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Overview of the BNL Hadron Complex
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Hadron-based user and research facilities:
Linac Isotope Production (BLIP) / Medical Isotope Research and Production Program (MIRP)
NASA Space Radiation Laboratory (NSRL)
Tandem van de Graalff accelerators

ReIQt‘ivist'ic Heavy lon Collider (RHIC) -




BNL LINAC Isotope Producer (BLIP)

Medical isotope research and production program:

« Periority: preparation of certain commercially unavailable radioisotopes to
distribute to the research community (universities and labs), federal
agencies and industry.

» Perform research to develop new radioisotopes for nuclear medicine
investigators.

Operates generally synergistically with RHIC.

Higher isotope yields afforded by

« linac intensity phase-1 upgrade to 140 pA (2016)
» raster upgrade (2016)

» phase-2 upgrade planned for 250 pA

New (refurbished) cyclotron being commissioned for low energy irradiations.
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SBIR/STTR developments welcome to overcome beam power limits (target and window survivability)
« accurate component lifetime prediction

« robust multi-MW target component design

« development of new materials to extend lifetimes
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« Beams of all ions from protons to Uranium.

* Energy range of 50 MeV to 1000 MeV (dependent on ion
species).

» User support from BNL's Biosciences and Collider-Accelerator
Departments.

Applications include:
Radiobiology studies with beams simulating cosmic rays.

Industrial material studies on suitability of new materials for 47
space suits and spacecraft shielding. '

Testing of electronic components and electronic systems. QI octicParticles

(Solar Particle Eventsor
Corona | Mass Ejections)

Space radiation risk and countermeasure development.

Variable ions and energies delivered in ~ 1 hour
upon uniform, large (60 cm by 60 cm) samples.



BNL Tandem Van de Graaff Accelerator FaC|I|ty

* A wide variety of light and heavy ions for industrial and space
applications.

* Precisely known and continuously variable energies from a
maximum of 28 MeV for protons to 400 MeV for gold ions.

» Accurate dosimetry and user-friendly operation.

Applications include:

Space radiation effect studies of micro-electronic devices. = 2007

Micro-pore filter fabrication. § 1500 \ After Irradiation
Cell radiobiology investigations at low energies / high stopping powers. ;_"1200 *\* -
Enhancement of high temperature superconducting wire. % 800 \ t Th— |
Deep ion implantation for next generation semiconductors. g wl Before Irradiation _
Active spacecraft shielding studies and flight-instrument calibrations. S °\°"‘°——-o-o
Calibrations of instruments for space applications. 00 T2 3 4 5 6 1 ¢

Magnetic Field (T)
Active shielding of spacecraft concept testing by NASA.

Heated wafer high energy ion implantations (in development, ARPA-E).




BNL Hadron Injectors: state-of-the-art ion sources

>
EBIS (for high charge-state Cs sputter at OPPIS, H- (used with Magnetron H- Source

heavy ions: He to U), LION Tandem (Au, 200 MeV Linac) (used with 200 MeV linac)
- < - e ﬂ q"‘! Fe, etC.) B = — f l

world’s highest highest current H-
intensity polarized  accelerator in the world
H- source (SNS, FNAL, ISIS)

operates with 20 times
the intensity of any other
EBIS in the world
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RHIC history and future # Technologies to b
applied in the
* RHIC commissioning era (2000 to 2002)

first full energy (100 GeV/n) heavy ion runs, first 100 GeV polarized proton run

 RHIC-| era (2003 to 2013)

first full energy (250 GeV) polarized proton runs
¥ new technology: stochastic cooling proof-of-principle (2007)
% new technology: high intensity electron beam ion source, EBIS (>2010)

* RHIC-Il era (2014 to 2016)

% new technology: 3D stochastic cooling (>2014)

% new technology: high intensity polarized ion source, OPPIS (>2015)

