experimental data!!!

(end of 2024 expected)
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