

Long-Term Radiation Rugged Rotary Vacuum and Water Seals in Heavy-Ion Accelerators

PI: Jennifer Lalli

2024 SBIR/STTR Exchange PI Meeting

August 13-15, 2024

Sponsored by the Department of Energy Office of Science, Office of Nuclear Physics

August 15, 2024 11:55 AM DOE SBIR Phase IIA NP SBIR Exchange

TPOC: Dr. Michelle Shinn

Small Advanced Materials Company Incorporated 1998 Green development and scaled production Polymers, composites, and sensors Commercialized >15 SBIR derived technologies

Overview

Topic 26f: Rotary Vacuum and Water Seals in Heavy-Ion Accelerators

Needed for NP Experiments:

- Ultra-high vacuum and water-cooled seals
- Constant rotation 600 rpm, 5,000 hr, ~1 year
- Extremely high annual radiation dose (~15 MGy)
- Need to change seal as infrequently as possible

Partners:

- BNL NSRL and MIRP
- MSU FRIB
- Garlock
- Cardinal Rubber & Seal

Facility for Rare Isotope Beams at Michigan State University

DOE Topic 26f – Technology for High Radiation Environments Grant # DE-SC0017107

OBJECTIVE:

- Develop new rotary vacuum and water seals for rotating targets and beam dumps for rare isotope beam production and beam strippers in high-power heavy-ion accelerators
- Durable performance for 0.5 1.5 MGy/month, 1 year (5,000 hours), at 600 rpm over 32 °C to 66 °C, water side: 60 gpm (25 psi), vacuum side: 1e⁻⁵ Torr L/s

Need mechanical performance of Current Seal with enhanced Radiation & Less Abrasive. Investigating new material for new identified seal design

NanoSonic Team

& Our Commercial Partners/Investors

Dr. Jennifer Lalli, President, FSO, ITPSO

Ph.D. Chemistry, Virginia Tech

- > 20 years of adhesive/sealant and gasket/seal development
- Commercialized 15 SBIR products sold at <u>www.nanosonic.com</u>

Courtnay Brand (PM)

M.S. Chemistry

- NanoSonic's ISO 9001 Quality Management System Representative
- Synthetic Chemist leading foam design and production

Dr. William Harrison, Membrane and Seal Production Lead

Ph.D. Chemistry, Virginia Tech

- >20 years of laboratory safety and production expertise
- Leads NanoSonic scale-up and product certification

Dr. Maggie Bump, Marketing Liaison

- Ph.D. Chemistry, Virginia Tech
- New product development, repeatability and scalability
- >20 years of Science Communication
- 17 Teaching Awards Student Alumni Associates Favorite Faculty

Dr. Eric Gilmer, Chemical Engineering Production Lead Ph.D. Chemical Engineering, Virginia Tech

- AM prototyping, modeling, and manufacturing expertise
- Leads production of parts for space and aeronautics systems

Dr. Jie Wei, Accelerator Systems Division Director - Michigan State University, Facility for Rare Isotope Beams

- Design, fabrication, installation, commissioning, and operations of all aspects of FRIB accelerator systems
- 27 years of research, management, and teaching experience on particle accelerators, major science projects, and major user facilities
- Design, research and development, construction, and commissioning of the Relativistic Heavy Ion Collider (RHIC), the interaction-region design of the Large Hadron Collider (LHC), the design, research and development, and construction of the Spallation Neutrino Source (SNS) ring, and the leadership of the China Spallation Neutron Source (CSNS) project.

<u>**Dr. Jeongseog Song</u>**, Target and Beam Dump Systems Group Leader Drs. Philip Morrison, Michael Larmann, and Nicholas Reha</u>

NanoSonic is now ISO 9001:2015 Certified by NSF-ISR

250-gal, 55-gal, 1-10 L in hood, two 20L, and one 100 L reactor

Au from 100 -L

NanoSonic Production Capabilities: Extrusion and 3D Printing of Radiation Tolerant Polymers, Metals, & Ceramics

Goal:

Develop New Materials and Seal Designs for FRIB Beam Dump

<u>GOALS:</u>

- Develop new polymers with radiation resistance
- films not commercially available
- Implement new seal design

Reproduced 4.5" SS Shaft for Abrasion Testing of New Seal MaterialsNanoSonic Proprietaryto Mimic Beam Dump Water Seal

Goal: Survive High Dose Exposure Particle Energy Spectra for Beam Dump's Rotating Water Seal