(%) new technology: electron lenses for head-on beam-beam compensation (>2015)
* new technology: superconducting rf cavity used in hadron operations (>2016)

* RHIC today (2017+)

+ new technology: bunched-beam electron cooling (2017-2021)
¥% new technology: extended EBIS (2022), polarized 3He (2023)
(%) physics operations with detector upgrade, SPHENIX (>2022)

* Future electron-ion collider, EIC




RHIC - the Champion of Versatility

RHIC energies, species combinations and luminosities (Run-1 to 20)
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Center-of-mass energy Vsyy [GeV] (scale not linear)

Mission (Collider-Accelerator Department):

« Develop, improve and operate the suite of particle / heavy ion accelerators used to carry out the
program of accelerator-based experiments.

Support the experimental program including design, construction and operation of the beam
transports to the experiments plus support of detector and research needs of the experiments.

Design and construct new accelerator facilities in support of the BNL and national missions.




« Overview of the BNL hadron complex
* Major New Accelerator Technologies

stochastic cooling
electron lenses
superconducting cavities

bunched beam electron cooling
multi-pass energy recovery linac (CBETA)
* The future electron-ion collider, EIC

* Technology developments and NP SBIR/STTR
synergies

 Summary
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Accelerator Technology:
Bunched-Beam Electron Cooling at RHIC

- Commissioning 704 SRF
Commissioning Diagnostic Line 1 Booster
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Avg. current /,,4 : 27 mA
Momentum dp/p : 5x104 1St electron cooler using rf-accelerated bunches

Luminosity gain : 4x planned operation in 2019/2020




Bunched-Beam Electron Cooling at RHIC
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 First electron cooling in a collider.

« Bunched-beam electron cooling used now in routine operation at RHIC in
support of the Basic Energy Sciences Program at BNL.

 After the FY21 RHIC Run, facility will be converted for high-current injector
studies for the EIC.

A. Fedotov et al, Experimental Demonstration of Hadron Beam Cooling Using Radio-Frequency Accelerated Electron Bunches,
Physical Review Letters 124, 084801 (Feb 2020)




CBETA (Cornell/BNL ERL Test Accelerator)

Injector cryomodule
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Achieved eight passes (4 accelerating, 4 decelerating) with
full energy recovery and high-energy efficiency.

A. Bartnik et al, CBETA: First Multipass Superconducting Linear Accelerator with Energy Recovery,
Physical Review Letters 125, 044803 (Jul 2020)




« Overview of the BNL hadron complex
* Major new accelerator technologies

 The future electron-ion collider, EIC

Timeline, schedule and key parameters
How RHIC is transformed into an EIC

« Technology developments and NP SBIR/STTR
synergies
 Summary
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Timeline of the EIC

2012 EIC White Paper released. Commissioned by BNL and JLab as a follow-up to
the 2007 NSAC Long Range Plan.

2015 NSAC Long Range Plan recommended a high-energy, high-luminosity,
polarized EIC as the highest priority for a new facility construction following the

completion of FRIB.

Dec 2019  Critical Decision 0 (“mission need”) for an EIC approved by the DOE (enables
work to begin on R&D and on the CDR).

Jan 2020 Sitﬁ dlecki)sion made by the DOE for hosting the EIC at BNL in strong partnership
with Jlab.




EIC Schedule

Draft CDR — Sep 2020
Final CDR — Jan 2021

Critical
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Key parameters of the EIC

Highly polarized (70%) electron and light ion beams

lon beams from deuterons to the heaviest nuclei (U, Pb)

Variable center of mass energies from 20 to 100 GeV
upgradable to 140 GeV

High luminosity of 1033-1034 cm™2s™"

More than one interaction region possible




Maximum Luminosity (1034/cm?s) Parameters

L “mm

Energy
== Beam Current Amperes 1.0 2.5
Particles per bunch 1010 6.9 17.2
Number of bunches 1160 1160
Horizontal emittance nm 11.3 20.0
== Vertical emittance nm 1.0 1.3
Hor/Ver beta at IP cm 80/7.2 45/5.6
Hor/Ver beam size at IP um 95/8.5 95/8.5
Hor/Ver angular spread at IP urad 119/119 211/152
== Bunch length (rms) cm 6 2
Hor/Ver beam-beam parameter 0.012/0.012 0.072/0.100
== |BS growth time (Long/Hor) hours 2.9/2.0 [na]

Very dense and closely spaced bunches introduce challenges!




