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FAR —TECH, Inc.

The name FAR stands for Fusion and Accelerator Research

Founded in 1994, located in San Diego, CA

*Core staff: 12 PhD physicists/engineers + 1 admin

«Core technology: electromagnetism (hardware and software)
* Accelerator technology ( custom orders received/deliverei
*RF sources
*RF structure/components
«System integration
Modeling and simulation

*Plasma science and technology
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PBGUNS: (Particle Beam gun simulation) code
lon trajectories, J(r) and emittance
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FAR-TECH has Meshless computing technology

Adaptive computation — multi scale problem

Easy to handle complex geometry

Petascale computing
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Motivation and Introduction
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High charged ion beams, in particular Rare Isotope

Beams (RIBs), are needed for Nuclear Physics studies
and have industrial applications

o Nuclear Science i da pmparms, Muchar Legemd  Gobormu o) oquark A 14
e R A T collisions, They ak provem Gpubreu r)  d peanfod GC
PR S e ey S ) gt mw__
Wihat happens when nuclel ase sompressed o rapiely rocssed! What i che origin of the mecie Found on Farsh! X ancisurvine (i) . poiwer fp) ol = 4 —Z

Expansion of the Universe Phasas ot Unsthable Nuclei
y

Nuclear Matter

quark-glunn pressa & nestran  farmation of
P Fo o

Element
[

s pecenty ursted Eha meutrinos
o have & s greaser than s
| reaser than

Applications

Radiactive Datlng Space Exploration s Niuchear Reactors
Colar Key
B Seable

Spantanecus
!

W Alphs particle
emision Smoke Detectors
¥ Bets minus

® Beta plus emlssion g
or slectron

www.CPEPweb.org cxpture

pial
© Capyright 2005 Costemporsry Physio Blacstien Prajed (CPEF] M5 S0RG08 LANL Besbicler, CA #1720 US4 Supgusct frous 115, Depactment of Eacegy, Erest Oetands Lowtence Bedickey Matioi] Labaralory - Midesr Sdome: Divison, Amesican Physical Socety - Divison of Nacleas Physics, 1. sl Sciesce Foandation

Taken from www.CPEPweb.org

O\ FAR-TECH




Rare Isotope beam (RIB) facilities in US and worldwide

e US RIB Nuclear Physics facilities, such as
— Facility for Rare Isotope Beams (FRIB) at Michigan State University
— ATLAS CAlifornium Rare Isotope Breeder Upgrade (CARIBU) at Argonne
— Cyclotron Institute at Texas A&M
— Holifield Radioactive lon Beam Facility (HRIBF) at ORNL

e Worldwide RIB Nuclear Physics facilities, such as

— SPIRAL2 (GANIL, France)
— ISOLDE (CERN)

— Triumph (Canada)

— KEK (Japan)
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An efficient way to produce high charge RIBs is by
Electron-Cyclotron-Resonance (ECR)
Charge-Breeder (CB) .

//\/\f\

ECR Plasma

« 1+ beam is injected and trapped in a mirror confined plasma

 The plasma is produced/sustained through ECR heating with microwave power
* Trapped ions are bred to high charge state through electron impact ionization

* Highly charged ions are extracted and selected by desired charge/mass ratio

1+ ion beam

n+ ion beam
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RIBs and next generation ECRIS are expensive.

Modeling can minimize trial and error optimization
experimental and design costs.

The Project Goal was to develop

a charge breeder simulation toolset

O\ FAR-TECH
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ECR CB is complex and Modeling is difficult

Microwaves

1+ ion beam

— N

Grounded tube

(n+ ion beam

ECR Plasma

Grounded
electrode

Plasma sheath Vextract T

« ECR CB modeling must integrate ion injection, ionization, and extraction.
« ECR Plasma modeling involves multiple physical processes
e« Many ion charge states must be followed
o Extraction region involves multiple spatial scales;
must resolve plasma meniscus.
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FAR-TECH's modeling strategy

Full particle based (particle-in-cell) modeling is not practical
— 10" time steps for accurate simulation of ECR heating to steady state
— Total number of floating point operations
= Ngtep X Nop X Ny= 10" x 10°x 10° =102

— Even with petaflops, total time for 1 run requires
1023/10'° =108 s = 3.2 years

 |[nstead, plasma is modeled with much faster continuum method
— Bounce-averaged Fokker-Planck for electrons
— Fluid model for ions
— Time step can be larger than PIC by10°

e Use particles only for incoming and outgoing beams

e Adaptive meshfree computation to resolve multi-scale spatial problem
with plasma sheath (meniscus) << 1 mm << device length of 30 cm

O FAR-TECH
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Modeling is still challenging!