Energy, MeV		Flux, particles/cm2/second					
E_low	E_high	Neutrons	Protons	Photons	Deuterons	Tritons	
1.0E-09	1.0E-08	5.1E+06	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
1.0E-08	1.0E-07	1.9E+08	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
1.0E-07	1.0E-06	2.3E+08	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
1.0E-06	1.0E-05	4.9E+08	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
1.0E-05	1.0E-04	8.3E+08	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
1.0E-04	1.0E-03	9.7E+08	6.8E+01	0.0E+00	2.4E+00	5.0E-01	
1.0E-03	1.0E-02	1.2E+09	1.8E+02	3.2E+05	8.3E+00	2.0E+00	
1.0E-02	1.0E-01	2.3E+09	6.7E+02	6.7E+07	3.0E+01	7.9E+00	
1.0E-01	1.0E+00	5.3E+09	8.2E+03	2.3E+09	2.3E+02	4.8E+01	
1.0E+00	1.0E+01	9.5E+08	1.2E+05	1.2E+09	3.8E+03	8.1E+02	
1.0E+01	1.0E+02	1.6E+08	2.3E+05	4.3E+05	2.0E+04	9.3E+03	
1.0E+02	1.0E+03	1.5E+07	2.1E+04	7.3E+05	0.0E+00	0.0E+00	

■ 48Ca at 400 kW, 261 MeV/u → 40Mg

High Energy 260 MeV when operated at 400 kW, Estimated Beam Flux based on typical irradiation: 150 uA (9.3 x 1014 protons/sec) assuming secondary neutron flux to be homogeneous and crossing a 50 x 50 mm area at 90 deg

Radiation Exposure Run 1 - May 7, 2021 High Energy – 1 GeV Fe / 1 GeV proton

Radiation Exposure Run 2 - June 13, 2022 Lower Energy – 400 MeV Fe / 100 MeV proton

Increased Dose – 214 Gy

Exposure at NSRL to Fe 1 GeV for Down-Selection – Chain Scission vs. Embrittlement

Mechanical Properties for All NanoSonic Films in Parallel and Perpendicular Directions

High Dose Exposure at BNL BLIP Delivered Films

First Run in 2022 – New Run Pending

DRM test

- Rotating and water flow test at target truck bay area on 6/28/2023
 - Water flow rate for DRM
 - Inlet: 57.5 gpm
 - Outlet:62.81 gpm
 - Water pump rotating speed: 3500 rpm
 - Flowmeter not exactly in center
 - Water cooling for motor, ~ 2 gpm

		STATUS OK	
Tank Valve		Water Flow	Drum Servo
Opened		Inlet Flow (GPM) 55.09	Countre Sett Speed RPM
		RPM 3499.00	Set Speed MAX
		Parring	Step Speed RPM Output
			Speed RPM Motor 12
SCREW JACK POSITION		Set RPM	Current 41 Magnitude (Amp)
Horizontal		Reset	Motor Temp (C)
			Vacuum (Torr) Survey 2
Pressure In (psi)	83.45	VALUM GASE Electro	Vacuum Seal
Pressure Out (psi)	76.12	Water Tape 😑	(Torr)
Flow Out (gpm)	68.23	Tank Level 🌔	Temperature (K)
DRM Water Outlet	76.79	DEBURR TEST DISABLED	Jacket Flow (gpm)
Motor Cooling Jacket(C)	250.00		Water Inlet (F)
Crimp Connector, White Motor Lead (C)	16.66		Cooling Jacket Water Outlet (F)
Motor Speed	19.91		
Reducer (C)			

Rot speed (rpm)	Time	Motor current (A)	Δp (psi)	Motor temp (C)	Flow (gpm)	Water leak	
200	10:30 – 10:50					Х	
300	10:50 – 11:10	3.85	7 (83-76)	29.11	ln:55.3 out:59.26	0	

anoJonic

J. Song, HPT, DRM test, 6/2023

Water seal Hardness Testing

Status of Down-Selected Seal Material

Air pressure: ~ 80 psi, with water

- Static test
 - Seal arrived here (5/16)
 - Tested at Target lab
 - Water pressure: ~ 75 psi
 - After 10 mins of pressurization:
 - No leak found

MSU Test Rig and Leak Path Findings Highlighted in Yellow NanoSonic's Test Fixture and Seal Tested at MSU Seal Passing at ~45 psi, and Seal with a Small Leak at 50 psi Indicated by Bubbles

Acknowledgements

Dr. Michelle Shinn Dr. Elizabeth Bartosz, Brenda May, John Motz, Christine Grady, Cassie Dukes, Linda Severs, Dr. Manouchehr Farkhondeh, and Dr. Manny Oliver

Dr. Jie Wei, Dr. Jeongseog Song, Dr. Frederique Pellemoine and Dr. Georg Bollen MSU FRIB Garlock

This material is based upon work supported under Award No. DE-SC0017107