How RHIC is transformed into an EIC

 Existing RHIC with
Blue and Yellow rings

Hadron Storage Ring

Hadron Injector Complex



How RHIC is transformed into an EIC

 Add an Electron
Storage Ring
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How RHIC is transformed into an EIC

« Add an electron
Injector complex with
Injector Rapid Cycling
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How RHIC is transformed into an EIC
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On-energy
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Electron
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 Strong hadron cooling
completes the facility

« Alternate solution
Injector (with ‘conventional’
electron cooling) also
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« Overview of the BNL hadron complex
* Major new accelerator technologies

* The future electron-ion collider, EIC
* Technology Developments and
NP SBIR/STTR synergies

Superconducting RF systems
Electron guns and photocathodes
Beampipe coating

Coherent electron cooling

* Summary




Overview of RF for the EIC

RCS: Rapid Cycling Synchrotron

* 400 MeV — 18 GeV Full Energy e- Injector
* 1 Hz Repetition Rate

* 100 ms ramp

* 28 nC per bunch

lectron
Electrons ;

IR10

Possible Detector
Location

Possible Detector

e Location

T —

Electron
Injector (RCS)

Interaction Region Crab Cavities

* 25 mrad crossing angle
e 8x hadron 197 MHz Crab Cavities
*  6x hadron and electron 394 MHz Crab Cavities

T,

Ring

eSR: electron Storage Ring

150 MeV, 100 mA

Electron Storage

5 GeV —-18 GeV

2.5 A maximum beam current (10 GeV)
1160 bunches, 28 nC per bunch

Up to 10 MW synchrotron radiation power

Up to 38 MeV loss per turn (18 GeV)

. \\\\ Electron Cooler Polarized

e e R — Electron

1éns Polarimeters 41 GeV Arc 9 Source
Strong Hadron Coolin '
g g IR2 \ Injector -
* ERL, Single Pass Up/Down \ Linac—

lon Transfer
Line

lon Ring —_—

Hadron Ring

Up to 275 GeV Proton Store Energy
1 A maximum beam current
1160 bunches, 11 nC per bunch




Technology: RF challenges for the EIC

The two most challenging aspects of the RF systems both result from the very high beam currents in
both the Electron Storage Ring (ESR) and the Hadron Storage Ring (HSR):
« Very high power fundamental power couplers for the ESR RF
« The ESR RF system must provide up to 10MW of RF power to the beam, to replace
energy lost to synchrotron radiation.
« Strong and very high power High Order Mode (HOM) damping for the ESR and HSR
« Beam stability requires HOM impedances to be well controlled via strong HOM coupling
and high power HOM absorbers.

Opportunities for R&D: Improved ceramic materials and fabrication techniques for very high power FPC windows; very high power
. adjustable couplers; fabrication techniques for large diameter, large area HOM absorbers — solid and tile types.

.




