An Inexpensive Compact Neutron Generator for Gamma Calibration and other Applications

DOE STTR GRANT: DE-FG02-07ER86294: "Gamma Calibration Source" STTR with LBNL

Melvin A Piestrup, Charles Gary, Jack Harris, Hannes Vainionpaa, Ted Cremer, Michael Fuller

- Adelphi Technology, Inc.

Bernhard Ludewigt, Qing Ji, Joe Kwan, K.N. Leung (active retired),

-Lawrence Berkeley National Laboratory

Daniel Faber

-Heliocentric Technologies Inc.

Jani Reijonen*

-Schlumberger Princeton Technology Center (Previous LBNL)

Richard B. Firestone*

-Nuclear Information Consulting (Previous LBNL)

www.adelphitech.com 650-474-2750 ext 11 melpie@adelphitech.com

Adelphi Makes Neutron Generators (thanks to DOE STTR's with LBNL and SBIR from DNDO)

- DD reaction at high neutron yields
- Actively vacuum pumped (uses lecture bottle of Deuterium)
 - Serviceable and long lived
- Sealed versions (DD and DT)
 - Field portable and rugged

Model Number	Fusion Reaction	Yield (n/sec)	Status	Price
DD-108	DD (2.5 MeV)	~ 108	4 sold	\$98K
DD-109	DD	2 x 10 ⁹	2 sold	\$158K
DD-110	DD	8 x 10 ⁹	1 sold	\$316K
DT-111	DT	10 ¹¹	1 sold KSU	\$280K

ECR-Driven Neutron Generator

DD-108 Neutron Generator

Produces 2 x 10⁸ n/s

Old Neutron Generator with RF plasma source

D Plasma Source

Laboratory Neutron Source

Model DD-110

Model DD-109

- Easily and inexpensively moderated and shielded
- Easily serviced and long lived
- Do PGNAA and NAA with HPGe detector

Prototype Mining On-Site Analyzer (Heliocentric at Adelphi)

- Trace-Element Prompt Gamma Neutron Activation Analysis (PGNAA):
 - Deep penetration radiation performs bulk analysis
 - Deconvolve γ -ray spectrum to obtain elemental composition
- Applications in mining, oil sands and environmental clean up.

Important Benefits of STTR

- Transition from RF to Microwave ion source
 - Reduces generator size and weight
 - Compact ECR plasma ion source
 - Higher ion beam currents
 - Lower gas pressures in generator
 - Less arcing of high voltage

Vacuum System

- Open Actively pumped using turbo and roughing pump
 - Easy to service generator head
 - Doesn't require high vacuum techniques
- Closed (Sealed) Getter pump
 - Required for tritium use
 - Required for compact systems like gamma calibrator
 - Reduced lifetime
 - Requires high vacuum practices: bake out head, conflat flanges

Sealing Generator Head

- Vacuum Practices
 - Used conflat flanges
 - Some brazing of major joints
- Difficult areas
 - Sealing the ion source at the microwave power input
 - Used Alumina window and brazed
 - Permanent Magnets had to be removed

Gamma Calibrator

Problem:

 No long-lived gamma-ray calibration sources with energies above 3.5 MeV

Idea:

- Produce high energy gamma lines using prompt gamma neutron activation and an inexpensive neutron generator
 - Inexpensive and light weight

Production of gamma emission

- 2.5 MeV fast neutrons are produced by the DD fusion reaction
 - Using D+ ions striking titanium target
 - 80 kV, 100 μA ion beam
- 2.5 MeV neutrons are thermalized in polyethylene
- Thermal neutrons captured by CI nuclei in PVC.
 - PVC = Polyvinyl Chloride
- Gamma emission produced by prompt neutron activation
 - Up to 8.6 MeV gammas

ORIGINAL DESIGN: Gamma Calibrator

- Neutron Generator enclosed in HDPE moderator with PVC gamma converter.
- Uses inexpensive magnetron
- All supporting components inside.

Compact ECR Source

ECR = Electron Cyclotron Resonance

D+

- Meas. Atomic Species (D+): 92%
- Measured ion current: 1-2 mA
- Uses inexpensive magnetron & COTS annular permanent magnets

ECR Plasma Ion Source

ECR Plasma Ion Source

Low Power Operation

- We want low Power operation = Field portable
- Measured: Magnetron Ave power: 117 W (2 ms, 167 pps, 33% duty factor)

Measured Neutron Yield vs. Total Average power

Only 80 watts of acceleration + magnetron pwr. required for 2 x 10⁷ n/s.

Calibration Lines from PVC (Chlorine)

	Expected	Measured
Energy	cts per	counts per
[MeV]	second	second
2.864	0.33	0.60
3.062	0.19	0.26
4.980	0.11	not observed
5.715	0.14	1.09
6.111	0.45	1.13
6.620	0.25	0.44
6.628		
7.414	0.16	0.16
7.790	0.12	0.15
8.579	0.034	0.031

PGNAA Calibration Lines from Ni and Pb

Ni: 8998 keV Gaussian Fit

Pb: 7368 keV
Background subtraction

Status of Gamma Calibrator

Completed:

- First compact ECR plasma ion source using inexpensive magnetron & permanent magnets.
- Prototype ECR-driven neutron generator
- Sealed generator and plasma ion source
- PGNAA calibration spectra measured using DD generators.

Next:

- Fabricate compact acceleration section integrated with moderator & gamma transducer.
- Demonstrate gamma calibration

OTHER APPLICATIONS

- Materials Analysis (PGNAA and NAA)
 - Small Laboratory Materials Analyzer
 - Mining and coal analyzer
 - Field portable neutron generator for the detection explosives and special nuclear materials

On-line Coal Analyzer

This R&D permits the following application:

- Replace ²⁵²Cf with compact ECR-driven DD neutron generator
- Generator to fit existing coal analyzer
- Identification of previously undetected pollutants
 - Pulsing of generator should improve sensitivity by 10 X.
- long lifetime and field serviceable
- Customer: Scantech Limited

Summary

Gamma Calibrator

- Prototype Compact Neutron Generator Fabricated
 - Compact ECR source using inexpensive components
 - More than meets required neutron yield
- Demonstrated use as calibration source
- Need to produce Beta Prototype gamma source

Materials Analysis

- Demonstrated use for PGNAA and DGAA for materials analysis
 - Mining (Heliocentric) and coal analysis applications
- Fast and Thermal Neutron Laboratory Source Available NOW

END

Fast Neutron Radiograph of California's Finest, using DD-109