— Multiple species (e.g. 18 charge states for Ar, 37 for Rb)

— lonization, charge-exchange cross sections not well
known

— Coulomb collisions play crucial role
* Long range force
= Determine electron confinement time

— Strong gradients within plasma

* Electron “temperature” ranges from 10 to 10,000 eV
= Electron density ranges from 104 to 10 m-3

O FAR-TECH
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ECR Charge Breeder is modeled in three modules,
each representing distinctive physical process.

1+ ion beam

N+ ion beam

MCBC GEM lonEX

Monte Carlo Beam Code
Beam injection and
slowing down

Into an ECR plasma
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ECR Charge Breeder is modeled in three modules,
each representing distinctive physical process.

1+ ion beam

N+ ion beam

MCBC GEM lonEX

Monte Carlo Beam Code Generalized ECRIS Modeling lon extraction
Beam injection and - Models ECR heated plasma Extraction of
slowing down confined in a magnetic an ion beam

into an ECR plasma mirror machine from an ECRIS
- Calculates charge state

distribution and profiles of
plasmaions and injected
lons
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Each code includes considerable physics and computational

techniques (See our publication for details).
Next, we simply present an example.

Publication list:
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ECR CB Example

Using MCBC, GEM and lonEx
for ANL ECRCB for Rb+ beam into oxygen plasma

ANL ECR CB Rb n+ ion beam
Rb+ ion beam

Device Length 29 cm rf Frequency 10.44 GHz
Device Radius 4cm rf Power 70 W
Biniection/Bmin 1.16T/0.27T = 4.3 Plasma lons oxygen
Bextraction/Bmin 0.83T /0.27T = 3.1 Gas Pressure 0.12 micro-torr

Acknowledgement: R. Pardo, R. Vondrasek (ANL)
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STEP 1

GEM

Generalized ECRIS Modeling

Obtain a steady state of background
plasma with GEM
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GEM 2D (r,z) simulation

Steady state background oxygen plasma shows hollow
electron density and temperature profiles, due to hollow
Electron Cyclotron Resonance (ECR) region

electron density (m=3)

0.08

ECR region
where electrons
are heated by
microwave
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STEP 2

MCBC

Monte Carlo Beam Code

MCBC tacks beam ions in plasma.

O FAR-TECH
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Movie shows single Rb+ beam ion trajectory simulated
by MCBC. As the ion traverses in the plasma longer, it
becomes more highly charged (color coded) by electron
Impact.

Rb+1 beam

mcbc_big.avi

Z (cm)

4 0

Tracking all the injected beam ions until
extraction is computationally expensive
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Instead, we compute MCBC until injected ions are pass through,
lost to walls or slowed-down to thermal speed of the background

plasmaion (“captured”).
Then utilize the captured profiles as input source profiles for GEM.

snapshot.avi

R (m)

captured
Rb?* profile

OFAR-TECH —  z(m)



STEP 3

GEM

Generalized ECRIS Modeling

Repeat Step 1, including ion sources from
the captured Rb+1, +2, +3, ... to GEM
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Steady state profiles of electron density and Rb ions
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STEP 4

lonEX

lon Extraction Modeling Code

Adaptive meshfree code
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GEM 2D (r,z) simulated steady state profiles of ng(r), T (r), J(r)
at extraction are the inputs to lonEx

Plasma wall

electrode

02 0.25
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Current density (Am"2)

lonEx Simulations:

z (cm)

J(r) for all Rb ions (+1 thru +25) at z=0 and 2.8 cm  Emittance atz = 2.8 cm
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lonEx benchmarked with PBGUNS:
Trajectories, J(r) and emittance

PBGUNE by FAR=TEGH, Inc.
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Summary

End-to-End Integration of ECR
Charge Breeder Modeling underway

FAR-TECH’s Suite of Codes for ECR Charge Breeder Modeling

MCBC GEM lonEX
Full 3d3v . ZgZIV Adaptive meshfree
Atomic data uid lons Multi-species

Fokker-Plank Electrons
(bounce averaged)
Coulomb collisions
Atomic collisions

Coulomb collisions
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FAR-TECH’'s ECRCB modeling toolset begins to
provide guidance on ECRCB / ECRIS

|t has provided better understanding of ECRIS plasma and ECRCB

through plasma physics and computation.
—one of the few modeling efforts in the world

e [tisthe first ECRCB simulation toolset that models from injection to
extraction in an integrated manner.

 Integrated modeling provides parameter dependence.
- Optimum injected beam energy for target charge states

O FAR-TECH
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GUI controls the integration of MCBC, GEM, and lonEx.

® ECRIS Suite by FAR-TECH, Inc.
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Future plan

e The Phase Il project ended in Aug 2010.

e Distribution of full executables is still far away.
— Itis best for us to run our codes due to complexity and difficulty of
the problem

e Technical support to RIB and ECRIS laboratories is feasible.

e Still much to improve to support ECR CB in an efficient manner!
We have plans for improving our models / codes
- physics model to include 3D mirror fields
- more robust computational algorithms

O FAR-TECH
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