Additive Manufacturing of Microchannel Plates Phase II SBIR (DE-SCO019535) DOE-NP SBIR exchange meeting, Aug 15 2024

SEM comparison

- Microchannel plates (MCPs) provide high gain with low background and noise for light and particle detection
- Creating MCPs with additive manufacturing (3d printing)
 Why?
 - Cheaper; no foundry required
 - Arbitrary structures (helical pores for B field tolerance)
 - Large open area ratio
 - Wider range of materials
- Challenges:
 - Requires a breakthrough in speed ($t \approx 1/resolution^3$)
 - Glass in traditional MCPs is a well understood material
 - Need to functionalize pores (resistance and secondary e-)

Technical Team

Robot Nose (RN)

 startup formed to translate DOE lab technology into detector and sensor applications

Jerome Moore: PI and Business Official Michael Pellin: Photochemistry, Optics Andy Moore: Software Engineering Bob Wagner: MCP Validation⁰ Maram Alnahas: EE intern^{*}

^o also Argonne HEP

*now at NASA JSC

+also Moraine Valley CC

#now at Applied Materials

Argonne National Laboratory

Materials Science Division: Alex Martinson (ALD) Ashley Bielinski (ALD) Prabhjot Menon (Nanoscribe printing)+

Applied Materials Division: Jeff Elam (ALD) Anil Mane (ALD)#

Physics Division Jerry Nolen, Numerous ATLAS Staff Junqi Xie (Photodetectors)

Extensive discussions: Camden Ertley (SwRI, Photodetectors) Zein–Eddine Meziani

GOAL: Bunch tuning for ATLAS or FRIB

- <70 ps rising edge (10%–90%) possible with proper channel geometry
- need high BW, high rate digitization and real-time display

Acquisition System

- TDC x8 from Cronologic: 13 ps timing resolution, 48 MHz hit rates
- Custom cabling + buffer amp
- Embedded computer rad and electrical noise insensitive, long life components
- Software: robust code base in C#, Java; histograms hits at 3–10 Hz screen update rate
- Configuration of thresholds, gates, triggers with convenient user interface
- Remote monitoring via ethernet to control room

Proof of principle: additive microchannel plate (3dMCP)

Nanoscribe (2–Photon Polymerization 2PP):

- \$700k instrument (Argonne owned and operated)
- Throughput $R^3 = 0.15 \mu L/hr$ Resolution r = 100 nm
- 10mm dia 0.6mm thick MCP takes >24 hours!

Hundreds of samples were printed 2019–2023

3dMCP blanks: Scanning Electron Microscopy (SEM) analysis

Three example prints shown

Top view: blocked pores FAIL Cross section: misaligned pores FAIL

Isometric view: ideal sample PASS

22 parameters to adjust to achieve ideal 3dMCP blanks Can we make it generate gain? (1 MCP = 1000x)

Thermal ALD ChemX type coating

- $Mo:Al_2O_3 = 1:7$ cycle ratio
- Deposition at 150°C is a breakthrough!

Gain measured; but how real is it?

Typical MCP gain measurement is prone to error:

 $G = (MCP_{DUT}/E-gen1) / (MCP_{ref}/E-gen2)$

(must hold e-gen, UV flux constant through two sets of measurements and vent between)

<mark>field emission</mark> can cause misleading background

G = (Anode / Primary)

Gain = e- out/ e- in

HDR MCP Gain measurement system

(retractable w/airlock)

power

supplies,

picoammeters

high vacuum high conductance pumping for conditioning MCPs

Sample turnaround in <24h helps ALD optimize runs

Plasma Enhanced Atomic Layer Deposition (ALD)

- Sequential surface synthesis
 - Self-limiting reactions between precursor molecules and a substrate surface
- Desirable attributes:
 - Å-scale thickness control
 - Tunable composition
 - Uniform growth on complex 3D substrates

Ashley Bielinski, Argonne MSD

Metal Oxynitrides: ALD TiOxNy

Tunable O:N Ratio for Programmable Resistance

 $1'' \times 1''$ fused silica substrate

PE-ALD Film Uniformity

- Lateral and through-pore uniformity
 - Loss of reactive plasma radicals due to surface recombination can limit high growth in high aspect ratio structures
- Test of pure TiN
 - Confirm lateral uniformity
 - Spectroscopic ellipsometry
 - Confirm deposition through pore structure
 - Cross-section SEM + energy dispersive x-ray spectroscopy (EDX) mapping

3D Printed MCP

SEM and EDX:

Commercial glass MCP

Optics layout of tool for writing 3dMCP structures built via DE-SC0020940 (NNSA SBIR 2021-2024)

20x demagnification through objective possible

Process for 1-photon additive manufacturing of MCP blanks

5 writing completed

7 finished MCP blank

Rapid High Resolution AM System (DE-SCO020940, 2021–2024)

cartridge with print in progress

Creating the scan path : square pores, square MCP

**there are 10^{13} voxels (μ m^3) in a 100mm x 100mm x 1mm MCP!

absorption: A

 $A \rightarrow A^*$

branching: $A^* \rightarrow$ monomer rxn or $A^* \rightarrow$ quenched [t] $\rightarrow A$

Laser power, NA (focus), sweep rate and photoresist kinetics are crucially linked

Threshold writing

absorption of near UV: $A \rightarrow A^*$

branching: $A^* \rightarrow$ Initiate Polymerization or $A^* \rightarrow \text{Quenched}_{[t]} \rightarrow A$

 $20 \ \mu m \ pores$ in $50x50mm \ MCP \ blank$ printed in 1 hour

Demonstration of writing in 3d with extraordinary spatial dynamic range

70 mm/1.4 um = <mark>50,000:1</mark> ...path to 10⁶ in future

The work goes on!

Lab Facility: 10x10 cm² MCP-PMT Fabrication Facility Argonne PHY Division; Junqi Xie

- Capable of fabricating 10x10 cm² device size
- Recently built
- Completing commissioning currently

Magnetic field test station

Accomplishments during DE-SCO019535

- 1. Optimized MCP blank printing via creation of >100 1 cm diameter MCP blanks
- 2. Coated blanks with thermal ChemX ALD process at <u>lowest temperature yet</u>
- *3.* Coated blanks with <u>new</u> plasma enhanced ALD of TiO_xN_y films
- 4. Characterized MCPs and coatings with optical, SEM, composition analyses
- 5. Measured resistivity and gain from MCPs; made new high DR gain system
- 6. Created MCP precision pulse measurement system with Ga⁺ primary beam (BIJOU)
- 7. Built multiple acquisition systems with sophisticated software for display of timing
- *8.* Designed and built MCP assemblies for use at heavy ion accelerator facilities
- 9. (DE-SC0020940) >100x faster 1-photon additive tool

Gratitude to NP funding, Michelle Shinn, and DOE SBIR/STTR office!