Technology: Polarized Electron Source

In development at Stony Brook University

* based on the JLAB inverted gun

« 5-10 nC/bunch at 1-2 Hz repetition frequency
» large area cathode (26 mm dia)

« XHV vacuum requirements (<1012 Torr)
 first beams expected Aug 2020

Planned R&D: cathode development and quantum efficiency
lifetime studies

XHV Manipulators Storage
Chamber

| Gun -, . -
4.;. Focus areas / opportunities for collaboration:

» photocathode development - both polarized and unpolarized
Eey * superlattice GaAs wafer production

 technologies for XHV and chamber coatings
« simulations

Related - polarimetry:

« for protons with small bunch spacing
« for spin-polarized 3He beams



Technology: beam-pipe coating

Two main concerns due to short proton bunches and small bunch spacing:
1) Resistive wall heating - stainless-steel screen with co-laminated copper
RW heating 4.03 W/m - 0.08 W/m

1) Electron cloud generation - apply thin (100 nm) a-C layer (SEY—f 1.06) on top of copper

W » §

cold bore,
69 mm ID pipe,
stainless steel

— cold-bore beam pipe

screen cooled by contact
to 4.55K cold bore

wedge to ensure good
| thermal contact

I RHIC arc dipole cross section




Technology: Coherent electron Cooling

< 2019, Free-electron-laser (FEL) based cooling channel

CeC “kicker CeC FEL amplifier ~ CeC modulator SRF photo-gun

4 quads 3 helical wigglers 4 quads Bunching
| oC | Dog-leg: RF cavities and cathode
M“ 3 dinoles ok ™ n\j-pi:\[ll'-h:nn_
, 6 quads system
s Vv 1
Low power ey &
: Beam dump Y U
High power
beam dump 20 MeV Low energy transport
) . ks sam.line
2 dipoles SRF linac btflm line
4 quads with 5 solenoids

2019+, Plasma-cascade-amplifier (PCA) based cooling channel

Kicker Modulator

4-cell PCA

Electron beam (KPP) parameters demonstrated Jul 2020
First amplification by factor ~200 observed Aug 2020 (preliminary)

V. N. Litvinenko, Y.S. Derbenev, Coherent electron Cooling, PRL 102, 114801 (2009)




Technology: Strong Hadron Cooling

Hadron Chicane ; ; — -
R56 < hathlonath Design Cooling Rate R_ = 2h
shifted s.c. djust t i —
s aclustmen s Electron beam current 1,=100 mA (1nC/bunch)
quadrupole quadrupole Relativistic factor y = 293
triplet I I l l triplet _
I I -« hadron beam l | SXyN— 2.5/0.5Mm
I I ~=—electron beam l l
] [ [ ¥
Kicker I 14 Ap Modulat_or
section Amplification channel with bunch compressor chicanes section
i i n | ERL e-Source
quadrupole \ , eSS Sisssssssss ]
iplet i i g i g i i g i g i i # i
Il . Il
I I Electron return l | l

quadrupole
I triplet

I Straight Section IR-2 L=-~200m i

Opportunities for collaboration:

« Simulations both for strong hadron and conventional cooling
* RF field control including microphonic mode damping and synchronization methods
 Instrumentation (rad hard, high time resolution, non-invasive, etc.)




Summary

« The RHIC complex serves a wide user base (RHIC experiments, isotope
production, industrial and space applications) and is continually upgraded.

« Technology development for the EIC and other BNL programs is necessary for cost
reduction and performance upgrades. Current focus is on the electron sources,
cavity development with full HOM damping, beampipe shielding and coating
methods, the CeC proof-of-principle test at RHIC, magnet development and
emerging detector designs.

« The SBIR/STTR program serves an important role in upgrades of existing
accelerators and for the EIC.

« Small business companies are encouraged to get in touch with the speaker or
others at C-AD to find a match between upgrade and R&D needs for the RHIC
complex and EIC developments with their capabilities and ideas.
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Ongoing SBIR/STTR collaborations at BNL, Aug 2020

PIQ/Cont# | Sponsor | Title \ Dept | SBIR/STIR |

Techniques for Energetic lon Assisted In-Situ Coating

NF-18-40 Poole Ventura, Inc. (PVI) of Long, Small Diameter, Beam Pipes with Compacted AD SBIR
Thick Crystalline Copper Film

NF-1842 Advanced -Conductor CORC® catf\e based high field hybrid magnets for AM STIR

