DE-SC0019565

Dr. Michelle Shinn,

Dr. Ethan Balkin

Purification of Lutetium-177

Laura Sinclair, PhD, PI

Bob Fox, PhD

Technical Objective

Objective

- Rapid chromatography for purification of lutetium-177
- Lutetium-177 used in targeted radionuclide therapy

Why?

 Current state of the art is time consuming and limited to small batch sizes

How?

New solvents allows for new chemistries

Image: ITM

Peptide Receptor Radionuclide Therapy

Lutetium-177

- 177Lu-DOTATATE, approved for neuroendocrine tumors
- 177Lu-lilotomab satetraxetan for non-Hodgkin's lymphoma (Phase I/II)
- 177Lu-DOTATOC for neuroendocrine tumors (Phase III, expected approval in 2024).
- 177Lu-PSMA-617 for prostate cancer (Phase III, expected approval in 2022)

radionuclide (177Lu) + chelator (DOTA) + targeting peptide (octreotate)

Image from Hennrich, Ute, and Klaus Kopka. 2019. "Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for

Supply Chain

- Target customers are isotope manufacturers
- Irradiate and purify lutetium-177, sells to drug makers
- Examples: IDB Holland (subsidiary of Novartis), Isotope Technologies Munich (ITM), Isotopia, Eckert & Ziegler, Bhabha Atomic Research Centre, etc.

Irradiation of ytterbium-176

Irradiated Target

Image from Salek, Nafise, Mojtaba Shamsaei, and Mohammad Ghannadi Maragheh. 2016. "Production and Quality Control 177 Lu Potential Agent for Bone Pain Palliation" 17 (6): 128–39.

Current Purification Technologies

Alternative	Advantages and Disadvantages
Aqueous ion	Advantages:
exchange	Chemicals are cheap and readily available
chromatography	Disadvantages:
	Requires multiple stages, long processing times (6-8 hours)
	Methods can be limited to small target sizes (~150 mg)
Extraction	Advantages:
chromatography	Suitable for large targets (>300 mg)
	Disadvantages:
	Complex, many stages and resin types required
	The process is ~16 hours and may need to be repeated multiple times
Cementation	Advantages:
	Applicable to medium-sized targets (at least 200 mg)
	Processing times are relatively short (3-4 hours), but may require extraction
	chromatography to clean up product
	Disadvantages:
	Residual mercury can be present which is a health risk for patients

Image from Barkhausen, Christoph. 2011. "Production of Non Carrier Added (n.c.a.) 177 Lu for Radiopharmaceutical Applications." Technical University of Munich.

Process

Loading

1. Chemical with metal

2. Metal has been loaded onto resin

Stripping

1. Chemical

2. Metal has been stripped from resin

Phase I – Testing Separation Factors

Tested extraction of Lu and Yb from Resin A

Phase I – Testing Separation Factors

Tested extraction of Lu and Yb from Resin A

Initial Chromatography Effort

Resin Screening

Stripping Kinetics of Holmium from Resins

Sample Chromatogram

Next Steps

- Purification of irradiated target (October 2021 April 2022)
- Confirmation of radionuclidic and chemical purity
- Patent review
- Ongoing customer discovery and reach-out
- Ongoing kinetics work at Idaho National Laboratory

The Team

Research Institute:
Idaho National Laboratory
Dr. Robert Fox
Distinguished Staff
Scientist

- 30 years experience with radiological materials, lanthanide and actinide separations, and supercritical CO₂
- Existing relationship with HFIR at Oak Ridge National Laboratory
- Previous and current partnerships with CF Tech

Small Business Concern:CF Technologies, Inc.
Dr. Laura Sinclair

- Mr. John Moses
- 30 years experience in supercritical, chromatography and high pressure processes
- In-house laboratory, pilot, engineering, and machining capabilities
- CF Tech's Dr. Sinclair has 10 years experience in high pressure processes and metal ser

