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About Sunrise Technology Inc.
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• Founded in 2017 

• Located in an incubator at Stony Brook University, Long Island, 

NY 

• Team: three full-time employees, a part-time consulting scientist, 

and several graduate interns. 

• Developing advanced AI/machine learning technology for 

autonomous systems, such as scientific experiments decision-

making engines and education platforms.

• Projects 
       1) ML-based slow orbit feedback control, deployed at BNL NSLS-II in July 

2023

       2) Autonomous driving education toolkit

       3) Collaborated with CFN at BNL to use machine learning method for x-ray            

scattering image classification 

       4) Particle Collision Triggering
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SBIR Phase II Objectives

• SBIR Phase II award
– Title “High Performance FPGA-based Embedded System for Decision Making in Scientific Environments”
– Co-funded by NP and ASCR
– End Year 3

• Ultimate Goal
– Design real-time AI-enabled DAQ trigger algorithms applied to the very high-rate data streams from detectors. 
– Play a central role in sPhenix and future EIC detectors running under trigger systems and in-situ streaming 

analysis for event selections. 

• Phase II Technical Objectives
– Designing Graph Neural Networks for High-Speed Physics Event Triggers.
– Collaborate with sPhenix team to integrate the algorithms to sPhenix experiment and reaches the target of 

15Khz data acquisition rate.

• Phase II Commercialization Objective
– Manufacture smart embedded system to facilitate real-time data collection for experiment and facility control
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Motivation

• The readout challenge

• Raw data Speed and Volume >> Hardware bandwidth/Storage Capacity

 Only a small fraction of data will be recorded to tape

• Trigger events are very rare, ~0.1% probability at RHIC

− RHIC collision rate is several MHz, sPHENIX readout 15 kHz 

-Without an effective trigger algorithm, experiments must use random event taking.

- With the same level of recall, AI-based trigger will significantly improve the detector efficiency. 

• Integrate the AI-based trigger system into the sPHENIX experiment for p+p run in 2024

• Potential future deployment on Electron-Ion Collider (EIC)
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sPHENIX experiment 

sPHENIX experiment under construction at RHIC:
- Running period 2023-2025
- ~4m long, ~3m high, 1000 tons
- 15kHz trigger rate
- 3 MVTX layers and 2 INTT layers - detectors 

capable of streamed readout
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ML Solution Overview 

7



Pixels ↦ Hits



From Pixels to Hits - Clustering

● Clustering is done by solving a 

spanning forest problem

● There is an edge between pixels that 

are adjacent to each other

● Mean of all pixels in a cluster is 

taken as the hit location

● Most time-consuming portion, we 

are developing a sparse CNN to 

perform faster clustering
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Hits ↦ Tracks



From Hits to Tracks

● Once we have hits, we want to 

group hits that came from the 

same particle into a track

● This will be solved by treating 

the problem as an edge 

classification problem

● Out of the N2 possible edges 

between the hits, we want to 

know the true edges.
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Edge Candidate Selection

● Not all of the N2 possible edges are 
plausible - we can eliminate a lot of edges 
from the get-go

● We can use some basic geometric 
constraints on the cylindrical coordinates 
of the hits
○ |Δφ/Δr| <= PHI_SLOPE_MAX
○ |z0| <= Z_ORIGIN_MAX
○ z0 = z1 - r·(Δz/Δr)

● The geometric constraints determine 
much of the latency and will play a vital 
role in further reducing the FPGA 
latency.
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Track Construction

● Once edge classification is performed, a track is constructed by finding the connected 

components
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Track Construction Performance

2022 2023

Accuracy 96.30% 92.07%

Precision 84.55% 92.54%

Recall 83.25% 97.97%

F1 83.89% 95.18%

Latency 17.92μs 3.1725μs
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Software of Year 3 is much more hardware aware than that of Year 2!
• 1 iteration on hits generation instead of 4 iterations 

• Hidden layer of MLP is reduced from 1024 to 8

• Much more constraints on geometry to select edge candidate
 



Tracks ↦ Trigger Label



From Tracks to Trigger

● After creating the tracks, we have a set 

of tracks

● We want to know whether the event 

that created these tracks was a trigger 

event

● A trigger event is an event in which we 

had a D0↦(π+, Κ-) or D0↦(π-, Κ+) 

decay
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What needs to be modeled?

● D0↦(π+, Κ-) or D0↦(π-, Κ+)

● Considering the problem from a high level perspective, we need to consider: 
○ Track-to-track Interactions: Do these pair of tracks form a (π+, Κ-) or (π+, Κ-) pair?

○ Track-to-global Interactions: Where is the origin of this track?

○ Global-to-Track Interactions: Incorporate information about the origin of this track into the track 

embeddings

17



Architecture

● Previous considerations motivate the following block.
○ Set Encoder: Track-to-Track interactions

○ Bipartite Aggregation: Track-to-Global and Global-to-Track interactions

SEBA (Set Encoder with Bipartite Graph Affinity)
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Architecture

● Stack multiple SEBA Blocks

● Use Bipartite Aggregation with single aggregator to generate event embedding

● MLP on event embedding to predict Trigger Event
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Physics Knowledge Added

● Track given to trigger classifier has the following features:
○ (x, y, z) location of hit on each layer

○ Length segment between each layer

○ Angle formed by segments

○ Estimated radius of circle fit to hits

○ Estimated center of circle fit to hits

○ Estimated transverse momentum of track

● Estimated radius and center provided ~10% increase in accuracy
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Multi-Task Learning to Improve model performance

● Several modifications to standard training process 

in order to improve the performance and robustness 

of our trigger algorithm
○ Data augmentation: We perturb hits off the detector 

layers while keeping it on the particle path

○ Track embeddings used predict whether two tracks 

come from the same parent

ℒ = LCE(triggerpred, triggertrue) + LCE(Apred, Atrue)
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Trigger Prediction Performance

Data Year Metric Result

Predicted Tracks 2023 Accuracy 85.6%

GT Tracks 2023 Accuracy 90.22%

GT Tracks 2023 Precision 86.35%

GT Tracks 2023 Recall 95.41%

Predicted Tracks 2022 Accuracy 84.01%

GT Tracks 2022 Accuracy 87.5%
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Conclusion, Accomplishments and Milestone

● ML models have shown steady increases in performance on the triggering problem

● Incorporating physics knowledge has contributed to large performance improvement 

in trigger prediction

● Challenges remain in adapting the ML algorithm to the real-world latency and data 

availability constraints
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Future Work

● Modifying algorithms to deal with pile-up

● Work on simplifying algorithms and reducing data 

quantity to meet latency challenges
○ Initial study of latency-accuracy tradeoff showed 

we could reduce edge quantity (critical for FPGA 

implementation) at the tracking stage by 60% 

with minimal loss in final trigger accuracy

● Ensure trigger algorithm works in explainable and 

robust way
○ Initial study has shown model prefers to drop 

non-trigger tracks without affecting event label 

and prefers to perturb hits as to not affect the 

track radius

Test model with real sPhenix experimental data!!!

(end of 2023 expected)
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