Technologies, LLC future colliders

NF-18-43 Delaware Diamond Knives, Inc. Flux Monitoring on an X-ray Refractive Diamond Lens 10 SBIR
Compact, High Performance, Drone-Mounted Spectral

NF-19-45 Spectral Sciences Imaging System for Ecosystem Carbon-Cycle EE SBIR
Characterization and Agricultural Monitoring
Development of X-ray Nano-focusing System with

NF-19-47 Sigray, Inc. Tunable Focus Using a Combination of Capillary PS SBIR
Mirror Lens with Multlayer Laue Lens (MLL)

NF.19.48 Radiasoft, LLC Massively-Parralel Magnet Design from a Web ps SBIR
Browser - Phase Il SBIR
Next-Generation Technology for The Extremely

NF-19-56 Accelogic LLC Efficient Storage, Distribution, and Processing Of PO SBIR
Nuclear Physics Data

NF-19-58 NanoSonic, Inc. Long-term R?diation Rugged Rotary Vacuum and AD SBIR
Water Seals in Heavy-lon Accelerators

NF-20-02 STI Optronics, Inc. Diamond Electron Amplifier AD STTR

NF-20-03 Ecolong LLC A(-ivanced-Pf:'er to P-eer-’ Tr.'fmsacﬂve Energy Platform cc <BIR
with Predictive Optimization

NF-20-08 NanoSonic, Inc. NSRL User (P-58) NanoSonic, Inc. AD SBIR

NF-20-09 NanoSonic, Inc. NSRL User (P-59) NanoSonic, Inc. AD SBIR

NF-20-16 Physical Sciences, Inc. STTR: Passive Cathod-e-(ioa-\ﬂngs and Devices for 10 STTR
Spacecraft Charge Mitigation

NF-20-17 Particle Beam Lasers, Inc. Quench Protectio nfor a Neutron Scattering Magnet AM SBIR

NF-20-19 cuclid Techlabs LLC RF Spl‘-lttering Coating of Electron Trans-parent AD SBIR
Materials for Photocathode Encapsulation
Development of Capillary Optics Optimized for X-ray

) Fluorescence Microscopy that will Enable 3-

NF-20-20 Sigray, Inc. . ) ) ) ) SBIR
Dimensional (3D) Fluorescence Imaging with 250nm
Spatial Resolution and Potential Towards 100nm

NF-20-37 Sydor Instruments, Inc. Transparent X-ray Camera 10 SBIR
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Overview of RF for the EIC
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Technology: RF challenges for the EIC
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e =

BNL Tandem Van de Graaff Accelerator Facility

Fasteassaenchate:
froraon ; b Awaen

. ‘"" "!"A-"-’?-‘Jf!mwv"&ﬂ‘-‘-‘ﬁ B

A0 Y I o ity wi e ot e s cme it

RSN TS e

s ———c—
12

A CHETA Pt st e g e s i oy S

How RHIC is transformed into an EIC How RHIC is transformed into an EIC

+ Existing RHIC with

+ Add an Eleciron
Blue and Yellow rags \Y

Storage Ring

BNL Hadron Injectors: state-of-the-art ion sources

- Overview of the BNL hadron
+ Major new acoelerator techn
* The future electron-ion coillder, EIC
Timeine, schedule and ey paramesers
How RHIC is ransfarmed into an EIC
logy developments and NP SBIR/STTR

mplex

How RHIC is transformed into an EIC

« Add an electon
irjecior comglex with
Riwit Cyeling
Synchroiran,

19 20

Technology Polarized Electron Source

Technology beam -pipe coating

) Rt vk v s kot s £ arvnsed czpper
frer i

Technology: Coherent electron Cooling

PERPY n——

Eecsrn e (K
i st icesn by ekt 200 o vt Auy 2030 (parirery)

A —

M s, Y5 ot ot G 5.4, 11485




